
Open Journal of Statistics, 2017, 7, 446-458
http://www.scirp.org/journal/ojs

ISSN Online: 2161-7198
ISSN Print: 2161-718X

DOI: 10.4236/ojs.2017.73032 June 12, 2017

Numerical Methods for Discrete Double
Barrier Option Pricing Based on Merton
Jump Diffusion Model

Mingjia Li

Jinan University, Guangzhou, China

Abstract
As a kind of weak-path dependent options, barrier options are an important
kind of exotic options. Because the pricing formula for pricing barrier options
with discrete observations cannot avoid computing a high dimensional inte-
gral, numerical calculation is time-consuming. In the current studies, some
scholars just obtained theoretical derivation, or gave some simulation calcula-
tions. Others impose underlying assets on some strong assumptions, for ex-
ample, a lot of calculations are based on the Black-Scholes model. This thesis
considers Merton jump diffusion model as the basic model to derive the pric-
ing formula of discrete double barrier option; numerical calculation method is
used to approximate the continuous convolution by calculating discrete con-
volution. Then we compare the results of theoretical calculation with simula-
tion results by Monte Carlo method, to verify their efficiency and accuracy. By
comparing the results of degeneration constant parameter model with the re-
sults of previous models we verified the calculation method is correct indi-
rectly. Compared with the Monte Carlo simulation method, the numerical
results are stable. Even if we assume the simulation results are accurate, the
time consumed by the numerical method to achieve the same accuracy is
much less than the Monte Carlo simulation method.

Keywords
Discrete Double Barrier Option, Merton Jump Diffusion Model, Discrete
Convolution, Monte Carlo Method

1. Introduction

Options as a kind of important financial derivatives have been developed rapidly
in recent decades. With the increase of investment demands and the progress of

How to cite this paper: Li, M.J. (2017)
Numerical Methods for Discrete Double
Barrier Option Pricing Based on Merton
Jump Diffusion Model. Open Journal of
Statistics, 7, 446-458.
https://doi.org/10.4236/ojs.2017.73032

Received: May 8, 2017
Accepted: June 9, 2017
Published: June 12, 2017

Copyright © 2017 by author and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2017.73032
http://www.scirp.org
https://doi.org/10.4236/ojs.2017.73032
http://creativecommons.org/licenses/by/4.0/

M. J. Li

447

theoretical level, all kinds of exotic options were born. As an important path de-
pendent exotic option, barrier option was accounted for nearly half of the share.
Their research has a very important practical significance. So, new exotic option
pricing problem has become an important research topic.

Black and Scholes [1] set up the B-S model and get the pricing formula of the
call option. Common barrier options pricing has a long history. It was first stu-
died by Merton [2] on the down and out call option pricing. After this period,
Reimer and Sandmann [3] use the binary tree model research barriers options.
Then Gao, Huang and Subrahmanyam [4] pushed forward the pricing analysis
of the American barrier option by using the decomposition technique, and Dai
and Kwok [5] has got the pricing formula of American down and in call option.
The model of the underlying asset is also developed from the original B-S model
to a variety of more complex models. Such as Wang, Du [6] obtained pricing
formula in the class of barrier options under jump diffusion model, and Xie [7]
put forward the constant elasticity of variance (CEV) pricing barrier option
process. However, these developments are based on the constant parameter
model. Farnoosh, Sobhani, Rezazadeh [8] proposed a method based on the time
dependent parametric B-S model of the barrier options to extend the research of
this topic to another direction.

Looking at the development of barrier option pricing, the barrier option pric-
ing theory is from a study based on the continuous observation idealized model
to the effective discrete observation model, and the stochastic model of the target
stock is also developed from B-S model with constant parameters to model with
time-dependent parameter, or constant parameter jump diffusion model, CEV
model, SVJD model and so on. In order to make the scope of application more
extensive, the goal of this paper is the further development for the numerical al-
gorithm of the option pricing based on Merton jump diffusion model.

In the numerical calculation section, having a wide range of applications,
Monte Carlo simulation method is certainly one of the alternative calculation
methods. But it is often accompanied by a wide range of accuracy and low com-
putational efficiency. As traditional numerical algorithm performs badly in non-
smooth solutions, Golbabai, Ballestraand Ahmadian used finite element method
(FEM) to improve orders of convergence in [9]. In [10], Ahmadian and Ballestra
found it also performs well under a constant elasticity of variance model with
jump diffusion. For some models, the other way to get numerical method is di-
rectly starting from the analytic solution. In [8], Farnoosh, Sobhani, Rezazadeh
is proposed that for time dependent numerical parameters of barrier options
based on B-S model an analytical solution can be obtained. They started from
solving partial differential equations. By constructing a heat conduction equa-
tion, they finally got the analytical solution. However, it still can’t avoid calculate
a multiple integral of a high dimension. Using the numerical solution of the
Romberg extrapolation algorithm to calculate is taking time and precision into
account. But consider from the efficiency of the integral calculation, it is not as
good as quadrature method which been used by Milev and Tagliani in general

M. J. Li

448

B-S model [11]. The difference is probably cause by the influence of boundary.
The quadrature method used on general B-S model is able to extend to more
complex model. Furthermore, for time dependent parameters, it also can achieve
good results.

In the second section, we will consider knock-out call option as an example to
introduce risk neutral pricing based on Merton jump diffusion model. Finally,
we obtain an analytical formula of the discrete double barrier option.

In the third section, we will introduce the application of quadrature method to
calculate the high dimensional integrals generation generated in the second sec-
tion. We also introduce Monte Carlo simulation method to compute the result
for comparison.

In the fourth section, the computational efficiency of the numerical method is
compared with samples in literatures and results of simulation method.

In the conclusion, we note that this calculation method is significantly better
in accuracy and efficiency, and there is a certain promotion potential.

2. Discrete Double Barrier Options Model

We assume the European discrete knock-out double barrier option has the fol-
lowing conditions: 1) European options, i.e., option can only be exercised at
maturity; 2) The time for observation has is set in advance, 2

Jσ T= in the
subsequent derivation, we assume observation time interval is consistent. For
different observation intervals, the subsequent theory still holds; 3) All the ob-
servation time have the same U and L as barrier. When the stock price at the
observation time higher than U or lower than L, the option knock-out; 4) Ignore
the transaction costs and taxes. It means if the option hasn’t knocked out at ob-
servation time, at the time of maturity, the option value is ()max ,0 ,TS K−

0,L K U L S U≤ ≤ ≤ ≤ ; 5) the stock price can change continuously.
Merton jump diffusion model assumes that the stock price tS is in accor-

dance with the following stochastic differential equation,

[]()d d d d ,t
t t t t

t

S E J t W J N
S

µ λ σ
−

= − + + (1)

where () ()2ln 1 ~ ,t J JJ N µ σ+ , Wt is standard Wiener process, tN is Poisson

process with intensity λ. We denote ()ln 1t tY J= + , [] 21
2tE Jγ µ λ σ= − − . By

Itô Lemma, we obtain

d ln d d d .t t t tS t W Y Nγ σ= + + (2)

We denote []{ }, , 1, 2, ,
ii TA S L U i m= ∈ =  . In risk-neutral measure, if we as-

sume risk-free interest rate r is constant. (Thus, the drift µ is replaced by the in-
terest rate r.) By the definition of the option its price at the beginning time is equal to

()
1 2

e max ,0 ,1 1 1 .
m

rT
T A A AE S K−  −  (3)

We can calculate this formula to get the analytical formula of the discrete
double barrier option.

M. J. Li

449

Theorem 2.1. The value of option with above assume is given by the following
integral

() () ()()
1 2

1 2
1 2 2 1, , ,

, e , , , d d d ,m

m

x x x
m mx x x D

V S T L K f x x x x x x+ + +

∈
= −∫ 





  (4)

where

1 2 1 1 2 1 2 1

1 2

, , , | , , , 0, ln ,

ln , ln ,

m m

m

UD x x x x x x x x x
L

K Ux x x
L L

−
  = + + + + ∈   

 + + + ∈   

  



 () ()1 2 1 2
0

, , , ln ,m
m ii

Lf x x x h x h x
S =

 
= − 

 
∏

() () 2
2

0 e ,
! J

i T
m

i J
T m T Th x i i
i m m

λλ λ σφ µ σ
−∞

=

 
= + + 

 
∑ ,

()2,φ µ σ is the p.d.f. of ()2,N µ σ .
Proof. Step 1. Assuming that the p.d.f. of random variable is known, we calcu-

late the analytical result.

We denote 
1

ln ln , 1, 2, ,
i ii T TS S i mξ

−
= − =  , we have



1
0e

i
jj

iTS S ξ=∑= . Let 1ξ =

 

0 1ln ln , , 2,3, ,i iS L i mξ ξ ξ− + = =  , We get 1e
i

jj
iTS L ξ=∑= . For 1, 2, ,i m=  ,

{ } { } 1ln ln ln 0 ln
i i

i
i T T jj

UA L S U L S U
L

ξ
=

 = ≤ ≤ = ≤ ≤ = ≤ ≤ 
 

∑ .

From Equation (4), the value of this barrier option is,

()

()

()

()

1 2

1

1 2
1 1 1

1

1 2
1 1 1

0 ln 0 ln 0 ln

0 ln 0 ln ln

,

e max ,0 1 1 1

e max e ,0 1 1 1

e e 1 1 1

m

m
jj

m
j j jj j j

m
jj

m
j j jj j j

rT
T A A A

rT
U U U
L L L

rT
U U K
L L L

V S T

E S K

E L K

E L K

ξ

ξ ξ ξ

ξ

ξ ξ ξ

=

= = =

=

= = =

−

−
     ≤ ≤ ≤ ≤ ≤ ≤     
     

−
   ≤ ≤ ≤ ≤ ≤   
   

∑

∑ ∑ ∑

∑

∑ ∑ ∑

= −

= −

=

  

 




−


 







() ()()
1 2

1 2

ln

2 11, , ,
e e d d d ,m

m

U
L

mx x xrT
i i mix x x D

L K h x x x x

 ≤ 
 

+ + +−
=∈

 
 
  

= − ∏∫ 





 (5)

where

1 2 1 1 2 1 2 1

1 2

, , , | , , , 0, ln ,

ln , ln ,

m m

m

UD x x x x x x x x x
L

K Ux x x
L L

−
  = + + + + ∈   

 + + + ∈   

  



()ih x is p.d.f. of , 2,3, ,i i mξ =  .
Step 2. Calculate ()ih x .
For 2,3, ,i m=  from Equation (2), We know iξ is sum of independent

M. J. Li

450

random variables including a normal random variable
2

~ ,T TN
m m
γ ση

 
 
 

 and a

series of normal random variables ()2~ ,k J JNη µ σ . The length of the series is
follow a Poisson distribution with intensity T mλ . As we know while the length

is j, sum of these variables
2

2~ ,i J J
T TN j j

m m
γ σξ µ σ

 
+ + 

 
, we get the p.d.f. of

iξ ,

() 2
2

0 e , ,
!

j T
m

i J Jj

T m T Th j j
j m m

λλ γ σφ µ σ
−∞

=

 
= + + 

 
∑ (6)

where ()2,φ µ σ is the p.d.f. of ()2,N µ σ . Because ()ih x has no relation

with i, in 2,3, ,i m=  , we denote ()ih x with ()h x . In particular, as there is

a constant shift in 1ξ , ()1
0

ln Lh x h x
S

 
= − 

 
.

Plug ()h x into Equation (5), we finally obtain (4). □

Specially, if parameters is change to different constant in different monitor
interval, ()ih x will be different while they can be calculate in the same method
by different parameters.

3. Numerical Valuation Algorithm

From section 2 we know random variables , 1, 2, ,i i mξ =  decide the option
value at t = T. As we have already known the distribution of iξ , we can use
Monte Carlo method to simulate iξ and get some possible option value at t = T.
By weak law of large numbers, the means of the Discounting of these price is
converging to the option price at t = 0. However, we can’t expect it as an efficient
selection.

Since we have got the analytical formula of the discrete double barrier option.
We can also calculate the numerical result by calculate the analytical formula.
While there is a High dimensional multiple integral, we should anticipate some
tricks. As the integration has a break at the boundary of the integral area, we
compare and find that Milev’s method to discrete the integration, solve directly
perform a better precision than the extrapolation method, such as the Romberg
extrapolation algorithm.

We use discrete method to calculate the High dimensional multiple integral
by calculate an approximate discrete convolution. Monte Carlo method is also
used for compared.

Firstly, we introduce the discrete method. Let ln Ud n
L

= , where n is an in-

teger number. We used discrete random variable ,i nξ to approximate iξ , ,i nξ
satisfy

(), , ,i n k nP kd pξ = = (7)

where

M. J. Li

451

() ()(), 20.5 0.5k np P k d k dξ= − ≤ < + , (8)

, 1, 0,1, 2, , 2,3, ,k i m= − =   . Specially, we discrete random variable 1,nξ to
approximate 1ξ , 1,nξ satisfy

(), , ,i n k nP kd pξ = =  (9)

where

() ()()1, 0.5 0.5 .k np P k d k dξ= − ≤ < + (10)

From Equation (5), we know

()

()1

1 2
1 1 10 ln 0 ln 0 ln

,

e max e ,0 1 1 1 .
m

jj

m
j j jj j j

rT
U U U
L L L

V S T

E L Kξ

ξ ξ ξ

=

= = =

−
     ≤ ≤ ≤ ≤ ≤ ≤     
     

∑

∑ ∑ ∑
= −

 
 
  



 (11)

So we can use (),nV S T to approximate (),V S T , where

()

(),1

1 2
, , ,1 1 10 ln 0 ln 0 ln

,

e max e ,0 1 1 1 .
m

j nj

m
j n j n j nj j j

n

rT
U U U
L L L

V S T

E L Kξ

ξ ξ ξ

=

= = =

−
     ≤ ≤ ≤ ≤ ≤ ≤     
     

∑

∑ ∑ ∑

 
 


−


=





(12)

We denote
1

, ,1 1
, ,1 0 ln 0 ln

1 1
k

j n j nj j

k
k n j n U Uj

L L
ξ ξ

ζ ξ
= =

   = < ≤ < ≤   
   

∑ ∑
= ∑  , 1, 2, ,k m=  . From

Equation (12), we know

() ()(),, e max e ,0 .m nrT
nV S T E L Kζ−= − (13)

So we can calculate (),nV S T by calculate ,m nζ . From the definition of 1,nζ ,
we know

,
1, 1,

0 ln
1 .

j n
n n U

L
ξ

ζ ξ  < ≤ 
 

= (14)

So the value of 1,nζ may be 0, , 2 , ,d d nd , and satisfy

() ,
1,

0,

, 1, 2, ,
ˆ , 0

k n
n

n

p k n
P kd

p k
ζ

== =  =




 (15)

where 0, ,1
ˆ 1 n

n k nkp p
=

= −∑  . Notice that 1, 0nζ ≥ . 1, 0nζ > is equivalent to

1,0 ln
1 1

n
U
L

ξ < ≤ 
 

= . 1, 0nζ = is equivalent to
1,0 ln

1 0
n

U
L

ξ < ≤ 
 

= . In fact, we have the

following lemma:
Lemma 3.1. For ,1, 2, , , 0k nk m ζ= ≥ , and

1 2
, , ,1 1 1

,
0 ln 0 ln 0 ln

0 1 1 1 0,
k

j n j n j nj j j
k n U U U

L L L
ξ ξ ξ

ζ
= = =

     < ≤ < ≤ < ≤     
     

∑ ∑ ∑
= ⇔ = (16)

1 2
, , ,1 1 1

,
0 ln 0 ln 0 ln

0 1 1 1 1.
k

j n j n j nj j j
k n U U U

L L L
ξ ξ ξ

ζ
= = =

     < ≤ < ≤ < ≤     
     

∑ ∑ ∑
> ⇔ = (17)

M. J. Li

452

If , 0k nζ > , then , ,1
k

k n j njζ ξ
=

= ∑ .

Proof. From the definition of ,k nζ , it can be easily proved.□
For 2,3, ,k m=  , by lemma 3.1, we have

1 1
, , ,1 1 1

1 1
, ,1 1

,1 0 ln 0 ln 0 ln

,

0 ln 0 ln

1 , 1 1 1

0, 1 1 0

k k
j n j n j nj j j

k
j n j nj j

k
j n U U Uj

L L L
k n

U U
L L

ξ ξ ξ

ξ ξ

ξ

ζ
−

= = =

−
= =

     = < ≤ < ≤ < ≤     
     

   < ≤ < ≤   
   

∑ ∑ ∑

∑ ∑

 =
= 

=


∑ 



() 1 1
, , ,1 1 1

1 1
, ,1 1

1, ,
0 ln 0 ln 0 ln

0 ln 0 ln

1 , 1 1 1

.
0, 1 1 0

k k
j n j n j nj j j

k
j n j nj j

k n k n U U U
L L L

U U
L L

ξ ξ ξ

ξ ξ

ζ ξ
−

= = =

−
= =

−      < ≤ < ≤ < ≤     
     

   < ≤ < ≤   
   

∑ ∑ ∑

∑ ∑

 + =
= 

=






 (18)

So we know ,0 lnk n
U nd
L

ζ≤ ≤ = . As the possible value of ,k nζ is an integer

multiple of d, the value of ,k nζ may be 0, , 2 , ,d d nd . For 0,1, 2, ,i n=  , let
(), , ,i k n k nq P idζ= = . Notice that

1
, ,1 1

,
0 ln 0 ln

0 1 1 1
k

j n j nj j
k n U U

L L
ξ ξ

ζ
= =

   < ≤ < ≤   
   

∑ ∑
> ⇔ = ,

from Equation (18),

()

() { }

() ()()

, 1,1

, , ,

, 1 ,
0 ln

, 1 ,1

, 1, ,1

1 1

,

k k nj nj

i k n k n

k n k n U
L

n
k n k nj

n
j k n i j nj

q P id

P id

P jd P i j d

q p

ζξ

ζ

ζ ξ

ζ ξ

−
=

−  < ≤ 
 

−=

− −=

∑

= =

 
 = + =
 
 

= = = −

=

∑

∑

 (19)

0, , , ,11 .n
k n i k niq q

=
= −∑ (20)

Using Equation (19) and Equation (20) we can calculate all , ,i k nq step by step.
Notice that ()1 1n i j n− − ≤ − ≤ − , we just need to precompute ,k np for

1, 2, , 1k n n n= − + − + − . Plug it into Equation (13), we have

() ()()
()

,

, ,1

, e max e ,0

=e max e ,0 .

m nrT
n

nrT id
i m ni

V S T E L K

q L K

ζ−

−
=

= −

−∑



 (21)

It means we could calculate (),nV S T by Equation (19), Equation (20) and
Equation (21) after we got ,k np and ,k np . Actually, as we don’t need 0, ,k nq to
calculate (),nV S T by Equation (21), there is no need to calculate Equation (20).
Equation (19) is a discrete convolution we have to calculate m times.

We use the p.d.f. of iξ To get ,k np and ,k np . Denote

() () ()
2

2e ,
!

j T
m

j J J
T m T Tg x j j x

j m m

λλ γ σφ µ σ
−  

= + + 
 

.

Because ()0 jj g x∞

=∑ is uniform convergence, for 2,3, ,i m=  , by the defi-
nition of ,k np , we have

M. J. Li

453

() ()() ()()
()

()()
() ()()

()

() ()()

()()

() () ()

0.5
, 2 0.5

0.5 0.5

0 00.5 0.5

2
2

0

2
2

0.5 0.5 d

d d

e , 0.5
!

, 0.5

0.5
e 0,1

!

k d
k n k d

k d k d
j jj jk d k d

j T
m

J Jj

J J

j T
m

p P k d k d h x x

g x x g x x

T m T Tj j k d
j m m

T Tj j k d
m m

T m k d T m
j

λ

λ

ξ

λ γ σµ σ

γ σµ σ

λ γ

+

−

+ +∞ ∞

= =− −

−∞

=

−

= − ≤ < + =

= =

  
= Φ + + +    

 
− Φ + + −     

+ −
= Φ

∫

∑ ∑∫ ∫

∑

() ()

0 2 2

2 2

0.5
0,1 ,

J
j

J

J

J

j

T m j

k d T m j

T m j

µ

σ σ

γ µ

σ σ

∞

=

  −  
  + 

 − − −  −Φ
 + 

∑

 (22)

where ()2,µ σΦ is c.d.f. of ()2,N µ σ , and ()0,1Φ is c.d.f. of standard nor-
mal distribution. Similarly, from the p.d.f. of 1ξ , we can get

() () () ()

() () ()

0
, 0 2 2

0

2 2

0.5 ln
e 0,1

!

0.5 ln
0,1 .

j T
Jm

k n j
J

J

J

k d L S T m jT m
p

j T m j

k d L S T m j

T m j

λ γ µλ

σ σ

γ µ

σ σ

−∞

=

  + − − −  = Φ
  + 

 − − − −  −Φ
 + 

∑

 (23)

Unfortunately, we can’t calculate ,k np and ,k np directly although we have
got their analytic expression. Let

() () ()

() ()

, , 0 2 2

2 2

0.5
e 0,1

!

0.5
0,1 ,

j T
n Jm

k n n j
J

J

J

T m k d T m j
p

j T m j

k d T m j

T m j

λλ γ µ

σ σ

γ µ

σ σ

−′
′ =

  + − −  = Φ
  + 

 − − −  −Φ
 + 

∑
 (24)

() () () ()

() () ()

0
, , 0 2 2

0

2 2

0.5 ln
e 0,1

!

0.5 ln
0,1 ,

j T
n Jm

k n n j
J

J

J

k d L S T m jT m
p

j T m j

k d L S T m j

T m j

λ γ µλ

σ σ

γ µ

σ σ

−′
′ =

  + − − −  = Φ
  + 

 − − − −  −Φ
 + 

∑

(25)

from above, we know , , , , , ,lim , limk n n k n k n n k nn n
p p p p′ ′′ ′→∞ →∞

= =  , and , , , ,,k n n k n np p′ ′ can

be directly calculate. By using , , , ,,k n n k n np p′ ′ to approximate , ,,k n k np p , we finally
get an approximation of (),nV S T , and denote it with (), ,n nV S T′

 , who is a
computable approximation of (),V S T . If parameter is different in different
monitor interval, we should just refresh ()jg x in each iteration to keep the
algorithm run correctly.

Secondly, we introduce our Monte Carlo simulation method. The main idea
Monte Carlo simulation method is generating thousands of simulations of St.
Then we can use the mean price of option base on these St to estimate (),V S T

M. J. Li

454

according to the law of large numbers. While the price of option just bases on
the value of tS on monitor date, we just need to simulation these values on
monitor date. From Equation (2) we can conveniently simulate ln tS then get

tS indirectly. In other words, we simulate , 1, 2, ,i i mξ =  . As we know iξ is
sum of independent random variables including a normal random variable

2

~ ,T TN
m m
γ ση

 
 
 

 and a series of normal random variables ()2~ ,k J JNη µ σ .

The length of the series is follow a Poisson distribution with intensity T mλ .
We simulate η , and use a while loop to simulate kη , and exit the loop with
probability e T mλ− each round. As usual, estimation error of Moto Carlo simu-
lation is Proportional to 1 N while estimated standard deviation is V Nσ ,

Vσ is standard deviation of (),V S T , N is the number of simulation path.
Because we can know the option value if tS touch the barrier in early monitor
date, so in simulation, we can also stop a simulation round in advance. However,
the probability to stop is different for different parameters. So we use no-stop
method to simulate and record the time in worst situation.

4. Numerical Results
We use some cases to compare the estimation accuracy of two methods intro-
duced above.

Firstly, we use parameters that Poisson intensity 0λ = in case 1, case 2 and
case 3 to compare the result with other literatures. It shows when λ tends to
0, results tends to the results base on B-S model. Using the estimate value and
estimate standard error calculate by Monte Carlo Simulation as the real value,
the t statistic of estimate error of numerical algorithm with n = 1000 is around
1. It means its estimate error is at the same level with the estimate standard
error of Monte Carlo Simulation, i.e., the accuracy of numerical algorithm
with n = 1000 is like the accuracy of Monte Carlo Simulation with simulation
times = 100000. However, CPU time cost by the latter is thousands times of
the former. To estimate the numerical error on the option price, we will com-
pare the numerical result with the accurate result with n = 10000 and calculate
the error.

Case 1: Prices of discrete double knock-out call option in 5 monitoring dates.
The current price of the underlying asset is 0S , the strike price is 100, the vola-
tility is 20% per annum, the call option has six months remaining to maturity,
the risk-free rate is 10% per annum (compounded continuously), the lower bar-
rier is placed at 95, and the upper barrier is imposed at 110. Numerical method
estimate numerical error (written in brackets). Monte Carlo Simulation also es-
timate standard error (written in brackets), Milev’s result is copy from his paper.
Because they are generated by different computers, so CPU time in present me-
thods and CPU time in Milev’s paper cannot be compared. Table 1 shows the
result.

Case 2: Prices of discrete double knock-out call option monitored daily (125
times) for different values of the underlying asset 0S and parameters 100,K =

0.25,σ = 0.5,T = 0.05,r = 95,L = 110U = , see Table 2.

M. J. Li

455

Table 1. 5 monitoring dates, S0, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110.

S0
Numerical
algorithm
n = 200

Numerical
algorithm
n = 1000

Monte Carlo
simulation

Times = 106

Milev’s Num.
algorithm
n = 1000

Milev’s M.C.
simulation
times = 107

95
0.172487
(0.00197)

0.174095
(0.00036)

- 0.174498 -

95.0001
0.172489
(0.00197)

0.174096
(0.00036)

0.174872
(0.00103)

0.174499
0.17486

(0.00064)

100
0.229986
(0.00247)

0.232003
(0.00045)

0.231914
(0.00118)

0.232508
0.23263

(0.00036)

109.9999
0.165450
(0.00191)

0.167005
(0.00035)

0.167474
(0.00101)

0.167394
0.16732

(0.00062)

110
0.165449
(0.00191)

0.167004
(0.00035)

- 0.167393 -

CPU 27 ms 78 ms 418 s 39 s hundred sec.

Table 2. 125 monitoring dates, S0, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110.

S0
Numerical
algorithm
n = 200

Numerical
algorithm
n = 1000

Monte Carlo
simulation

Times = 106

Milev’s Num.
algorithm
n = 1000

Milev’s M.C.
simulation
times = 107

95
0.002536

(1.619e−4)
0.002668

(3.020e−5)
- 0.0027003 -

95.0001
0.002536

(1.619e−4)
0.002668

(3.020e−5)
0.002737
(0.00012)

0.0027005
0.002673
(0.00007)

100
0.010918

(4.915e−4)
0.011319

(9.055e−5)
0.011167
(0.00025)

0.011414
0.011394
(0.00015)

109.9999
0.002427

(1.550e−4)
0.002553

(2.890e−5)
0.002697
(0.00012)

0.00258415
0.002664
(0.00007)

110
0.002427

(1.550e−4)
0.002553

(2.890e−5)
- 0.0025843 -

CPU 408 ms 2025 ms 7836 s 39 s hundreds sec.

Case 3: Prices of discrete double knock-out call option monitored weekly (25

times) for different values of the underlying asset 0S and parameters 100,K =
0.25,σ = 0.5,T = 0.05,r = 95,L = 110U = , see Table 3.

Secondly, we compare the efficiency of numerical method and simulation
method in case 4 and case 5. Poisson intensity 0λ > , i.e., jump is considered.
We set 5λ = , 20.05, 0.05J Jµ σ= = , other parameters except U, L and 0S are
the same with case 2. We could learn that while U and L are quite close, option is
Worthless. So standard deviation of option value at maturity is so large relative
to the option value at now. Both of the two methods have a large relative error.
While U and L are not quite close, although calculate result’s accuracy is a bit
worse than Simulation result’s, it is still much better in efficiency as it cost much
less CPU time.

Case 4: U and L are close so that the option has a high probability to
knock-out, see Table 4.

M. J. Li

456

Table 3. 25 monitoring dates, S0, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110.

S0
Numerical
algorithm
n = 200

Numerical
algorithm
n = 1000

Monte Carlo
simulation

Times = 106

Milev’s Num.
algorithm
n = 1000

Milev’s M.C.
simulation
times = 107

95
0.018879

(6.359e−4)
0.019397

(1.178e−4)
- 0.019528 -

95.0001
0.018879

(6.359e−4)
0.019397

(1.178e−4)
0.018508
(0.00033)

0.019528
0.019515
(0.00021)

100
0.041751

(1.182e−3)
0.042716

(2.184e−4)
0.043521
(0.00051)

0.042957
0.042736
(0.00031)

109.9999
0.018067

(6.086e−4)
0.018563

(1.128e−4)
0.018853
(0.00033)

0.018688
0.018676
(0.00019)

110
0.018067

(6.086e−4)
0.018563

(1.128e−4)
- 0.018688 -

CPU 87 ms 407 ms 1643 s 9 s hundred sec.

Table 4. λ = 5, μJ = 0.05, 2

Jσ = 0.05, L = 95, U = 105.

S0
Numerical
algorithm
n = 200

Numerical
algorithm
n = 1000

Numerical
algorithm
n = 2000

Monte Carlo
Simulation
Times = 106

95.1
1.08754e−6
(1.131e−7)

1.17917e−6
(2.149e−8)

1.19107e−6
(9.588e−9)

0(−)

96
1.77950e−6
(1.769e−7)

1.922880e−6
(3.353e−8)

1.94145e−6
(1.496e−8)

3.33815e−6
(2.41542e−6)

100
3.93182e−6
(3.626e−7)

4.22590e−6
(6.850e−8)

4.22590e−6
(6.850e−8)

9.290592e−7
(8.43256e−7)

104
2.18637e−6
(2.171e−7)

2.36232e−6
(4.114e−8)

2.38510e−6
(1.835e−8)

0(−)

104.9
1.44651e−6
(1.499e−7)

1.56798e−6
(2.847e−8)

1.58375e−6
(1.269e−8)

4.638891e−6
(3.373127e−6)

CPU 397 ms 2072 ms 7114 ms 7984 s

Case 5: U and L are not quite close so that the option has a lower probability

to knock-out, see Table 5.
Finally, if we predict parameters are not constants, we could set different value

of parameters in different monitor interval (interval between two adjacent mon-
itor date). In case 6, parameters are the same with case 5, except σ and r . σ
will increase from 0.1 to 0.25 in linearly step in monitor intervals. r will de-
crease from 0.05 to 0.02 in linearly step in monitor intervals. In this case, as we
should refresh ()jg x in each iteration, while n = 2000, CPU time mainly cost
by generate , ,k n np ′ whose time cost is ()O mnn′ . From the result we could
learn that while n = 2000, the accuracy of numerical algorithm is a bit worse
than Monte Carlo simulation. But while it just cost 1.4% CPU time of simulation
method, as CPU time cost is proportional to n which means calculate result’s
convergence rate is faster than simulation while n = 2000. It still has a much
better efficiency.

Case 6: see Table 6.

M. J. Li

457

Table 5. λ = 5, μJ = 0.05, 2
Jσ = 0.05, L = 80, U = 140.

S0
Numerical
algorithm
n = 200

Numerical
algorithm
n = 1000

Numerical
algorithm
n = 2000

Monte Carlo
Simulation
Times = 106

80.1
0.255603
(0.01708)

0.269405
(0.00328)

0.271218
(0.00146)

0.275555
(0.00224)

81
0.461714
(0.01941)

0.477431
(0.00369)

0.479476
(0.00165)

0.484087
(0.00296)

100
5.042788
(0.01736)

5.028913
(0.00349)

5.026992
(0.00156)

5.020779
(0.00857)

139
0.951235
(0.06628)

1.005237
(0.01228)

1.012056
(0.00546)

1.022783
(0.00458）

139.9
0.660173
(0.05794)

0.707246
(0.01087)

0.713274
(0.00484)

0.716428
(0.00386)

CPU 376 ms 1891 ms 6496 ms 7378 s

Table 6. σ, r are not constants.

S0
Numerical
algorithm
n = 200

Numerical
algorithm
n = 1000

Numerical
algorithm
n = 2000

Monte Carlo
Simulation
Times = 106

80.1
0.109371
(0.01748)

0.123303
(0.00355)

0.125255
(0.00160)

0.124955
(0.00146)

81
0.329240
(0.01826)

0.343901
(0.00360)

0.345886
(0.00161)

0.346085
(0.00240)

100
5.349461
(0.04085)

5.315899
(0.00730)

5.311831
(0.00323)

5.296170
(0.00847)

139
1.613736
(0.17757)

1.758731
(0.03257)

1.776845
(0.01447)

1.789104
(0.00615)

139.9
0.777533
(0.16118)

0.907367
(0.03135)

0.924693
(0.01402)

0.948932
(0.00457)

CPU 9942 ms 49 s 102 s 7414 s

5. Conclusion

While mainstream methods to price European discrete knock-out double barrier
option are not better than Monte Carlo simulation method in estimated error
order, the advantage of the presented numerical algorithm is that it costs less
compute time than simulation method. It is benefit from its direct calculate
thought. Because of the main idea of this method that is not complicated, it can
be extended to the case stock price obeys Merton jump diffusion model and
work well on it. However, as this numerical method is based on the analytical
solution, it is applicable only to those stochastic models for which the transition
probability can be computed in closed-form.

References
[1] Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities.

M. J. Li

458

Journal of Political Economy, 81, 637-659. https://doi.org/10.1086/260062

[2] Merton, R.C. (1973) Theory of Rational Option Pricing. The Bell Journal of Eco-
nomics, 4, 141-183. https://doi.org/10.2307/3003143

[3] Reimer, M. and Sandmann, K. (1995) A Discrete Time Approach for European and
American Barrier Options. Ssrn Electronic Journal.
https://doi.org/10.2139/ssrn.6075

[4] Gao, B., Huang, J. and Subrahmanyam, M. (2000) The Valuation of American Bar-
rier Options Using the Decomposition Technique. Journal of Economic Dynamics
& Control, 24, 1783-1827.

[5] Dai, M. and Yue, K.K. (2004) Knock-in American Options. Journal of Futures
Markets, 24, 179-192. https://doi.org/10.1002/fut.10101

[6] Wang, L. and Du, X. (2008) Pricing of European Barrier Option on Jump-Diffusion
Model. Mathematics in Economics, 25, 248-253.

[7] Xie, C. (2001) Pricing Barrier Options under CEV Process. Journal of Management
Sciences in China, 4, 13-20.

[8] Farnoosh, R., Sobhani, A., Rezazadeh, H. and Beheshti, M. (2016) Numerical Me-
thod for Discrete Double Barrier Option Pricing with Time-Dependent Parameters.
Computational Economics, 70, 2006-2013.

[9] Golbabai, A., Ballestra, L.V. and Ahmadian, D. (2014) A Highly Accurate Finite
Element Method to Price Discrete Double Barrier Options. Computational Eco-
nomics, 44, 153-173. https://doi.org/10.1007/s10614-013-9388-5

[10] Ahmadian, D. and Ballestra, L.V. (2015) A Numerical Method to Price Discrete
Double Barrier Options under a Constant Elasticity of Variance Model with Jump
Diffusion. International Journal of Computer Mathematics, 92, 2310-2328.
https://doi.org/10.1080/00207160.2014.986114

[11] Milev, M. and Tagliani, A. (2009) Numerical Valuation of Discrete Double Barrier
Options. Journal of Computational and Applied Mathematics, 233, 2468-2480.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ojs@scirp.org

https://doi.org/10.1086/260062
https://doi.org/10.2307/3003143
https://doi.org/10.2139/ssrn.6075
https://doi.org/10.1002/fut.10101
https://doi.org/10.1007/s10614-013-9388-5
https://doi.org/10.1080/00207160.2014.986114
http://papersubmission.scirp.org/
mailto:ojs@scirp.org

	Numerical Methods for Discrete DoubleBarrier Option Pricing Based on MertonJump Diffusion Model
	Abstract
	Keywords
	1. Introduction
	2. Discrete Double Barrier Options Model
	3. Numerical Valuation Algorithm
	4. Numerical Results
	5. Conclusion
	References

