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Abstract 
The main purpose of this paper is to obtain the inference of parameters of he-
terogeneous population represented by finite mixture of two Pareto (MTP) 
distributions of the second kind. The constant-partially accelerated life tests 
are applied based on progressively type-II censored samples. The maximum 
likelihood estimates (MLEs) for the considered parameters are obtained by 
solving the likelihood equations of the model parameters numerically. The 
Bayes estimators are obtained by using Markov chain Monte Carlo algorithm 
under the balanced squared error loss function. Based on Monte Carlo simu-
lation, Bayes estimators are compared with their corresponding maximum li-
kelihood estimators. The two-sample prediction technique is considered to 
derive Bayesian prediction bounds for future order statistics based on pro-
gressively type-II censored informative samples obtained from con-
stant-partially accelerated life testing models. The informative and future 
samples are assumed to be obtained from the same population. The coverage 
probabilities and the average interval lengths of the confidence intervals are 
computed via a Monte Carlo simulation to investigate the procedure of the 
prediction intervals. Analysis of a simulated data set has also been presented 
for illustrative purposes. Finally, comparisons are made between Bayesian and 
maximum likelihood estimators via a Monte Carlo simulation study. 
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1. Introduction 

Accelerated life tests (ALTs) are used to obtain information quickly on the life-
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time distribution of materials or products. The test units are run at higher-than- 
usual levels of stress to induce early failures. A model relating life length to stress 
is fitted to the accelerated failure times and then extrapolated to estimate the 
failure time distribution under the normal use condition. ALTs are preferred to 
be used in manufacturing industries to obtain enough failure data, in a short pe-
riod of time, necessary to make inferences regarding its relationship with exter-
nal stress variables. 

According to [1], there are mainly three ALT methods. The first method is 
called the constant stress ALT; the stress is kept at a constant level throughout 
the life of test products, (see for example [2] [3] [4] [5]). The second one is re-
ferred to as progressive stress ALT; the stress applied to a test product is conti-
nuously increasing in time (see for example, [6] [7] [8]). 

The third is the step-stress ALT, in which the test condition changes at a given 
time or upon the occurrence of a specified number of failures, has been studied 
by several authors. [9] obtained the optimal simple step-stress ALT plans for the 
case, where test products had exponentially distributed lives and were observed 
continuously until all test products failed; [10] extended their results to the case 
of censoring. The optimal step-stress test under progressive type-I censoring, 
assuming exponential lifetime distribution was considered by [11]. For more re-
cent research on step-stress ALTs, see [12] [13] [14] [15]. 

When the acceleration factor cannot be assumed as a known value, the par-
tially accelerated life test (PALT) will be a good choice to perform the life test. In 
ALTs, the units are tested only at accelerated conditions (see [5]) whereas in 
partially ALTs (PALTs), the units are tested at both accelerated and normal con-
ditions. PALTs include two types; one is called step PALTs (see [16]) and the 
other is called constant PALTs (see [17]). 

From the Bayesian viewpoint, few studies have been considered on PALT such 
as [18] used the Bayesian approach for estimating the acceleration factor and the 
parameters in the case of step-stress PALT with complete sampling for items 
having exponential and uniform distributions. [19] investigated the optimal Baye-
sian design of a PALT in the case of the exponential distribution under complete 
sampling. [20] discussed the Bayesian approach to estimate the parameters of 
Weibull distribution in step-stress PALT with censoring. [21] considered the Baye- 
sian estimates of the Pareto distribution parameters under step-stress PALT with 
censored data. [4] considered the Bayesian estimates of the parameters, reliabili-
ty and hazard rate functions by using an approximate form due to Tierney and 
Kadane of a mixtures of two Weibull components under ALT. Finally, [22] ob-
tained the Bayesian estimation of Gompertz distribution parameters in the case 
of step-stress PALT with two stress levels and Type-I censoring and the appro- 
ximation Bayes estimates are computed using the method of Lindley.  

Pareto distribution of the second type (also known as the Lomax distribution) 
has been widely used in economic studies and to analyze business failure data. 
The Pareto distribution has been studied by several authors. According to [23], 
the Pareto distribution is well adapted for modeling reliability problems, since 
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many of its properties are interpretable in that context and could be an alterna-
tive to the well-known distributions used in reliability. This distribution was 
used for modeling size spectra data in aquatic ecology by [24]. [25] considered 
order statistics from non-identical right-truncated Lomax distributions and pro-
vided applications for this situation. [26] used the Pareto distribution as a mix-
ing distribution for the Poisson parameter and obtained the discrete Poisson- 
Pareto distribution. 

[27] investigated the Bayesian estimation of the Pareto survival function. 
More recently, [28] discussed some Bayesian inferences based on censored sam-
ples from the Pareto distribution. [29] determined the optimal times of changing 
stress level for simple stress plans under a cumulative exposure model using the 
Pareto distribution. Finite mixture of distributions has proved to be of consi-
derable interest in recent years in terms of both the methodological development 
and multiple applications. Mixture distribution modeling was studied as early as 
1890s by [30], see also [31] [32] [33]. [4] [5] used a finite mixture model to study 
the effect of a constant stress on the parameters, reliability and hazard rate func-
tions. [8] considers the progressive stress ALT applied to a product whose life-
time under design condition is assumed to follow a mixture of k components 
each of which represents a different cause of failure. 

A random variable T is said to have a Mixture of two Pareto distributions 
(MTPD) if its probability density function (PDF) is given by 

( ) ( ) ( )1 1 11 1 2 12 2, , ,f t p f t p f tθ θΘ = +                   (1) 

where ( )1 2 1 2, , ,p pθ θΘ =  and for 1,2j = , 

( ),j j jθ α β= , 

( ) ( ) ( )

( )

1
1

1 2

; ,

0, , 0 ,  0 1,  1.

jj
j j j j j

j j j

f t t
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α β

− +
= +

> > ≤ ≤ + =
               (2) 

Also, the cumulative distribution function (CDF), the reliability function (RF) 
and the hazard rate function (HRF) take the forms. 
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=  (2) is a special form of Pearson type VI distribution. In  

life-testing and reliability studies, the experimenter may not always obtain com-
plete information on failure times for all experimental units. Data obtained from 
such experiments are called censored data. Saving the total time on test and the 
cost associated with it are some of the major reasons for censoring. A censoring 
scheme, which can balance between total time spent for the experiment, number 
of units used in the experiment and the efficiency of statistical inference based 
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on the results of the experiment, is desirable. The most common censoring 
schemes are Type-I (time) censoring, and Type-II (item) censoring. The conven-
tional Type-I and Type-II censoring schemes do not have the exorability of al-
lowing removal of units at points other than the terminal point of the experi-
ment. Because of that, a more general censoring scheme called progressive Type- 
II right censoring has been used in this article. Censored data are of progressive-
ly Type II right type when they are censored by the removal of a prospected 
number of survivors whenever an individual fails; this continues until a fixed 
number of failures has occurred, at which stage the remainder of the surviving 
individuals are also removed or censored. This scheme includes ordinary Type II 
censoring and complete scheme as special cases. A general account of theoretical 
developments and applications concerning progressive censoring is given in the 
book by [34] [35]. 

An important problem that may face the experimenter in life testing experi-
ments is the prediction of unknown observations that belong to a future sample, 
based on the current available sample, known in the literature as the informative 
sample. For example, the experimenters or the manufacturers would like to have 
the bounds for the life of their products so that their warranty limits could be 
plausibly set and customers purchasing manufactured products would like to 
know the bounds for the life of the product to be purchased. For different appli-
cation areas, the reader can see [36] [37]. The prediction of progressive Type-II 
censored data from the Gompertz and Rayleigh distributions has considered, 
respectively, by [38] [39]. [40] presented methods for constructing prediction 
limits for a step-stress model in ALT. Bayesian inference and prediction for the 
inverse Weibull distribution and Weibull distribution under Type-II censored 
data are described by [41] and by [42], respectively. 

The novelty of this paper is to consider the constant PALT applied to items 
whose life-times under design condition are assumed to follow MTPD under a 
progressive Type-II censoring and the main aim is to obtain the Bayes estimators 
(BEs) and prediction of the acceleration factor and the parameters under consi- 
deration using the method of MCMC. The rest of this paper is organized as fol-
lows. In Section 2, a description of the model is presented and the MLEs of the 
parameters are derived. In Section 3, Bayes estimates are obtained using the ba-
lanced square error loss (BSEL) function. Bayesian two-sample prediction is 
presented in Section 4. Monte Carlo simulation results are presented in Section 5. 
Finally, some concluding remarks are introduced in Section 6. 

2. Model Description and Basic Assumptions  
2.1. Model Description 

In a constant-PALT, 1n  items randomly chosen among n  test items sampled 
are allocated to use condition and 2 1n n n= −  remaining items are subjected to 
an accelerated condition progressive type-II censoring is performed as follows. 

At the time of the first failure 11: : ,s
s s

R
ss m nt R  items are randomly withdrawn 

from the remaining 1sn −  surviving items. At the second failure 22: : ,s
s s

R
ss m nt R  
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items from the remaining 12s sn R− −  items are randomly withdrawn. The test 
continues until the thsm −  failure : :

s
s s s

R
sm m nt  at which time, all remaining  

1
1

s

s

m
sm s s sR n m R υυ

−

=
= − −∑  items are withdraws for 1,2s = . In our study, siR   

are fixed prior and s sm n< . 
If the failure times of the sn  items originally in the test are from a continuous 

population with distribution function ( )jF x  and probability density function 
( )jf x , the joint probability density function for  

1: : 2: : : :
s s s

s s s s s s s

R R R
s m n s m n sm m nt t t< < <  and 1,2s =  is given by 
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2
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where ( )1 2,t t t=  and, for 1,2s = , ( )1, ,
ss s smt t t= 

 and 

( )( ) ( )( )1 1 2 1 2 11 2 1 .
ss s s s s s s s s s s s mA n n R n R R n m R R R −= − − − − − − + − − −   

It is clear from (6) that the constant PALTs progressively Type-II censored 
scheme containing the following censoring schemes as special cases: 

1) Type-II censored scheme when { }0,0, ,0, .s sR n m= −  
2) The complete sample case when { }0,0, ,0R =   and s sn m= . 

2.2. Assumptions 

1) The lifetimes 1 1,  1, ,iT T i n≡ =   of items allocated to use condition, are 
independent and identically distributed random variables (i.i.d. r.v.’s) and fol-
lows a mixture of MTP distribution with PDF, given in (1). 

2) The lifetimes 2 2,  1, ,iT X i n≡ =   of items allocated to accelerated condi-
tion, are i.i.d r.v.’s. 

3) The PDF, RF, CDF and HRF of an item tested at accelerated condition are 
given, respectively, by 

( ) ( ) ( )
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,                (7) 

where for ( )1, 2, , , ,j j j jj θ α β λ= =  and 

( ) ( ) ( ) 1
2 1; , ,j j j j j j j jH x H x xθ λ θ λ α β

−
= = +               (8) 

( ) ( )2 ; ,j jj j
j j j jR x x

λ αλ αθ β β
−

= +                    (9) 

( ) ( )2 ; 1 ,j jj j
j j j jF x x

λ αλ αθ β β
−

= − +                 (10) 

( ) ( ) ( )1
2 ; ,j jj j

j j j j j jf x x
λ αλ αθ α λ β β

− +
= +               (11) 

where jλ  is an accelerated factor satisfying 1jλ > . 
4) The i.i.d lifetimes 1iT  and 2iT , 1,2, , ji n=   are mutually statistically- 

independent. 
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2.3. ML Estimation 

Let, for 1,2s = , ( ) ( ) ( )1 1 1, , , , , ,
1: : 2: : : :

s sm s sm s sms s s
s s s s s s s

R R R R R R
s m n s m n sm m nT T T …

< < <
 

  denote two progres-
sively type-II censored samples from two populations whose PDFs are as given 
by (1) and (2), respectively, with ( )1, ,

ss s smR R R= 
 being the two progressive 

censoring schemes. We denote also the observed values by, 

1: : 2: : : :s s s s s s ss m n s m n sm m nt t t< < < . The log-likelihood function  

( ) ( ), , log , ,l x L xα β λ α β λ=  without normalized constant is then given by 
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          (12) 

Assuming that the parameters ,  jp λ  and jβ  are unknown and jα , is 
known, the likelihood equations are given, for 1, 2j = , by 

( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2 2 2

2 2 *
1 1 1 1

*
2 2 2

1 1
2 2 : : 2 2 : :

*2 2

1 1 1 1: : : :

0,

0,   1, 2

0,    1,

s s

s s

s s s s

m m
s si si s sis i s i

j

m mj j i i j j i
i i

j i m n i m n

m m
j sj si si j sj si

s i s ij s si m n s si m n

t R t
p

p t R p tl j
f t R t

p t R p tl j
f t R t

ψ ψ

ξ ξ
λ

ϑ ϑ
β

= = = =

= =
Θ Θ

= = = =Θ Θ

∂
= + =

∂

∂
= + = =

∂

∂
= + = =

∂

∑ ∑ ∑ ∑

∑ ∑

∑∑ ∑∑



2













       (13) 

where, for 1,2j =  
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Equations (13) do not yield explicit solutions for ,  jp λ  and ,  1, 2,j jβ =  
and have to be solved numerically to obtain the ML estimates of the five para-
meters, Newton-Raphson iteration is employed to solve (13). 
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3. Bayes Estimation of the Model Parameters 

For Bayesian approach, in order to select a single value as representing our “best” 
estimators of the unknown parameter, a loss function must be specified. A wide 
variety of loss functions have been developed in the literature to describe various 
types of loss structures. The balanced loss function which is introduced [43]. [44] 
introduced an extended class of the balanced loss function of the form  

( )( ) ( ) ( ) ( ) ( ) ( )( ), , , , 1 , ,
o oL δ θ δ θ δ δ θ θ δΦ Ω Ψ = Ωϒ Φ + −Ω ϒ Φ Ψ     (15) 

where ( )ϒ ⋅  is a suitable positive weight function and ( )( ),θ δΦ Ψ  is an arbi-
trary loss function when estimating ( )θΨ  by δ . The parameter oδ  is a cho-
sen prior estimator of ( )θΨ , obtained for instance from the criterion of ML, 
least squares or unbiasedness among others. They give a general Bayesian con-
nection between the case of 0Ω >  and 0Ω =  where 0 1≤ Ω < . 

This section deals with studying the Bayes estimates of the parameters under 
consideration using the balanced square error loss (BSEL) function using the 
non-informative prior NIP distribution. It follows that a NIP for the acceleration 
factor jλ  is given by 

( ) ( )1
1 , 1 .j j

j

π λ λ
λ

∝ >                        (16) 

Also, the NIP’s for the scale parameter jβ  and the parameter jp  are, re-
spectively, as 

( ) ( )2
1 ,  0 ,j j

j

π β β
β

∝ >                      (17) 

( ) ( )3
1 ,  0 .j j

j

p p
p

π ∝ >                      (18) 

Therefore, the joint NIP of the three parameters can be expressed by 

( ) ( ) ( ) ( ) ( )1 2 3
1Θ ,   1, , 0 ,j j j j j j

j j j

p p
p

π π λ π β π λ β
λ β

= ∝ > >      (19) 

where ( )Θ , , .j j jp λ β=  
It is to be noted that our objective is to consider vague priors so that the priors 

do not have any significant roles in the analyses that follow. However, if one uses 
the prior beliefs different from (19) and resorts to sample based approaches for 
analyzing the posterior, one may use the concept of sampling-importance-re- 
sampling without working afresh with the new prior-likelihood setup (see, [45]). 

3.1. Bayes Estimation Based on BSEL Function 

The symmetric square-error loss (SE) is one of the most popular loss func-
tions. By choosing ( )( ) ( )( )2

,θ δ δ θΦ Ψ = −Ψ  and ( ) 1θϒ = , in (15), the ba-
lanced loss function reduced to the BSEL function, used by [46] [47], in the 
form 

( )( ) ( ) ( ) ( )( )22
, , 1 ,

o oL δ θ δ δ δ δ θΩ Ψ = Ω − + −Ω −Ψ            (20) 
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and the corresponding Bayes estimate of the function ( )θΨ  is given by 

( ) ( ) ( )( ), , 1 .
o ot E tδδ δ θΩ Ψ = Ω + −Ω Ψ                  (21) 

Under the BSEL function, the estimator of a parameter (or a given function 
of the parameters) is the posterior mean. Thus, Bayes estimators of the para-
meters are obtained by using the loss function (20). The Bayes estimators of a 
function ( ), , , or   j j j j j ju u p pλ β λ β≡ =  is given by 

( ) ( )*
0

ˆ ˆ 1 , , d ,BS ML j j ju u u p tπ λ β
∞

= Ω + −Ω Θ∫               (22) 

where, ˆMLu  is the ML estimate of u . It is not possible to compute (22) ana-
lytically, therefore, we propose to approximate (22) by using MCMC tech-
nique to generate samples from the posterior distributions and then compute 
the Bayes estimators of the individual parameters. 

3.2. MCMC Method 

The MCMC method is a useful technique for computing Bayes estimates of 
the function ( ), ,j j ju u p λ β≡ . A wide variety of MCMC schemes are availa-
ble, and it can be difficult to choose among them. An important sub-class of 
MCMC methods is Gibbs sampling and more general Metropolis within- 
Gibbs samplers. The advantage of using the MCMC method over the MLE 
method is that we can always obtain a reasonable interval estimate of the pa-
rameters by constructing the probability intervals based on the empirical 
posterior distribution. This is often unavailable in maximum likelihood esti-
mation. Indeed, the MCMC samples may be used to completely summarize 
the posterior uncertainty about the parameters ,  j jp λ  and jβ , through a 
kernel estimate of the posterior distribution. This is also true of any function 
of the parameters. For more detailes about the MCMC methods see, for ex-
ample, [48] [49] [50]. 

The Metropolis-Hasting algorithm generates sampling from an (essentially) 
arbitrary proposal distribution (i.e. a Markov transition kernel). From the 
product of Equations (19) and (6), the joint posterior density function of 

,  j jp λ  and jβ  given the data can be written as 

( ) ( ) ( ) ( )
21*

1 : : : :
1 1
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s si
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1 Θ

Θ , , dΘ.j j jB L pπ λ β− = ∫  
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 The conditional posterior distribution of the parameters 
,  j jp λ  and jβ  can be computed and written, respectively, by 
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( ) ( ) ( )
2

* 1
: : : :

1 1
, , .
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s s s s

m R

j j j j s s si m n s si m n
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Θ Θ

= =
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The posterior of ,  j jp λ  and jβ  in (24), (25) and (26) is not known, but 
the plot of it shows that it is similar to normal distribution. Therefore to gen-
erate from this distribution, we use the Metropolis {Hastings method ([51] 
with normal proposal distribution)}. For details regarding the implementa-
tion of Metropolis-Hastings algorithm, the readers may refer to [52]. To run 
the Gibbs sampler algorithm we started with the ML estimates. We then drew 
samples from various full conditionals, in turn, using the most recent values 
of all other conditioning variables unless some systematic pattern of conver-
gence was achieved. The following algorithm of Gibbs sampling is proposed 
to compute Bayes estimators of ( ), ,j j ju u p λ β≡ based on BSEL function. 

1) Start with initial guess of ( ), ,j j jp λ β  say ( )0 0 0, , ,j j jp λ β  respectively. 
2) Set 1i = . 
3) Generate ip  from (24) and iλ  from (25). 
4) Generate iβ  from (26). 
5) Set 1.i i= +  
6) Repeat steps 3 - 5 N times. 
7) An approximate Bayes estimator of u  under BSEL function is given by 

( ) ( )( ) ( )
1

1 , , ,
N

i i

i

iE u t N u p
ν

ν λ β
= +

= − ∑                 (27) 

where ν  is the burn-in period. So that, the Bayes estimators of u  based on 
BSEL function is given by 

( ) ( )ˆ ˆ 1 .BS MLu u E u t= Ω + −Ω                     (28) 

4. Bayesian Two-Sample Prediction 

The two-sample prediction technique is considered to derive Bayesian predic-
tion bounds for future order statistics based on progressively Type-II cen-
sored informative samples obtained from constant-PALT models. The cover-
age probabilities and the average interval lengths of the confidence intervals 
are computed via a Monte Carlo simulation to investigate the procedure of 
the prediction intervals. Suppose that, for 1,2,S =  the two sample scheme is 
used in which the informative sample ( )1: : 2: : : :s s s s s s ss m n s m n sm m nT T T< < <

 re- 
presents an observed informative progressively type-II right censored sample 
of size sm  obtained from a sample of size sn  with progressive CS  

( )1, ,
ss s smR R R= 

 drawn from a population whose PDFs are as given by (1) 
and (7). Suppose also that 1: : 2: : : :, , ,M N M N M M NY Y Y  represents a future (unob-
served) independent progressively type-II right censored sample of size M  
obtained from a sample of size N  with progressive CS ( )* * *

1 , , ,MR R R= 

drawn from the population whose CDF is (9). We want to predict any future 
(unobserved) ,  1, 2, , ,bY b M=   in the future sample of size M . The PDF of 
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,  1, 2, , ,bY b M=   given the vector of parameters θ , is obtained as (see [34]): 

( ) ( ) ( ) 1*
1 2 2

1
1 ,i

b

b b b i b
i

g y C f y F y
γ

θ κ
−

− Θ Θ
=

 == − ∑            (29) 

where 

( ) ( )
1

* *
1

1

1
1

1 1 ,  ,

1 , , 1,  and 1 for 1.

M i b

i j j b i
j i j i i

b

i
j j i

R N R C

i j b b

γ γ

κ κ
γ γ

−

−
= = =

=

= + = − + =

= ∀ ≠ > = =
−

∑ ∑ ∏

∏
 

Substituting from (7) and (9) in (29), we have: 

( )
( ) ( )( ) ( ) ( )( )

*

1

1 1 21 1 2 22 2 1 21 1 2 22 21; ; 1 ; ; .i

b

b
b ii

g y

C p f y p f y p F y p F y
γ

θ θ κ θ θ

θ
−

− =
 + +=  −∑

 (30) 

4.1. Maximum Likelihood Prediction When jα  Is Known 

Maximum likelihood prediction (MLP) can be obtained using (30) by replacing 
the parameters ( )1 2 1 2, , , ,pθ β β λ λ=  by  

( ) ( )


( )


( )


( )


( )( )1 12 2
ˆ ˆ , , , , .ML ML ML ML ML MLpθ β β λ λ=  

1) Interval prediction: 
The maximum likelihood prediction interval (MLPI) for any future observa-

tion ,  1by b M≤ ≤  can be obtained by 

( )( )* ˆPr d .b b bMLy t g y y
υ

υ θ
∞

 ≥ =  ∫                  (31) 

A ( )1 100%τ− ×  MLPI ( ),L U  of the future observation by  is given by 
solving the following two nonlinear equations 

( ) ( )Pr 1 ,  Pr .
2 2b by L t t y U t tτ τ   ≥ = − ≥ =                (32) 

2) Point prediction: 
The maximum likelihood prediction point (MLPP) for any future observation 

by  can be obtained by replacing the parameters ( )1 2 1 2, , , ,pθ β β λ λ=  by  

( ) ( )


( )


( )


( )


( )( )1 2 1 2
ˆ ˆ , , , , .ML ML ML ML ML MLpθ β β λ λ=  

( ) ( )( )*
0

ˆ .ˆ db b b bb ML MLy E y t y g y yθ
∞

 = =  ∫               (33) 

4.2. Bayesian Prediction When jα  Is Known 

The predictive density function of ,   1bY b M≤ ≤  is given by: 

( ) ( ) ( )* * *
0

d ,  0,b b by ytgty θθ π θ
∞

Ψ = >∫              (34) 

1) Interval prediction: 
Bayesian prediction interval (BPI), for the future observation ,   1 ,bY b M≤ ≤  

can be computed using (34) which can be approximated using MCMC algorithm 
by the form 
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( ) ( )
( )

*
1

*
1 0

,
d

bi
b

b bi

i

i
t

g y
y

g y y

µ

µ

θ

θ
=
∞

=

Ψ =
∑

∑ ∫
                  (35) 

where ,  1, 2, ,i iθ µ−   are generated from the posterior density function (23) 
using Gibbs sampler and Metropolis-Hastings techniques. 

A ( )1 100%τ− ×  BPI ( ),L U  of the future observation by  is obtained by 
solving the following two nonlinear equations 

( )
( )

*
1

*
1 0

d
1 ,

2d

i
b bi L

i
b bi

g y y

g y y

µ

µ

θ τ

θ

∞

=
∞

=

= −
∑ ∫
∑ ∫

                   (36) 

( )
( )

*
1

*
1 0

d
.

2d

i
b bi U

i
b bi

g y y

g y y

µ

µ

θ τ

θ

∞

=
∞

=

=
∑ ∫
∑ ∫

                    (37) 

Numerical methods such as Newton-Raphson are necessary to solve the above 
two nonlinear Equations (36) and (37), to obtain L  and U  for a given. 

2) Point prediction: 
a) Bayesian prediction point (BPP) for the future observation by  based on 

BSEL function can be obtained using 

( ) ( ) ( ) ( )ˆ 1 ,bb BS b MLy y E y t= Ω + −Ω                  (38) 

where ( )ˆb MLy  is the ML prediction for the future observation by  which can be 
obtained using (36) and ( )bE y t  can be obtained using 

( ) ( )*
0

d .b b b bE y t y y t y
∞

= Ψ∫                    (39) 

b) BPP for the future observation by  based on BLINX loss function can be 
obtained using 

( ) ( ) ( ) ( )1ˆ ˆln exp 1 e ,bay
b BL b ML ty ay E

a
−  = − Ω − + −Ω            (40) 

where ( )ˆb MLy  is the ML prediction for the future observation by  which can be 
obtained using (36) and ( )e bayE t−  can be obtained using 

( ) ( )*
0

e e .db bay ay
b bE y t yt

∞− −= Ψ∫                  (41) 

5. Simulation Studies 

In this subsection, numerical examples are provided to demonstrate the theoret-
ical results given in this paper. All computations were performed using (MA- 
THEMATICA ver. 8.0). 

To generate progressively type-II censored Pareto samples, we used the algo-
rithm proposed by [34]. The MLEs and Bayes estimates of the parameters are 
computed and compared based on Monte Carlo simulation study according to 
the following steps: 

1) For given values of the parameters, sn  and ( )1 ,  1, 2s s sm m n s≤ ≤ =  we 
generate type II progressively samples from the MTP distribution as follows: 

a) For given values of sm , we generate two independent random samples of sizes 
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m1 and 2m  from Uniform (0,1) distribution ( )1 2, , , ,  1, 2.
ss s smU U U s =

 
b) For given values of the progressive censoring scheme  

, 1, 2,    1, , ,si sR s i m= =   we set ( )1
1 s

s

m
si sm i

E i R κκ = − +
= +∑  where  

1, 2, 1, , .ss i m= =   
c) Set .siE

si siV U=  
d) Set *

11 ,   1, 2, 1, , .s

s

m
si s sm iU V s i mκκ = − +
= − = =∏ 

 

e) For given values of ,  ,  ,  j j jp α β λ  and ,  s sn m , set: 

( )
( )

( )

( )
( )

( )
( )1 11 1

1 21 21 21 2*
1 1 2 21 1 1 ,

s ss s

si si siU p t p tλ α λ αλ α λ αβ β β β
− −− −− −   

 = − + +


+
 

− 
−  

which is the required progressive Type II censored samples of sizes sm  from 
MTP distribution under constant PALT. 

2) The MLEs of the parameters are obtained by solving the nonlinear equa-
tions (13) numerically. 

3) Based on BSEL loss function the Bayes estimates of the parameters are 
computed, from (28) according to the above MCMC method. 

Simulation studies have been performed using (Mathematica ver. 8.0) for illu-
strating the theoretical results of estimation problem. The performance of the 
resulting estimators of the acceleration, shape and scale parameters has been 
considered in terms of their average (AVG), relative absolute bias (RAB) and 
mean square error (MSE), where 

( ) ( )

( )
1

1 2 1 3 2 4 1 5 2

ˆ ˆ1

1,2, ,5, , , , , ,

M
i

k k
i

M

k p λ λ β β
=

Φ = Φ

= Φ = Φ = Φ = Φ = Φ =

∑


 

ˆ
,

k k

k

RAB
Φ −Φ

=
Φ

 

( ) ( )( )2

1
ˆ1 M i

k kiMSE M
=

= Φ −Φ∑ . 

In our study, we have used three different censoring schemes (C.S), namely: 
Scheme I: , 0m s s iR n m R= − =  for si m≠ . 
Scheme II: 1 , 0s s iR n m R= − =  for 1i ≠ . 
Scheme III: ( )( )1 2 , 0

s s s imR n m R+ = − =  for ( )1 2si m≠ + ; if sm  odd, and 

( )2 , 0
s s s imR n m R= − =  for ( )2si m≠ ; if sm  even. 

In simulation studies, we consider two case separately: 
a) The population parameter values  

( )1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5pα α β β λ λ= = = = = = = , the sample sizes 
( )1 2n n n= =  and observed failure times ( )1 2m m m= =  the results shown in 
Table 1. The progressive censoring schemes used in this case are displaying in 
Table 2. 

b) The population parameter values  
( )1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5pα α β β λ λ= = = = = = = , the sample sizes  
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Table 1. MLEs and Bayes estimates of the parameters and their MSEs and RABs at 
( )1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5, 0.5pα α β β λ λ= = = = = = Ω = = . 

n m C.S Parameters 
ML method Bayes method 

MLE MSE RAB MLE MSE RAB 

10 5 

I 

p  0.601454 0.0911552 0.202909 0.460629 0.0232686 0.078743 

1λ  1.9737 0.703832 0.315798 1.80706 0.214357 0.204707 

2λ  2.12271 0.516762 0.0613551 1.88423 0.139247 0.0578838 

1β  0.369676 0.0239581 0.232252 0.477845 0.0365735 0.592818 

2β  0.751637 0.0794354 0.0737667 0.72107 0.0199059 0.0300995 

II 

p  0.700854 0.0977859 0.401708 0.518353 0.014129 0.0367053 

1λ  1.95765 0.708308 0.305101 1.82122 0.228966 0.214148 

2λ  2.21685 0.581832 0.108427 1.95556 0.148177 0.0222217 

1β  0.378412 0.0360783 0.261372 0.471209 0.0371772 0.570698 

2β  0.777305 0.109645 0.110436 0.727977 0.0273527 0.0399674 

III 

p  0.629658 0.09394 0.259317 0.472783 0.0192282 0.0544344 

1λ  2.06651 0.824214 0.377674 1.86251 0.257217 0.241674 

2λ  2.26205 0.60211 0.131027 1.9515 0.135306 0.0242518 

1β  0.377877 0.0427896 0.259589 0.481326 0.0418398 0.604419 

2β  0.826555 0.121951 0.180793 0.757457 0.0300898 0.0820817 

10 7 

I 

p  0.660453 0.112751 0.320906 0.506635 0.0283939 0.0132703 

1λ  1.85369 0.648571 0.235796 1.74605 0.18166 0.164036 

2λ  2.16858 0.744627 0.0842877 1.90422 0.177836 0.0478888 

1β  0.210994 0.0137477 0.296687 0.401985 0.0114582 0.339951 

2β  0.699248 0.134125 0.00107442 0.688608 0.0320385 0.016274 

II 

p  0.537681 0.100897 0.0753617 0.442848 0.029858 0.114304 

1λ  2.2181 0.924725 0.478734 1.92421 0.266521 0.282808 

2λ  2.03363 0.490193 0.0168168 1.85065 0.149335 0.074674 

1β  0.459593 0.0958671 0.531976 0.520935 0.0664047 0.73645 

2β  0.773434 0.170571 0.104906 0.732026 0.0413834 0.0457511 

III 

p  0.723168 0.151995 0.446336 0.519121 0.0271232 0.0382419 

1λ  1.85078 0.432858 0.233853 1.746 0.141774 0.164001 

2λ  2.41489 0.78414 0.207443 2.02639 0.151202 0.0131956 

1β  0.375755 0.0283916 0.252517 0.473603 0.0359016 0.578677 

2β  0.870039 0.0594453 0.242912 0.780168 0.0127516 0.114525 

20 10 I 

p  0.557594 0.0847459 0.115188 0.430601 0.0254593 0.138799 

1λ  1.90065 0.704428 0.267101 1.75898 0.208271 0.172653 

2λ  2.10902 0.498771 0.0545082 1.87512 0.142039 0.0624406 

1β  0.362324 0.039027 0.207747 0.474889 0.0411224 0.582964 

2β  0.742612 0.101949 0.0608743 0.717371 0.0261471 0.0248159 
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Continued 

20 10 

II 

p  0.669976 0.1211 0.339952 0.490481 0.0242542 0.0190383 

1λ  1.95717 0.68463 0.30478 1.8027 0.206388 0.201803 

2λ  2.04906 0.472107 0.0245278 1.85392 0.140938 0.0730379 

1β  0.3308 0.0168379 0.102667 0.454641 0.0286291 0.515468 

2β  0.787288 0.187934 0.124698 0.733932 0.045068 0.048474 

III 

p  0.632057 0.100993 0.264113 0.47326 0.0224658 0.0534806 

1λ  1.84788 0.563256 0.231918 1.73577 0.171077 0.157178 

2λ  2.02863 0.545136 0.0143147 1.8346 0.167083 0.0826977 

1β  0.320854 0.017344 0.0695136 0.453179 0.0281525 0.510598 

2β  0.750958 0.15458 0.0727968 0.719845 0.0389693 0.0283506 

20 15 

I 

p  0.550374 0.118694 0.100747 0.497373 0.0349629 0.00525442 

1λ  1.56948 0.229736 0.046317 1.58626 0.0538567 0.0575068 

2λ  1.81417 0.514309 0.0929162 1.71431 0.198039 0.142846 

1β  0.364483 0.0526832 0.214943 0.477257 0.045402 0.590855 

2β  0.739965 0.0820597 0.0570934 0.717426 0.0186836 0.0248949 

II 

p  0.548206 0.0601328 0.0964128 0.42714 0.0182459 0.145721 

1λ  1.84334 0.801833 0.228892 1.69273 0.186019 0.128484 

2λ  2.52571 0.595692 0.262855 2.08784 0.0885475 0.043922 

1β  0.35615 0.0225767 0.187167 0.474979 0.0349709 0.583262 

2β  0.813256 0.0874564 0.161794 0.756249 0.0249578 0.0803555 

III 

p  0.549382 0.0478625 0.0987647 0.441121 0.0164724 0.117758 

1λ  1.75354 0.525229 0.169024 1.69137 0.168108 0.127583 

2λ  1.79942 0.472088 0.100288 1.70238 0.207905 0.14881 

1β  0.354368 0.0425507 0.181226 0.46136 0.0369997 0.537867 

2β  0.670072 0.0371572 0.0427541 0.675311 0.010769 0.0352695 

30 15 

I 

p  0.499598 0.104484 0.000803821 0.397832 0.0335915 0.204337 

1λ  2.15827 0.797189 0.438849 1.89995 0.234899 0.266632 

2λ  1.87373 0.398902 0.0631326 1.72948 0.18941 0.135258 

1β  0.376413 0.0215011 0.254709 0.48996 0.041951 0.633201 

2β  0.779513 0.0489548 0.11359 0.741129 0.0135147 0.0587554 

II 

p  0.76084 0.136086 0.521681 0.540043 0.0191063 0.0800852 

1λ  1.78253 0.423387 0.188354 1.71719 0.130948 0.144796 

2λ  1.78884 0.641888 0.105579 1.74993 0.214919 0.125034 

1β  0.31688 0.0129736 0.0562653 0.438228 0.0243289 0.460761 

2β  0.583023 0.0623007 0.16711 0.644207 0.0155235 0.079704 

III 

p  0.57124 0.0459656 0.14248 0.447413 0.0156696 0.105174 

1λ  1.88525 0.719008 0.256833 1.75951 0.2079 0.173008 

2λ  1.705 0.467048 0.147502 1.68106 0.222155 0.159471 

1β  0.308311 0.014189 0.0277027 0.446638 0.0246022 0.488793 

2β  0.632415 0.0380157 0.0965499 0.664642 0.0116061 0.0505112 
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30 20 

I 

p  0.393203 0.127093 0.213595 0.345447 0.0551168 0.309106 

1λ  1.59049 0.36839 0.0603245 1.62542 0.106877 0.0836112 

2λ  2.26603 0.428951 0.133013 1.96647 0.0839317 0.0167674 

1β  0.234789 0.0197048 0.217369 0.411934 0.0212264 0.373113 

2β  0.822029 0.08424 0.174326 0.760107 0.02548 0.0858669 

II 

p  0.750849 0.0994436 0.501699 0.527088 0.0112714 0.0541766 

1λ  1.78607 0.344742 0.190715 1.70742 0.108857 0.13828 

2λ  2.36571 0.719694 0.182853 1.96996 0.163298 0.0150208 

1β  0.384138 0.0274193 0.28046 0.466012 0.0325419 0.553373 

2β  0.715106 0.097689 0.0215797 0.700472 0.0258527 0.000674698 

III 

p  0.526054 0.113862 0.0521074 0.412145 0.0375391 0.17571 

1λ  1.70714 0.334107 0.138096 1.65264 0.107972 0.10176 

2λ  1.85459 0.535046 0.0727042 1.72149 0.217767 0.139256 

1β  0.272605 0.0108596 0.0913181 0.430056 0.0197156 0.433519 

2β  0.698068 0.0602391 0.00276056 0.68964 0.0151716 0.0148004 

 
Table 2. Progressive censoring schemes used in simulation study at 1 2n n n= =  and 

1 2m m m= = . 

n m 
C.S 

I II III 

10 5 5 5,  0,  5iR R i= = ≠  1 5,  0,  1iR R i= = ≠  3 5,  0,  3iR R i= = ≠  

10 7 7 3,  0,  7iR R i= = ≠  1 3,  0,  1iR R i= = ≠  4 3, 0, 4iR R i= = ≠  

20 10 10 10,  0,  10iR R i= = ≠  1 10,  0,  1iR R i= = ≠  5 10,  0,  5iR R i= = ≠  

20 15 15 5,  0,  15iR R i= = ≠  1 5,  0,  1iR R i= = ≠  8 5,  0,  8iR R i= = ≠  

30 15 15 15,  0,  15iR R i= = ≠  1 15,  0,  1iR R i= = ≠  8 15,  0,  8iR R i= = ≠  

30 20 20 10,  0,  20iR R i= = ≠  1 10,  0,  1iR R i= = ≠  10 10,  0,  1iR R i= = ≠ 0 

 

( )1 2n n≠  and observed failure times ( )1 2m m≠  the results shown in Table 3. 
Figure 1 and Figure 2 represents the MSE and RAB of the estimates of 

( )1 2 1 2, , , ,pθ α α β β=  when the sample sizes ( )1 2n n n= = . While Table 4 gives 
the progressive censoring schemes used in simulation study at 1 2n n≠  and 

1 2m m≠ . 
The ML prediction (point and interval) and Bayesian prediction (point and 

interval) are computed according to the following steps: 
Generate ( )1 2 1 2, , , ,i i i i i ipθ β β λ λ= , from the posterior PDF using MCMC al-

gorithm. 
Solving Equation (32) we get the 95% MLPI for the thb  order statistics in a 

future progressively Type-II censored sample also the MLPP for the future ob-
servation by ,is computed using (33). 
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Table 3. MLEs and Bayes estimates of the parameters and their MSEs and RABs at 
( )1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5, 0.5pα α β β λ λ= = = = = = Ω = = . 

1n  

2n  
1m  

2m  
C.S Parameters 

ML method Bayes method 

MLE MSE RAB MLE MSE RAB 

15 
20 

9 
12 

I 

p  0.582126 0.0667111 0.164253 0.43802 0.0196126 0.123961 

1λ  2.14351 1.15743 0.429006 1.83838 0.291516 0.225585 

2λ  1.92079 0.366342 0.039605 1.76003 0.142649 0.119987 

1β  0.405359 0.0605374 0.351195 0.493668 0.0497705 0.645561 

2β  0.64733 0.0564176 0.0752435 0.666565 0.0150668 0.0477636 

II 

p  0.690734 0.0901268 0.381469 0.508892 0.0109952 0.0177844 

1λ  1.76961 0.509727 0.17974 1.70937 0.142868 0.139577 

2λ  1.873 0.64641 0.0635004 1.73129 0.257858 0.134355 

1β  0.306905 0.0121153 0.0230154 0.448829 0.0259015 0.496097 

2β  0.679614 0.137545 0.0291222 0.678015 0.0336289 0.0314067 

III 

p  0.701195 0.114975 0.40239 0.492905 0.0156311 0.0141904 

1λ  1.87453 0.434023 0.249685 1.72842 0.129539 0.152283 

2λ  2.44222 0.834579 0.221111 2.05112 0.155312 0.0255614 

1β  0.298962 0.0067289 0.00345946 0.430867 0.0192125 0.436223 

2β  0.891142 0.276275 0.273059 0.784181 0.0686896 0.120258 

15 
20 

12 
16 

I 

p  0.436934 0.147934 0.126133 0.424671 0.0443185 0.150657 

1λ  1.8192 0.729329 0.212799 1.72476 0.213135 0.149842 

2λ  1.99231 0.179585 0.0038437 1.80985 0.090785 0.0950757 

1β  0.278366 0.0164655 0.0721123 0.442964 0.0253041 0.476548 

2β  0.776163 0.0460672 0.108805 0.725809 0.0103525 0.0368705 

II 

p  0.654981 0.0720127 0.309961 0.485461 0.0107014 0.0290777 

1λ  1.75885 0.424684 0.172564 1.6856 0.116873 0.123733 

2λ  1.76559 0.736282 0.117205 1.68275 0.280035 0.158626 

1β  0.285547 0.0120893 0.0481779 0.441627 0.0235345 0.47209 

2β  0.580928 0.0744739 0.170103 0.626942 0.0211994 0.104368 

III 

p  0.729426 0.170489 0.458852 0.518466 0.0316011 0.0369323 

1λ  1.8595 0.41773 0.239663 1.70108 0.115046 0.134051 

2λ  2.10522 0.644808 0.0526092 1.89043 0.185788 0.0547844 

1β  0.290329 0.00288853 0.032236 0.444839 0.0217482 0.482798 

2β  0.620031 0.149604 0.114242 0.638284 0.0382819 0.0881652 

25 
30 

15 
18 

I 

p  0.624484 0.0707967 0.248968 0.46255 0.0152373 0.0748991 

1λ  2.04136 0.641435 0.360909 1.84179 0.200086 0.227863 

2λ  2.6438 0.597395 0.321901 2.17796 0.0846467 0.0889785 

1β  0.334961 0.0181699 0.116536 0.461212 0.0314131 0.537372 

2β  0.853151 0.0425477 0.218787 0.77776 0.0131854 0.111086 
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Continued 

25 
30 

15 
18 

II 

p  0.579907 0.0865519 0.159814 0.431046 0.0231535 0.137909 

1λ  1.71326 0.420802 0.142174 1.65845 0.123108 0.105636 

2λ  2.06298 0.534335 0.03149 1.85569 0.171584 0.0721568 

1β  0.35053 0.0256934 0.168434 0.466404 0.0337755 0.554681 

2β  0.692717 0.100299 0.0104043 0.697282 0.0213776 0.00388272 

III 

p  0.548462 0.117228 0.0969238 0.433495 0.0345365 0.133011 

1λ  1.58744 0.458697 0.0582929 1.60793 0.1446 0.07195 

2λ  2.16086 0.290563 0.0804277 1.92313 0.0779529 0.0384327 

1β  0.249868 0.0133291 0.167105 0.42914 0.0190754 0.430468 

2β  0.793726 0.0741596 0.133894 0.742978 0.0211759 0.0613978 

25 
30 

20 
24 

I 

p  0.566283 0.0899157 0.132566 0.466032 0.0438552 0.067936 

1λ  1.53468 0.39365 0.023117 1.27542 0.0491383 0.149719 

2λ  2.01437 0.740411 0.00718381 1.50366 0.185134 0.24817 

1β  0.301303 0.011117 0.00434313 0.364586 0.0228807 0.215288 

2β  0.683733 0.0780066 0.0232389 0.566201 0.0214978 0.191142 

II 

p  0.730676 0.151648 0.461353 0.540285 0.0312658 0.0805702 

1λ  1.62499 0.192889 0.0833271 1.62759 0.0665582 0.0850597 

2λ  1.73909 0.418326 0.130453 1.67432 0.202752 0.162838 

1β  0.285779 0.00779342 0.0474039 0.425446 0.0176157 0.418152 

2β  0.599221 0.0828184 0.143969 0.642418 0.029898 0.0822602 

III 

p  0.74725 0.119373 0.4945 0.527233 0.0137002 0.054467 

1λ  1.82079 0.28875 0.213863 1.69809 0.0967408 0.132062 

2λ  2.3759 0.669129 0.187952 1.97417 0.152521 0.0129148 

1β  0.339932 0.0101032 0.133106 0.45045 0.0272884 0.5015 

2β  0.956769 0.23684 0.366813 0.828082 0.05404 0.182975 

 
Table 4. Progressive censoring schemes used in simulation study at 1 2n n≠  and 

1 2.m m≠  

n m 
C.S 

I II III 

15 
20 

9 
12 

9 6,  0,  9iR R i= = ≠  

12 8,  0,  12iR R i= = ≠  
1 6,  0,  1iR R i= = ≠  

1 8,  0,  1iR R i= = ≠  
5 6,  0,  5iR R i= = ≠  

6 8,  0,  6iR R i= = ≠  

15 
20 

12 
16 

12 3,  0,  12iR R i= = ≠  

16 4,  0,  16iR R i= = ≠  
1 3,  0,  1iR R i= = ≠  

1 4,  0,  1iR R i= = ≠  
6 3,  0,  6iR R i= = ≠  

8 4,  0,  8iR R i= = ≠  

25 
30 

15 
18 

15 10,  0,  15iR R i= = ≠  

18 12,  0,  18iR R i= = ≠  
1 10,  0,  1iR R i= = ≠  

1 12,  0,  1iR R i= = ≠  
8 10,  0,  8iR R i= = ≠  

9 12,  0,  9iR R i= = ≠  

25 
30 

20 
24 

20 5,  0,  20iR R i= = ≠  

24 6,  0,  24iR R i= = ≠  
1 5,  0,  1iR R i= = ≠  

1 6,  0,  1iR R i= = ≠  
10 5,  0,  10iR R i= = ≠  

12 6,  0,  1iR R i= = ≠ 2 



T. A. Abushal, A. M. AL-Zaydi 
 

340 

 

Figure 1. Mean square error (MSE) of the estimates of ( )1 2 1 2, , , ,pθ α α β β=  when the sample sizes ( )1 2 .n n n= =  

 

 

Figure 2. Relative absolute bias (RAB) of the estimates of ( )1 2 1 2, , , ,pθ α α β β=  when the sample sizes ( )1 2 .n n n= =  
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Table 5. Point and 95% interval predictors for *, 1,bY b =  when *10, 0,iN M R= = =

1,2, , ,i M=   C.S I and ( 1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5, pα α β β λ λ= = = = = = Ω = =

0.5 ). 

( )1 1,n m  

( )2 2,n m  

Point predictions Interval predictions 

ML BSEL 

ML Bayes 

(L, U) (L, U) 

Length (CP) Length (CP) 

(15, 9) 
(20, 12) 

0.0185867 0.0211427 

(0.000439728, 
0.0725284) 

(0.000472307, 
0.101625) 

0.0720887 (95.66) 0.101153 (96.70) 

(15, 12) 
(20, 16) 

0.0130117 0.0186568 

(0.000315783, 
0.0497251) 

(0.000460148, 
0.103072) 

0.0494094 (92.49) 0.102612 (96.94) 

(25, 15) 
(30, 18) 

0.0202449 0.0207763 

(0.000495333, 
0.0768623) 

(0.000378492, 
0.0922851) 

0.076367 (95.93) 0.0919067 (97.13) 

(25, 20) 
(30, 24) 

0.0192247 0.0238478 

(0.000453452, 
0.0751992) 

(0.000542946, 
0.127486) 

0.0747457 (95.92) 0.126943 (96.73) 

 
Table 6. Point and 95% interval predictors for *, 1,bY b =  when *10, 0,iN M R= = =

1,2, , ,i M=   C.S II and ( 1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5, pα α β β λ λ= = = = = = Ω = =

0.5 ). 

( )1 1,n m  

( )2 2,n m  

Point predictions Interval predictions 

ML BSEL 

ML Bayes 

(L, U) (L, U) 

Length (CP) Length (CP) 

(15, 9) 
(20, 12) 

0.0242643 0.023783 

(0.000582895, 
0.0935202) 

(0.000431341, 
0.101425) 

0.0929373 (95.88) 0.100993 (97.15) 

(15, 12) 
(20, 16) 

0.0223902 0.0210169 

(0.000551125, 
0.0845838) 

(0.000299128, 
0.0841044) 

0.0840327 (96.00) 0.0838053 (97.30) 

(25, 15) 
(30, 18) 

0.0162685 0.0190981 

(0.000386642, 
0.0632501) 

(0.000350237, 
0.0919707) 

0.0628634 (94.87) 0.0916205 (97.37) 

(25, 20) 
(30, 24) 

0.0138337 0.0181426 

(0.00033405, 
0.0530935) 

(0.000395425, 
0.100244) 

0.0527595 (93.03) 0.0998488 (97.37) 

 
The 95% BPI for the future observation by  are obtained by solving Equa-

tions (36) and (37). 



T. A. Abushal, A. M. AL-Zaydi 
 

342 

Table 7. Point and 95% interval predictors for *, 1,bY b =  when *10, 0,iN M R= = =

1,2, , ,i M=  C.S III and ( 1 2 1 2 1 21.1, 2.3, 0.3, 0.7, 1.5, 2, 0.5, pα α β β λ λ= = = = = = Ω = =

0.5 ). 

( )1 1,n m  

( )2 2,n m  

Point predictions Interval predictions 

ML BSEL 

ML Bayes 

(L, U) (L, U) 

Length (CP) Length (CP) 

(15, 9) 
(20, 12) 

0.0165701 0.0192861 

(0.000407008, 
0.0627065) 

(0.000430123, 
0.0940873) 

0.0622995 (95.04) 0.0936572 (97.09) 

(15, 12) 
(20, 16) 

0.0149446 0.0184964 

(0.000365933, 
0.0567025) 

(0.000349813, 
0.0985559) 

0.0563365 (94.29) 0.0982061 (97.69) 

(25, 15) 
(30, 18) 

0.0217064 0.0220789 

(0.00051196, 
0.0849101) 

(0.000369217, 
0.0986803) 

0.0843982 (96.12) 0.0983111 (97.24) 

(25, 20) 
(30, 24) 

0.0152917 0.0188501 

(0.000380291, 
0.057271) 

(0.000342122, 
0.101289) 

0.0568907 (94.04) 0.100947 (97.77) 

 
The BPP for the future observation by , is computed based on BSEL function 

using (38) and based on BLINX loss function using (40). 
Generate 10,000  progressively Type-II censored samples each of size M  

from a population whose CDF is as (7) with * ,  1, 2, , ,iR i M=   then calculate 
the coverage percentage (CP) of bY . For simplicity, we will consider  

* 0,   1, 2, ,iR i M= =   which represents the ordinary order statistics and  
10.M N= =  

6. Conclusions 

The progressive Type-II censoring is of great importance in planning duration 
experiments in reliability studies. It has been shown by [53] that the inference is 
possible and practical when the sample data are gathered according to a progres-
sive Type-II censored scheme. This paper dealt with the constant PALT in the 
case of progressive Type II censoring. It is assumed that the lifetime of test units 
follows the MTP distributions. MLEs and BEs of the acceleration factor and the 
parameters under consideration are derived. The BEs were obtained under the 
assumptions of BSEL and NIPs. It was observed that the BEs cannot be obtained 
in explicit forms. Instead, the MCMC method was used to obtain the Bayesian 
estimates. One can clearly see the scope of MCMC based Bayesian solutions which 
make every inferential development routinely available. 

From the result, we observe the following: 
It is noticed from the numerical calculations that the Bayes estimates under 

the BSEL function have the smallest MSEs as compared with their corresponding 
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MLEs. 
In general, for increasing the effective sample size ,m n  the MSEs and ARBs 

of the considered parameters decrease. 
For fixed values of the sample and failure time sizes, the Scheme II in which 

the censoring occurs after the first observed failure gives more accurate results 
through the MSEs and RABs than the other schemes and this coincides with 
Theorem [2.2] by [54]. 

The MLEs of 1β  are better than the BEs in general. 
In most cases, we observed that when the sample size increased, the MSEs and 

RABs decreased for all censoring schemes. 
The results in Tables 5-7 show that the lengths of the prediction intervals us-

ing the ML procedure are shorter than that of prediction intervals using the 
Bayes procedure. 

The simulation results show that the proposed prediction levels are satisfacto-
ry compared with the actual prediction level 95%. 
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