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Abstract 
As a kind of weak-path dependent options, barrier options are an important 
kind of exotic options. Because the pricing formula for pricing barrier options 
with discrete observations cannot avoid computing a high dimensional inte- 
gral, numerical calculation is time-consuming. In the current studies, some 
scholars just obtained theoretical derivation, or gave some simulation calcula-
tions. Others impose underlying assets on some strong assumptions, for ex-
ample, a lot of calculations are based on the Black-Scholes model. This thesis 
considers Merton jump diffusion model as the basic model to derive the pric-
ing formula of discrete double barrier option; numerical calculation method is 
used to approximate the continuous convolution by calculating discrete con-
volution. Then we compare the results of theoretical calculation with simula-
tion results by Monte Carlo method, to verify their efficiency and accuracy. By 
comparing the results of degeneration constant parameter model with the re-
sults of previous models we verified the calculation method is correct indi-
rectly. Compared with the Monte Carlo simulation method, the numerical 
results are stable. Even if we assume the simulation results are accurate, the 
time consumed by the numerical method to achieve the same accuracy is 
much less than the Monte Carlo simulation method. 
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1. Introduction 

Options as a kind of important financial derivatives have been developed rapidly 
in recent decades. With the increase of investment demands and the progress of 
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theoretical level, all kinds of exotic options were born. As an important path de-
pendent exotic option, barrier option was accounted for nearly half of the share. 
Their research has a very important practical significance. So, new exotic option 
pricing problem has become an important research topic. 

Black and Scholes [1] set up the B-S model and get the pricing formula of the 
call option. Common barrier options pricing has a long history. It was first stu-
died by Merton [2] on the down and out call option pricing. After this period, 
Reimer and Sandmann [3] use the binary tree model research barriers options. 
Then Gao, Huang and Subrahmanyam [4] pushed forward the pricing analysis 
of the American barrier option by using the decomposition technique, and Dai 
and Kwok [5] has got the pricing formula of American down and in call option. 
The model of the underlying asset is also developed from the original B-S model 
to a variety of more complex models. Such as Wang, Du [6] obtained pricing 
formula in the class of barrier options under jump diffusion model, and Xie [7] 
put forward the constant elasticity of variance (CEV) pricing barrier option 
process. However, these developments are based on the constant parameter 
model. Farnoosh, Sobhani, Rezazadeh [8] proposed a method based on the time 
dependent parametric B-S model of the barrier options to extend the research of 
this topic to another direction. 

Looking at the development of barrier option pricing, the barrier option pric-
ing theory is from a study based on the continuous observation idealized model 
to the effective discrete observation model, and the stochastic model of the target 
stock is also developed from B-S model with constant parameters to model with 
time-dependent parameter, or constant parameter jump diffusion model, CEV 
model, SVJD model and so on. In order to make the scope of application more 
extensive, the goal of this paper is the further development for the numerical al-
gorithm of the option pricing based on Merton jump diffusion model. 

In the numerical calculation section, having a wide range of applications, 
Monte Carlo simulation method is certainly one of the alternative calculation 
methods. But it is often accompanied by a wide range of accuracy and low com-
putational efficiency. As traditional numerical algorithm performs badly in non- 
smooth solutions, Golbabai, Ballestraand Ahmadian used finite element method 
(FEM) to improve orders of convergence in [9]. In [10], Ahmadian and Ballestra 
found it also performs well under a constant elasticity of variance model with 
jump diffusion. For some models, the other way to get numerical method is di-
rectly starting from the analytic solution. In [8], Farnoosh, Sobhani, Rezazadeh 
is proposed that for time dependent numerical parameters of barrier options 
based on B-S model an analytical solution can be obtained. They started from 
solving partial differential equations. By constructing a heat conduction equa-
tion, they finally got the analytical solution. However, it still can’t avoid calculate 
a multiple integral of a high dimension. Using the numerical solution of the 
Romberg extrapolation algorithm to calculate is taking time and precision into 
account. But consider from the efficiency of the integral calculation, it is not as 
good as quadrature method which been used by Milev and Tagliani in general 
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B-S model [11]. The difference is probably cause by the influence of boundary. 
The quadrature method used on general B-S model is able to extend to more 
complex model. Furthermore, for time dependent parameters, it also can achieve 
good results. 

In the second section, we will consider knock-out call option as an example to 
introduce risk neutral pricing based on Merton jump diffusion model. Finally, 
we obtain an analytical formula of the discrete double barrier option. 

In the third section, we will introduce the application of quadrature method to 
calculate the high dimensional integrals generation generated in the second sec-
tion. We also introduce Monte Carlo simulation method to compute the result 
for comparison. 

In the fourth section, the computational efficiency of the numerical method is 
compared with samples in literatures and results of simulation method. 

In the conclusion, we note that this calculation method is significantly better 
in accuracy and efficiency, and there is a certain promotion potential. 

2. Discrete Double Barrier Options Model 

We assume the European discrete knock-out double barrier option has the fol-
lowing conditions: 1) European options, i.e., option can only be exercised at 
maturity; 2) The time for observation has is set in advance, 2

Jσ  T=  in the 
subsequent derivation, we assume observation time interval is consistent. For 
different observation intervals, the subsequent theory still holds; 3) All the ob-
servation time have the same U and L as barrier. When the stock price at the 
observation time higher than U or lower than L, the option knock-out; 4) Ignore 
the transaction costs and taxes. It means if the option hasn’t knocked out at ob-
servation time, at the time of maturity, the option value is ( )max ,0 ,TS K−  

0,L K U L S U≤ ≤ ≤ ≤ ; 5) the stock price can change continuously. 
Merton jump diffusion model assumes that the stock price tS  is in accor-

dance with the following stochastic differential equation, 

[ ]( )d d d d ,t
t t t t

t

S E J t W J N
S

µ λ σ
−

= − + +             (1) 

where ( ) ( )2ln 1 ~ ,t J JJ N µ σ+ , Wt is standard Wiener process, tN  is Poisson 

process with intensity λ. We denote ( )ln 1t tY J= + , [ ] 21
2tE Jγ µ λ σ= − − . By 

Itô Lemma, we obtain 

d ln d d d .t t t tS t W Y Nγ σ= + +                  (2) 

We denote [ ]{ }, , 1, 2, ,
ii TA S L U i m= ∈ =  . In risk-neutral measure, if we as-

sume risk-free interest rate r is constant. (Thus, the drift µ  is replaced by the in-
terest rate r.) By the definition of the option its price at the beginning time is equal to 

( )
1 2

e max ,0 ,1 1 1 .
m

rT
T A A AE S K−  −               (3) 

We can calculate this formula to get the analytical formula of the discrete 
double barrier option. 
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Theorem 2.1. The value of option with above assume is given by the following 
integral 

( ) ( ) ( )( )
1 2

1 2
1 2 2 1, , ,

, e , , , d d d ,m

m

x x x
m mx x x D

V S T L K f x x x x x x+ + +

∈
= −∫ 





     (4) 

where 

1 2 1 1 2 1 2 1

1 2

, , , | , , , 0, ln ,

ln , ln ,

m m

m

UD x x x x x x x x x
L

K Ux x x
L L

−
  = + + + + ∈   

 + + + ∈   

  



 

 ( ) ( )1 2 1 2
0

, , , ln ,m
m ii

Lf x x x h x h x
S =

 
= − 

 
∏

 

( ) ( ) 2
2

0 e ,
! J

i T
m

i J
T m T Th x i i
i m m

λλ λ σφ µ σ
−∞

=

 
= + + 

 
∑ , 

( )2,φ µ σ  is the p.d.f. of ( )2,N µ σ . 
Proof. Step 1. Assuming that the p.d.f. of random variable is known, we calcu-

late the analytical result. 

We denote 
1

ln ln , 1, 2, ,
i ii T TS S i mξ

−
= − =  , we have 



1
0e

i
jj

iTS S ξ=∑= . Let 1ξ =

 

0 1ln ln , , 2,3, ,i iS L i mξ ξ ξ− + = =  , We get 1e
i

jj
iTS L ξ=∑= . For 1, 2, ,i m=  , 

{ } { } 1ln ln ln 0 ln
i i

i
i T T jj

UA L S U L S U
L

ξ
=

 = ≤ ≤ = ≤ ≤ = ≤ ≤ 
 

∑ . 

From Equation (4), the value of this barrier option is, 

( )

( )

( )

( )

1 2

1

1 2
1 1 1

1

1 2
1 1 1

0 ln 0 ln 0 ln

0 ln 0 ln ln

,

e max ,0 1 1 1

e max e ,0 1 1 1

e e 1 1 1

m

m
jj

m
j j jj j j

m
jj

m
j j jj j j

rT
T A A A

rT
U U U
L L L

rT
U U K
L L L

V S T

E S K

E L K

E L K

ξ

ξ ξ ξ

ξ

ξ ξ ξ

=

= = =

=

= = =

−

−
     ≤ ≤ ≤ ≤ ≤ ≤     
     

−
   ≤ ≤ ≤ ≤ ≤   
   

∑

∑ ∑ ∑

∑

∑ ∑ ∑

= −

= −

=

  

 




−


 







( ) ( )( )
1 2

1 2

ln

2 11, , ,
e e d d d ,m

m

U
L

mx x xrT
i i mix x x D

L K h x x x x

 ≤ 
 

+ + +−
=∈

 
 
  

= − ∏∫ 





 (5) 

where 

1 2 1 1 2 1 2 1

1 2

, , , | , , , 0, ln ,

ln , ln ,

m m

m

UD x x x x x x x x x
L

K Ux x x
L L

−
  = + + + + ∈   

 + + + ∈   

  



 

( )ih x  is p.d.f. of , 2,3, ,i i mξ =  . 
Step 2. Calculate ( )ih x . 
For 2,3, ,i m=   from Equation (2), We know iξ  is sum of independent  
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random variables including a normal random variable 
2

~ ,T TN
m m
γ ση

 
 
 

 and a  

series of normal random variables ( )2~ ,k J JNη µ σ . The length of the series is 
follow a Poisson distribution with intensity T mλ . As we know while the length 

is j, sum of these variables 
2

2~ ,i J J
T TN j j

m m
γ σξ µ σ

 
+ + 

 
, we get the p.d.f. of 

iξ , 

( ) 2
2

0 e , ,
!

j T
m

i J Jj

T m T Th j j
j m m

λλ γ σφ µ σ
−∞

=

 
= + + 

 
∑          (6) 

where ( )2,φ µ σ  is the p.d.f. of ( )2,N µ σ . Because ( )ih x  has no relation 

with i, in 2,3, ,i m=  , we denote ( )ih x  with ( )h x . In particular, as there is 

a constant shift in 1ξ , ( )1
0

ln Lh x h x
S

 
= − 

 
. 

Plug ( )h x  into Equation (5), we finally obtain (4). □ 

Specially, if parameters is change to different constant in different monitor 
interval, ( )ih x  will be different while they can be calculate in the same method 
by different parameters. 

3. Numerical Valuation Algorithm 

From section 2 we know random variables , 1, 2, ,i i mξ =   decide the option 
value at t = T. As we have already known the distribution of iξ , we can use 
Monte Carlo method to simulate iξ  and get some possible option value at t = T. 
By weak law of large numbers, the means of the Discounting of these price is 
converging to the option price at t = 0. However, we can’t expect it as an efficient 
selection. 

Since we have got the analytical formula of the discrete double barrier option. 
We can also calculate the numerical result by calculate the analytical formula. 
While there is a High dimensional multiple integral, we should anticipate some 
tricks. As the integration has a break at the boundary of the integral area, we 
compare and find that Milev’s method to discrete the integration, solve directly 
perform a better precision than the extrapolation method, such as the Romberg 
extrapolation algorithm. 

We use discrete method to calculate the High dimensional multiple integral 
by calculate an approximate discrete convolution. Monte Carlo method is also 
used for compared. 

Firstly, we introduce the discrete method. Let ln Ud n
L

= , where n is an in-  

teger number. We used discrete random variable ,i nξ  to approximate iξ , ,i nξ  
satisfy 

( ), , ,i n k nP kd pξ = =                        (7) 

where 
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( ) ( )( ), 20.5 0.5k np P k d k dξ= − ≤ < + ,              (8) 

, 1, 0,1, 2, , 2,3, ,k i m= − =   . Specially, we discrete random variable 1,nξ  to 
approximate 1ξ , 1,nξ  satisfy 

( ), , ,i n k nP kd pξ = =                       (9) 

where 

( ) ( )( )1, 0.5 0.5 .k np P k d k dξ= − ≤ < +              (10) 

From Equation (5), we know 

( )

( )1

1 2
1 1 10 ln 0 ln 0 ln

,

e max e ,0 1 1 1 .
m

jj

m
j j jj j j

rT
U U U
L L L

V S T

E L Kξ

ξ ξ ξ

=

= = =

−
     ≤ ≤ ≤ ≤ ≤ ≤     
     

∑

∑ ∑ ∑
= −

 
 
  



 (11) 

So we can use ( ),nV S T  to approximate ( ),V S T , where 

( )

( ),1

1 2
, , ,1 1 10 ln 0 ln 0 ln

,

e max e ,0 1 1 1 .
m

j nj

m
j n j n j nj j j

n

rT
U U U
L L L

V S T

E L Kξ

ξ ξ ξ

=

= = =

−
     ≤ ≤ ≤ ≤ ≤ ≤     
     

∑

∑ ∑ ∑

 
 


−


=





(12) 

We denote 
1

, ,1 1
, ,1 0 ln 0 ln

1 1
k

j n j nj j

k
k n j n U Uj

L L
ξ ξ

ζ ξ
= =

   = < ≤ < ≤   
   

∑ ∑
= ∑  , 1, 2, ,k m=  . From 

Equation (12), we know 

( ) ( )( ),, e max e ,0 .m nrT
nV S T E L Kζ−= −               (13) 

So we can calculate ( ),nV S T  by calculate ,m nζ . From the definition of 1,nζ , 
we know 

,
1, 1,

0 ln
1 .

j n
n n U

L
ξ

ζ ξ  < ≤ 
 

=                       (14) 

So the value of 1,nζ  may be 0, , 2 , ,d d nd , and satisfy 

( ) ,
1,

0,

,          1, 2, ,
ˆ ,                  0

k n
n

n

p k n
P kd

p k
ζ

== =  =




             (15) 

where 0, ,1
ˆ 1 n

n k nkp p
=

= −∑  . Notice that 1, 0nζ ≥ . 1, 0nζ >  is equivalent to 

1,0 ln
1 1

n
U
L

ξ < ≤ 
 

= . 1, 0nζ =  is equivalent to 
1,0 ln

1 0
n

U
L

ξ < ≤ 
 

= . In fact, we have the  

following lemma: 
Lemma 3.1. For ,1, 2, , , 0k nk m ζ= ≥ , and 

1 2
, , ,1 1 1

,
0 ln 0 ln 0 ln

0 1 1 1 0,
k

j n j n j nj j j
k n U U U

L L L
ξ ξ ξ

ζ
= = =

     < ≤ < ≤ < ≤     
     

∑ ∑ ∑
= ⇔ =     (16) 

1 2
, , ,1 1 1

,
0 ln 0 ln 0 ln

0 1 1 1 1.
k

j n j n j nj j j
k n U U U

L L L
ξ ξ ξ

ζ
= = =

     < ≤ < ≤ < ≤     
     

∑ ∑ ∑
> ⇔ =    (17) 
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If , 0k nζ > , then , ,1
k

k n j njζ ξ
=

= ∑ . 

Proof. From the definition of ,k nζ , it can be easily proved.□ 
For 2,3, ,k m=  , by lemma 3.1, we have 

1 1
, , ,1 1 1

1 1
, ,1 1

,1 0 ln 0 ln 0 ln

,

0 ln 0 ln

1 ,         1 1 1

0,                                            1 1 0

k k
j n j n j nj j j

k
j n j nj j

k
j n U U Uj

L L L
k n

U U
L L

ξ ξ ξ

ξ ξ

ξ

ζ
−

= = =

−
= =

     = < ≤ < ≤ < ≤     
     

   < ≤ < ≤   
   

∑ ∑ ∑

∑ ∑

 =
= 

=


∑ 



( ) 1 1
, , ,1 1 1

1 1
, ,1 1

1, ,
0 ln 0 ln 0 ln

0 ln 0 ln

1 ,   1 1 1

.
0,                                            1 1 0

k k
j n j n j nj j j

k
j n j nj j

k n k n U U U
L L L

U U
L L

ξ ξ ξ

ξ ξ

ζ ξ
−

= = =

−
= =

−      < ≤ < ≤ < ≤     
     

   < ≤ < ≤   
   

∑ ∑ ∑

∑ ∑

 + =
= 

=






  (18) 

So we know ,0 lnk n
U nd
L

ζ≤ ≤ = . As the possible value of ,k nζ  is an integer 

multiple of d, the value of ,k nζ  may be 0, , 2 , ,d d nd . For 0,1, 2, ,i n=  , let 
( ), , ,i k n k nq P idζ= = . Notice that 

1
, ,1 1

,
0 ln 0 ln

0 1 1 1
k

j n j nj j
k n U U

L L
ξ ξ

ζ
= =

   < ≤ < ≤   
   

∑ ∑
> ⇔ = ,  

from Equation (18), 

( )

( ) { }

( ) ( )( )

, 1,1

, , ,

, 1 ,
0 ln

, 1 ,1

, 1, ,1

1 1

,

k k nj nj

i k n k n

k n k n U
L

n
k n k nj

n
j k n i j nj

q P id

P id

P jd P i j d

q p

ζξ

ζ

ζ ξ

ζ ξ

−
=

−  < ≤ 
 

−=

− −=

∑

= =

 
 = + =
 
 

= = = −

=

∑

∑

           (19) 

0, , , ,11 .n
k n i k niq q

=
= −∑                                   (20) 

Using Equation (19) and Equation (20) we can calculate all , ,i k nq  step by step. 
Notice that ( )1 1n i j n− − ≤ − ≤ − , we just need to precompute ,k np  for 

1, 2, , 1k n n n= − + − + − . Plug it into Equation (13), we have 

( ) ( )( )
( )

,

, ,1

, e max e ,0

=e max e ,0 .

m nrT
n

nrT id
i m ni

V S T E L K

q L K

ζ−

−
=

= −

−∑



             (21) 

It means we could calculate ( ),nV S T  by Equation (19), Equation (20) and 
Equation (21) after we got ,k np  and ,k np . Actually, as we don’t need 0, ,k nq  to 
calculate ( ),nV S T  by Equation (21), there is no need to calculate Equation (20). 
Equation (19) is a discrete convolution we have to calculate m times. 

We use the p.d.f. of iξ  To get ,k np  and ,k np . Denote 

( ) ( ) ( )
2

2e ,
!

j T
m

j J J
T m T Tg x j j x

j m m

λλ γ σφ µ σ
−  

= + + 
 

. 

Because ( )0 jj g x∞

=∑  is uniform convergence, for 2,3, ,i m=  , by the defi-
nition of ,k np , we have 
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( ) ( )( ) ( )( )
( )

( )( )
( ) ( )( )

( )

( ) ( )( )

( )( )

( ) ( ) ( )

0.5
, 2 0.5

0.5 0.5

0 00.5 0.5

2
2

0

2
2

0.5 0.5 d
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e , 0.5
!

, 0.5

0.5
e 0,1

!
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k n k d

k d k d
j jj jk d k d

j T
m

J Jj

J J

j T
m

p P k d k d h x x

g x x g x x

T m T Tj j k d
j m m

T Tj j k d
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where ( )2,µ σΦ  is c.d.f. of ( )2,N µ σ , and ( )0,1Φ  is c.d.f. of standard nor-
mal distribution. Similarly, from the p.d.f. of 1ξ , we can get 
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Unfortunately, we can’t calculate ,k np  and ,k np  directly although we have 
got their analytic expression. Let 
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from above, we know , , , , , ,lim , limk n n k n k n n k nn n
p p p p′ ′′ ′→∞ →∞

= =  , and , , , ,,k n n k n np p′ ′  can 

be directly calculate. By using , , , ,,k n n k n np p′ ′  to approximate , ,,k n k np p , we finally 
get an approximation of ( ),nV S T , and denote it with ( ), ,n nV S T′

 , who is a 
computable approximation of ( ),V S T . If parameter is different in different 
monitor interval, we should just refresh ( )jg x  in each iteration to keep the 
algorithm run correctly. 

Secondly, we introduce our Monte Carlo simulation method. The main idea 
Monte Carlo simulation method is generating thousands of simulations of St. 
Then we can use the mean price of option base on these St to estimate ( ),V S T  



M. J. Li 
 

454 

according to the law of large numbers. While the price of option just bases on 
the value of tS  on monitor date, we just need to simulation these values on 
monitor date. From Equation (2) we can conveniently simulate ln tS  then get 

tS  indirectly. In other words, we simulate , 1, 2, ,i i mξ =  . As we know iξ  is 
sum of independent random variables including a normal random variable 

2

~ ,T TN
m m
γ ση

 
 
 

 and a series of normal random variables ( )2~ ,k J JNη µ σ .  

The length of the series is follow a Poisson distribution with intensity T mλ . 
We simulate η , and use a while loop to simulate kη , and exit the loop with 
probability e T mλ−  each round. As usual, estimation error of Moto Carlo simu-
lation is Proportional to 1 N  while estimated standard deviation is V Nσ , 

Vσ  is standard deviation of ( ),V S T , N  is the number of simulation path. 
Because we can know the option value if tS  touch the barrier in early monitor 
date, so in simulation, we can also stop a simulation round in advance. However, 
the probability to stop is different for different parameters. So we use no-stop 
method to simulate and record the time in worst situation. 

4. Numerical Results 
We use some cases to compare the estimation accuracy of two methods intro-
duced above. 

Firstly, we use parameters that Poisson intensity 0λ =  in case 1, case 2 and 
case 3 to compare the result with other literatures. It shows when λ  tends to 
0, results tends to the results base on B-S model. Using the estimate value and 
estimate standard error calculate by Monte Carlo Simulation as the real value, 
the t statistic of estimate error of numerical algorithm with n = 1000 is around 
1. It means its estimate error is at the same level with the estimate standard 
error of Monte Carlo Simulation, i.e., the accuracy of numerical algorithm 
with n = 1000 is like the accuracy of Monte Carlo Simulation with simulation 
times = 100000. However, CPU time cost by the latter is thousands times of 
the former. To estimate the numerical error on the option price, we will com-
pare the numerical result with the accurate result with n = 10000 and calculate 
the error. 

Case 1: Prices of discrete double knock-out call option in 5 monitoring dates. 
The current price of the underlying asset is 0S , the strike price is 100, the vola-
tility is 20% per annum, the call option has six months remaining to maturity, 
the risk-free rate is 10% per annum (compounded continuously), the lower bar-
rier is placed at 95, and the upper barrier is imposed at 110. Numerical method 
estimate numerical error (written in brackets). Monte Carlo Simulation also es-
timate standard error (written in brackets), Milev’s result is copy from his paper. 
Because they are generated by different computers, so CPU time in present me-
thods and CPU time in Milev’s paper cannot be compared. Table 1 shows the 
result. 

Case 2: Prices of discrete double knock-out call option monitored daily (125 
times) for different values of the underlying asset 0S  and parameters 100,K =  

0.25,σ =  0.5,T =  0.05,r =  95,L =  110U = , see Table 2. 
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Table 1. 5 monitoring dates, S0, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110. 

S0 
Numerical 
algorithm 
n = 200 

Numerical 
algorithm 
n = 1000 

Monte Carlo 
simulation 

Times = 106 

Milev’s Num. 
algorithm 
n = 1000 

Milev’s M.C. 
simulation 
times = 107 

95 
0.172487 
(0.00197) 

0.174095 
(0.00036) 

- 0.174498 - 

95.0001 
0.172489 
(0.00197) 

0.174096 
(0.00036) 

0.174872 
(0.00103) 

0.174499 
0.17486 

(0.00064) 

100 
0.229986 
(0.00247) 

0.232003 
(0.00045) 

0.231914 
(0.00118) 

0.232508 
0.23263 

(0.00036) 

109.9999 
0.165450 
(0.00191) 

0.167005 
(0.00035) 

0.167474 
(0.00101) 

0.167394 
0.16732 

(0.00062) 

110 
0.165449 
(0.00191) 

0.167004 
(0.00035) 

- 0.167393 - 

CPU 27 ms 78 ms 418 s 39 s hundred sec. 

 
Table 2. 125 monitoring dates, S0, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110. 

S0 
Numerical 
algorithm 
n = 200 

Numerical 
algorithm 
n = 1000 

Monte Carlo 
simulation 

Times = 106 

Milev’s Num. 
algorithm 
n = 1000 

Milev’s M.C. 
simulation 
times = 107 

95 
0.002536 

(1.619e−4) 
0.002668 

(3.020e−5) 
- 0.0027003 - 

95.0001 
0.002536 

(1.619e−4) 
0.002668 

(3.020e−5) 
0.002737 
(0.00012) 

0.0027005 
0.002673 
(0.00007) 

100 
0.010918 

(4.915e−4) 
0.011319 

(9.055e−5) 
0.011167 
(0.00025) 

0.011414 
0.011394 
(0.00015) 

109.9999 
0.002427 

(1.550e−4) 
0.002553 

(2.890e−5) 
0.002697 
(0.00012) 

0.00258415 
0.002664 
(0.00007) 

110 
0.002427 

(1.550e−4) 
0.002553 

(2.890e−5) 
- 0.0025843 - 

CPU 408 ms 2025 ms 7836 s 39 s hundreds sec. 

 
Case 3: Prices of discrete double knock-out call option monitored weekly (25 

times) for different values of the underlying asset 0S  and parameters 100,K =  
0.25,σ =  0.5,T =  0.05,r =  95,L =  110U = , see Table 3. 

Secondly, we compare the efficiency of numerical method and simulation 
method in case 4 and case 5. Poisson intensity 0λ > , i.e., jump is considered. 
We set 5λ = , 20.05, 0.05J Jµ σ= = , other parameters except U, L and 0S  are 
the same with case 2. We could learn that while U and L are quite close, option is 
Worthless. So standard deviation of option value at maturity is so large relative 
to the option value at now. Both of the two methods have a large relative error. 
While U and L are not quite close, although calculate result’s accuracy is a bit 
worse than Simulation result’s, it is still much better in efficiency as it cost much 
less CPU time. 

Case 4: U and L are close so that the option has a high probability to 
knock-out, see Table 4. 
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Table 3. 25 monitoring dates, S0, K = 100, σ = 0.25, T = 0.5, r = 0.05, L = 95, U = 110. 

S0 
Numerical 
algorithm 
n = 200 

Numerical 
algorithm 
n = 1000 

Monte Carlo 
simulation 

Times = 106 

Milev’s Num. 
algorithm 
n = 1000 

Milev’s M.C. 
simulation 
times = 107 

95 
0.018879 

(6.359e−4) 
0.019397 

(1.178e−4) 
- 0.019528 - 

95.0001 
0.018879 

(6.359e−4) 
0.019397 

(1.178e−4) 
0.018508 
(0.00033) 

0.019528 
0.019515 
(0.00021) 

100 
0.041751 

(1.182e−3) 
0.042716 

(2.184e−4) 
0.043521 
(0.00051) 

0.042957 
0.042736 
(0.00031) 

109.9999 
0.018067 

(6.086e−4) 
0.018563 

(1.128e−4) 
0.018853 
(0.00033) 

0.018688 
0.018676 
(0.00019) 

110 
0.018067 

(6.086e−4) 
0.018563 

(1.128e−4) 
- 0.018688 - 

CPU 87 ms 407 ms 1643 s 9 s hundred sec. 

 
Table 4. λ = 5, μJ = 0.05, 2

Jσ  = 0.05, L = 95, U = 105. 

S0 
Numerical 
algorithm 
n = 200 

Numerical 
algorithm 
n = 1000 

Numerical 
algorithm 
n = 2000 

Monte Carlo 
Simulation 
Times = 106 

95.1 
1.08754e−6 
(1.131e−7) 

1.17917e−6 
(2.149e−8) 

1.19107e−6 
(9.588e−9) 

0(−) 

96 
1.77950e−6 
(1.769e−7) 

1.922880e−6 
(3.353e−8) 

1.94145e−6 
(1.496e−8) 

3.33815e−6 
(2.41542e−6) 

100 
3.93182e−6 
(3.626e−7) 

4.22590e−6 
(6.850e−8) 

4.22590e−6 
(6.850e−8) 

9.290592e−7 
(8.43256e−7) 

104 
2.18637e−6 
(2.171e−7) 

2.36232e−6 
(4.114e−8) 

2.38510e−6 
(1.835e−8) 

0(−) 

104.9 
1.44651e−6 
(1.499e−7) 

1.56798e−6 
(2.847e−8) 

1.58375e−6 
(1.269e−8) 

4.638891e−6 
(3.373127e−6) 

CPU 397 ms 2072 ms 7114 ms 7984 s 

 
Case 5: U and L are not quite close so that the option has a lower probability 

to knock-out, see Table 5. 
Finally, if we predict parameters are not constants, we could set different value 

of parameters in different monitor interval (interval between two adjacent mon-
itor date). In case 6, parameters are the same with case 5, except σ  and r . σ  
will increase from 0.1 to 0.25 in linearly step in monitor intervals. r  will de-
crease from 0.05 to 0.02 in linearly step in monitor intervals. In this case, as we 
should refresh ( )jg x  in each iteration, while n = 2000, CPU time mainly cost 
by generate , ,k n np ′  whose time cost is ( )O mnn′ . From the result we could 
learn that while n = 2000, the accuracy of numerical algorithm is a bit worse 
than Monte Carlo simulation. But while it just cost 1.4% CPU time of simulation 
method, as CPU time cost is proportional to n which means calculate result’s 
convergence rate is faster than simulation while n = 2000. It still has a much 
better efficiency. 

Case 6: see Table 6. 
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Table 5. λ = 5, μJ = 0.05, 2
Jσ  = 0.05, L = 80, U = 140. 

S0 
Numerical 
algorithm 
n = 200 

Numerical 
algorithm 
n = 1000 

Numerical 
algorithm 
n = 2000 

Monte Carlo 
Simulation 
Times = 106 

80.1 
0.255603 
(0.01708) 

0.269405 
(0.00328) 

0.271218 
(0.00146) 

0.275555 
(0.00224) 

81 
0.461714 
(0.01941) 

0.477431 
(0.00369) 

0.479476 
(0.00165) 

0.484087 
(0.00296) 

100 
5.042788 
(0.01736) 

5.028913 
(0.00349) 

5.026992 
(0.00156) 

5.020779 
(0.00857) 

139 
0.951235 
(0.06628) 

1.005237 
(0.01228) 

1.012056 
(0.00546) 

1.022783 
(0.00458） 

139.9 
0.660173 
(0.05794) 

0.707246 
(0.01087) 

0.713274 
(0.00484) 

0.716428 
(0.00386) 

CPU 376 ms 1891 ms 6496 ms 7378 s 

 
Table 6. σ, r are not constants. 

S0 
Numerical 
algorithm 
n = 200 

Numerical 
algorithm 
n = 1000 

Numerical 
algorithm 
n = 2000 

Monte Carlo 
Simulation 
Times = 106 

80.1 
0.109371 
(0.01748) 

0.123303 
(0.00355) 

0.125255 
(0.00160) 

0.124955 
(0.00146) 

81 
0.329240 
(0.01826) 

0.343901 
(0.00360) 

0.345886 
(0.00161) 

0.346085 
(0.00240) 

100 
5.349461 
(0.04085) 

5.315899 
(0.00730) 

5.311831 
(0.00323) 

5.296170 
(0.00847) 

139 
1.613736 
(0.17757) 

1.758731 
(0.03257) 

1.776845 
(0.01447) 

1.789104 
(0.00615) 

139.9 
0.777533 
(0.16118) 

0.907367 
(0.03135) 

0.924693 
(0.01402) 

0.948932 
(0.00457) 

CPU 9942 ms 49 s 102 s 7414 s 

5. Conclusion 

While mainstream methods to price European discrete knock-out double barrier 
option are not better than Monte Carlo simulation method in estimated error 
order, the advantage of the presented numerical algorithm is that it costs less 
compute time than simulation method. It is benefit from its direct calculate 
thought. Because of the main idea of this method that is not complicated, it can 
be extended to the case stock price obeys Merton jump diffusion model and 
work well on it. However, as this numerical method is based on the analytical 
solution, it is applicable only to those stochastic models for which the transition 
probability can be computed in closed-form. 
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