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Abstract 
Given a sample of regression data from ( ),Y Z , a new diagnostic plotting 

method is proposed for checking the hypothesis 0H : the data are from a 
given Cox model with the time-dependent covariates Z . It compares two 
estimates of the marginal distribution YF  of Y . One is an estimate of the 
modified expression of YF  under 0H , based on a consistent estimate of the 
parameter under 0H , and based on the baseline distribution of the data. The 
other is the Kaplan-Meier-estimator of YF , together with its confidence band. 
The new plot, called the marginal distribution plot, can be viewed as a test for 
testing 0H . The main advantage of the test over the existing residual tests is 
in the case that the data do not satisfy any Cox model or the Cox model is 
mis-specified. Then the new test is still valid, but not the residual tests and the 
residual tests often make type II error with a very large probability. 
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1. Introduction 

In this paper, we propose a new diagnostic plotting method for the proportional 
hazards (PH) model [1] with continuous survival time Y , which may be right 
censored, and with possible time-dependent covariates Z  or time-varying re- 
gression coefficients β . The new method has some advantages over the existing 
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methods in the literature, especially when the data do not satisfy any PH model 
or when the PH model is mis-specified. It provides an alternative diagnostic plot 
for model checking. 

Denote the conditional hazard function and survival function of Y  for given 
Z  by ( )Y Zh ⋅ ⋅  and ( )Y ZS ⋅ ⋅ , respectively, or simply ( )h ⋅ ⋅  and ( )S ⋅ ⋅ . Let 
( ) ( )1 1, , , ,n nY Z Y Z , be i.i.d. copies of ( ),Y Z  with the distribution function 

,Y ZF . The PH model was first defined by ( ) ( ) ( )exp oh t z z h tβ ′= , where oh  is 
the baseline hazard function, z  is a 1p×  covariate vector, β  is a 1p×  para- 
meter vector, oh  and β  are unknown, and p  does not depend on n . The 
model is referred as the time-independent covariate PH (TIPH) model. This 
model has been extended in two ways: 1) the covariate is time-dependent, i.e., 

( )z z t=  is a function of time t ; 2) the regression coefficient is time-varying, 
i.e., ( )tβ β=  is a function of time t . For the time-dependent covariates PH 
(TDPH) model, Kalbfleisch and Prentice [2] distinguish the external ones from 
the internal ones. 

It is often that the external time-dependent covariate iZ  can be written as 
( ) ( )( ),i i i iZ Z t U g t= =  , where ( ),⋅ ⋅  is a function, 1, , nU U  are i.i.d. co- 

pies from the time-independent random vector U  and ( )ig ⋅  is a function 
of time t. A simple example of ( )( ),U g t  is ( ) ( )w U g t , where ( )w ⋅  is a 
function not depending on time t . Without loss of generality (WLOG), we can 
assume ( )w U U= . Two simple examples of ( )ig t  are (a) ( ) ( )1i ig t t a= ≥  
and (b) ( ) ( ) ( )1i i ig t t a t a= ≥ − , where ia  is a constant but may depend on 
subject i  [1]. The PH model in case (b) is referred as the linearly-dependent 
PH model (LDPH model) hereafter. We also consider other forms of ( )ig ⋅  for 
the external case. For the time-varying regression coefficients PH model, in 
addition to the assumptions made on the TDPH model, one further assumes 

( )( ) ( ) ( ) ( )t z t
oh t z t e h tβ ′

= . A special case of this model is the piecewise PH (PWPH) 
model with k  cut-points 1, , ka a  [3]. 

An important step in the data analysis under the PH model is to check 
whether the model is indeed appropriate for the data. To this end, it is desirable 
to have some diagnostic plotting methods for the PH model. In the literature, 
some diagnostic plotting methods under the semi-parametric set-up are designed 
to inspect whether the data follow the TIPH model ( ) ( ) ( )expoh t z h t zβ ′= , (i.e., 
( )g t  is constant). One well-known diagnostic method for the PH model is the 

log-minus-log plots (log-log plots). 
Several other graphical methods using residuals to check the PH model 

assumption have been proposed in the literature [4]. By plotting the estimator of 
the cumulative hazard functions evaluated at each Cox-Snell residuals against 
the residuals, one expects a straight line pattern if the data set satisfies the PH 
model. However, as mentioned by Baltazar-Aban and Pena [5] this plotting 
method has serious defect. This method may fail to identify the poor fitting in 
many circumstances. Martingale residuals and its cumulative sums are in- 
troduced to examine the functional form of the covariate [4] [6] [7]. By plotting 
the Martingale residuals without a covariate, say 1Z , against this missing 
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covariate, one can observe the functional form of 1Z . And by plotting the score 
process versus follow-up time, one can examine the violation of the proportional 
hazards assumption. Scheike and Martinussen [8] later extend this method to 
the time-varying model. Deviance residuals [9] are then introduced. These 
methods provide more symmetric plots and are useful in identifying the outliers. 
Moreover, one may use Schoenfeld residuals or the cumulative sums form [10]. 
The residual plotting methods also induce several residual tests for the PH 
models. 

We provide a new diagnostic plotting method for the PH model. The main 
idea is to plot the Kaplan-Meier estimator (KME) of YS  against a proper 
estimator of the marginal distribution of Y  under the selected model. Thus it is 
called the marginal distribution (MD) plot. The MD plot can be described as 
a 5-step procedure: 1) Fit the Cox model you have in mind to obtain the 
regression coefficients. 2) Choose a reference value for the covariate Z , say oz , 
such that there exist many observations in its neighborhood, say ( )oz . 3) 
Estimate the survival function of Y  for oZ z=  using ( )oz . 4) Use the 
estimator in 3) to estimate the marginal survival function of Y . 5) Compare the 
estimator of the marginal survival function in 4) with the KME of YS . 

The paper is organized as follows. In Section 2, we propose the MD plot and 
other supplementary diagnostic plots. In Section 3, we present simulation results 
on the performance of the plot. We also compare the MD plot to the current 
residual plots. In Section 4, we apply the new diagnostic plot to the long-term 
breast cancer follow-up data analyzed in Wong et al. [11]. Section 5 is a concluding 
remark, where we explain that the MD plot can also be served as a naive 
hypothesis test for the PH models. 

2. The Main Results  

The assumption and notations are given in § 2.1. The idea of the marginal 
approach is introduced in § 2.2. The method is explained in § 2.3 and § 2.4. 

2.1. Assumptions and Notations 

Let phΘ  be the collection of all PH models specified by  

( )( ) ( ) ( ) ( )t z t
oY Zh t z t e h tβ ′

=                       (1) 

where ( )tβ  and ( )z t  are now possible vectors of functions of t  [12]. For 
model checking under the semi-parametric set-up, the null hypothesis is  

( ) ( ) ( )( ) ( ) ( )0 : the data are from Model 1  with ,  and given ,  and ,H Z t U g t g= ⋅ ⋅ ⋅   (2) 

where U  is a p -dimensional random covariate vector and the baseline hazard 
function ( )oh ⋅  is unknown. Let Θ  be the collection of all possible joint dis- 
tribution functions ,Y UF  of ( ),Y U . Notice that ,Y UF  does not need to belong 
to phΘ . Abusing notation, by ( ) ( )z t ug t= , we mean that  

( ) ( ) ( )( ) ( ) ( )( ) ( )1 1 1 1, , , , , ,p p p pug t u g t u g t D g t g t u u ′= =   , where  
( ) ( )( )1 , , pD g t g t  is a p p×  diagonal matrix with diagonal elements  
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( )ig t ’s. 
Our method involves the mode, say a vector pc∈ , of the distribution of the 

random vector U. That is, 0∀ >  and pη∀ ∈ ,  
( ) ( )pr U c pr U η− < ≥ − <  , where ⋅  is a norm, e.g., maxi iU U= , 

where ( )1, , pU U U=  . 
Proposition 1. If ( ),Y U  satisfies Model (1), then for each pc∈ ,  
( ) ( ) ( ) ( ){ }1( ) expY Wh t w t h t t w tβ ′= , where ( ) ( ) ( ){ }1 expoh t h t t cβ ′=  and  

( ) ( )W t Z t c= − .  
In view of Proposition 1, hereafter, WLOG, we can assume that 
AS1. The zero vector 0 is a mode of U  and it satisfies that ( )( )0, 0g t = . 
 Otherwise, let oU  be a mode of U  and define ( ) ( )W t Z t c= − , where 

( )oc Z U= . Then by Proposition 1, Model (1) is equivalent to another PH model, 
where 1h  takes place of the role of the baseline hazard function oh  and 
( ) ( )1 0Y Wh t h t=  is also unknown. 
Since Y US  may not satisfy the PH model in the null hypothesis 0H  (see 

(2)), one can define a new conditional survival function of a new response 
variable, say Y ∗ , for given Z such that 

Y Z
S ∗  satisfies the PH model in the null 

hypothesis 0H . Correspondingly, one can define the new marginal survival 
function of Y ∗ , say 

Y
S ∗ . That is,  

( ) ( ) ( ) ( ) ( )( ) ( ){ },

0
,   where  exp d .

t x u g x
oY Y U Y U

S t E S t U S t u e h x xβ
∗ ∗ ∗

′ = = − 
  ∫

  (3) 

Notice that oh  and oS  are equivalent if oh  exists. Abusing notation, write 
( ) ( ), , ,oY U

S t u S t u S β∗ = . Notice that 
Y

S ∗  is a function of the unknown para- 
meter β . Given the distribution function ,Y UF , if β  is not a function of t , 
then β  is the almost sure limit of the maximum partial likelihood estimator 
(MPLE) of β  under 0H  (see Example 1 below), otherwise, it is conceivable 
that ( )tβ  is some limiting point of the estimator of ( )tβ  [12]. 

Example 1. Assume that ,Y ZF  is a uniform distribution in the region  

1 2A A∪ , where 1A  is the set bounded by the four straight lines 0y = , 1y = , 
0x y− =  and 1x y− = − , and 2A  is the set bounded by 0y = , 1y = , 3x =  

and 4x = . Then the family of distributions ( ) ( ) ( ){ }: 1,1 3, 4Y ZS z z⋅ ∈ − ∪  does 
not satisfy the PH model, and ( ) ( ) 1Y oS t S t t= = −  for [ ]0,1t∈ . If one fits 
the TIPH model ( ) ( ) ( )0 : expoY ZH h t z h t zβ= , with data from ,Y ZF  without 
knowing ,Y ZF , then ( ) ( )( )1

Ze

Y
S t E t

β

∗ = −  by (3), where 0.045β ≈ − , which is 
the limit of the MPLE based on the random sample from ,Y ZF  under 0H . 

Y
S ∗  

and 
,Y Z

F ∗  are uniquely determined by ,Y ZF  and 0H .  
Lemma 1. If Y US  does not follow the model defined in 0H  (see (2)), then 

(a) Y UY U
S S∗ =/ , and (b) ( ) ( ) ( )0 0o Y UY U

S t S t S t∗= = . Otherwise, (a)  

Y UY U
S S∗ = , (b) ( ) ( ) ( )0 0o Y UY U

S t S t S t∗= =  and (c) YY
S S∗ = .  

The proof of Lemma 1 is trivial and is skipped. 

2.2. The Marginal Distribution Plot 

Motivated by Lemma 1, the new plotting method we propose here is to plot 
an estimator of 

Y
S ∗ , say ˆ

Y
S ∗ , against ˆ

YS  (the KME of YS ) together with the 
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95%  confidence band of ˆ
YS , and  

( ) ( )

( )( )
ˆ ˆto check whether the graphs of   and    are close

ˆ ˆe.g., whether   is within or outside the 95% confidence band of ,

Y Y

YY

y S x y S x

y S x S

∗

∗

= =

=
 

where ( ) ( )1
ˆ ˆn

iiY Y U
S t S t u n∗ ∗=

= ∑ , ( ) ( )ˆ ˆ ˆ, , ,oY U
S t u S t u S β∗ =  (see (3)), β̂  is a  

consistent estimator of β  under 0H , and ˆ
oS  is a consistent estimator of 

( )0o Y US S= ⋅  under the assumption that ,Y UF ∈Θ , even if the data do not 
satisfy the pre-assumed PH model in 0H  (see Remark 1). In the latter case, it is 
conceivable that ˆ

Y
S ∗  gives a close image of 

Y
S ∗  If the graphs of ˆ

YS  and ˆ
Y

S ∗  
are close, then it suggests that 0H  in (2) is true. We thus call this plot the 
marginal distribution plot. 

Since the main issue of the MD plot is the estimator ˆ
Y

S ∗  and it is not trivial 
to find ˆ

Y
S ∗  due to ( )oh ⋅  in (3), the main focus of the paper is to introduce 

how to construct ˆ
Y

S ∗ . We shall explain in details how to obtain ˆ
Y

S ∗  through 
various ( )g t . We also give ˆ

Y
S ∗  for the general piecewise continuous ( )g t  or 

( )( ), g t⋅ . 
For simplicity, we shall first explain our method when U  or Z  is a univariate 

covariate and ( ) ( )( ) ( ),z t u g t ug t= = . We introduce the generalization to the 
case of a covariate vector (or matrix) in Remark 3 and to the time-dependent 
model for general ( )( ),u g t  in § 2.3.4. 

Suppose that ( ) ( )1 1 1, , , , , ,n n nY U C Y U C  are i.i.d. copies from a random 
vector ( ), ,Y U C , where Y  may be subject to right censoring by censoring 
variable C . The success of the MD plot relies on the proper estimators of oS , 

( )Y U
S t u∗  and 

Y
S ∗ . Denote them by ˆ

oS , ( )ˆ
Y U

S t u∗  and ˆ
Y

S ∗ , respectively. 
Since 0 is a mode of the covariate U  by assumption AS1, a consistent estimator 
of oS  is the KME, denoted by ˆ

oS , based on the data satisfying i nU <  , where 
1 ok

n rn−=  with 1ok >  (e.g., 1 (3 )p
n rn−= ), and r  is a given positive number 

(e.g., the inter-quartile-range or the standard deviation of iU ’s). WLOG, let the 
first on  observations be all the observations satisfying i nU <  . If iY ’s are 
right censored, then the KME ˆ

oS  is based on ( ), ,i i i iU Y C δ∧ , 1, , oi n=  , 
where ( )1i i iY Cδ = ≤ . For ease of explanation, we only consider the case of 
complete data in this section. The extension to the right censored data is 
straightforward and we present simulation results with right-censored data in 
Section 3. For the complete data, the KME of oS  based on the first on  ob- 
servations is  

( ) ( )
( ) ( )

( )
1 (3 )

1

1 (3 )
1

1

1 11ˆ 1
1

n pno i ii
o i n p

io jj

Y t U rn
S t Y t

n U rn

−
=

−
=

=

> <
= > =

<

∑
∑

∑
           (4) 

( )ˆ
Y U

S t u∗  will be introduced in details in § 2.3 and  

( ) ( )1
ˆ ˆn

iiY Y U
S t S t u n∗ ∗=

= ∑ . 

Remark 1. Since ( )ˆ
oS t  is a kernel estimator, it is well known that under 

certain regularity conditions, ( )ˆ
oS t  converges to ( )oS t  in probability and  
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( )1

1 ˆ, , ,n
i oi S t U S

n
β

=∑  converges to ( )Y
S t∗  in probability for each given β ,  

and ,Y UF∀ ∈Θ . If the given PH model holds, then ( ) ( )Y Y
S t S t∗=  and we 

expect that the graphs of ( )ˆ
YS t  and ( )ˆ

Y
S t∗  are close, as ˆ

YS  and ˆ
Y

S ∗  are 
consistent estimators of YS  and 

Y
S ∗ , respectively. Otherwise it is likely that 

( ) ( )Y Y
S t S t∗≠  and two curves ( )ˆ

Yy S x=  and ( )ˆ
Y

y S x∗=  are apart. 
Remark 2. One may wonder whether ˆ

oS  in (4) can be replaced by the 
existing estimators of the baseline survival function under the PH model, 
denoted by oS . For instance, under the TIPH model, several consistent 
estimators of oS , say oS , can be obtained from the standard statistical packages. 
For example, the Breslow estimator of baseline survival function can be obtained 
by applying ( )survfit.coxph  in R. However, if the given TIPH model does not 
satisfy the data, oS  is inconsistent, whereas ˆ

oS  given in (4) is still consistent. 
In fact, given a joint distribution of a random vector ( ),Y U , if it does not satisfy 
the TIPH model, there exists at least one pair of survival function 1S  and  

vector b  satisfying ( ){ } ( ) ( )exp
1

bU
YE S t S t  =  

, e.g., ( ) ( )1, , 0YS b S= . It means  

that the estimator YS  using 0S  will always suggest that the given TIPH model 
fits the regression data even though the data set may not satisfy the TIPH model, 
and hence 0S  is not a proper choice. Simulation study in § 3.1 suggests that 
under the assumption in Example 1, YS  converges to ( )YS t  in probability and 
using YS  fails to identify the wrong model assumption. 

2.3. Estimation of ( ), , ,oS t z S β  

We shall first illustrate the main idea through three typical cases when β  is a 
constant: 1) ( ) 1g t =  i.e., the TIPH model, 2) ( ) ( ) ( )( )1 ,1g t t a t a= < ≥  i.e., 
the PWPH model, 3) ( ) ( ) ( )1g t t a t a= − ≥  i.e., the LDPH model. We also 
discuss the general case of ( )g t . 

1) Case of ( ) 1g t = , i.e., the TIPH model. Since ( ) ( ){ } ( )exp
, , ,

u
o oS t u S S t

β
β =  

by (3), define  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )ˆ ˆexp exp

1

ˆ ˆ ˆ ˆ ˆ ˆ, , ,   and   ,
inu U

o o oYY U
i

S t u S t u S S t S t S t n
β β

β ∗∗
=

= = = ∑   (5) 

where β̂  is a consistent estimator of β  under the selected PH model, e.g, the 
MPLE. 

Remark 3. Even though U  in (4) and (5) is a random variable, it is easy 
to extend to the case that U  is a vector. Assume ( )1, , pU U U=   is a p - 
dimensional random vector, n  is much larger than p  and U  is bounded. 
We can define 1max i p iU U≤ ≤=  or 2

1
p

ii U
=∑ . In the simulation study, we 

know the mode of U . In applications, the sample mode is not well defined. We 
choose a “sample mode” of iU ’s, say pc∈  as follows: 1) Select a proper 
radius r and choose points q  such that in a neighborhood of q  with rasius r, 

( )r q , there are more than 20 (or 
11

3 pn
−

) observations. Of course, we do not 
want r  to be too large. 2) Among these points q , choose the one, say c , with 
the largest number of observations in ( )r c  among all ( )r q . 3) Then set 

i iU U c∗ = − , 1, ,i n=  , (in view of Proposition 1). 
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2) Case of ( ) ( ) ( )( )1 ,1g t t a t a= < ≥ , i.e., the PWPH model with one cut 
point. Now ( )1 2,β β β ′=  and  

( ) ( )( ) ( ) ( ){ } ( ) ( )( ) ( ) ( ){ }1 2 1 2exp exp 1 exp 1 1
, , , , .

u v t a u t a v t a
o o oS t u v S S a S t

β β β β
β

− ≥ < + ≥
=  

The covariate ( )z t  in (2) is ( ) ( ) ( )( ) ( )1 ,1 ,z t D t a t a u v ′= < ≥ , where D  is 
a 2 × 2 diagonal matrix. Then ( ) ( ),

ˆ ˆ ˆ, , , , ,oY U VS t u v S t u v S β=  and  

( ) ( )( ) ( ) ( ){ } ( )
( )( ) ( ) ( ){ }( )1 2 1 2ˆ ˆ ˆ ˆexp exp 1 exp 1 1

1

1ˆ ˆ ˆ ,
i i i i i i in U V t a U t a V t a

o i oY
i

S t S a S t
n

β β β β

∗

− ≥ < + ≥

=

= ∑   (6) 

where ia  may depend on the i -th observation. And ( ) ( ) ( )( )1 ,1g t t a t a ′= < ≥  
corresponds to a special case of the PWPH model with one cut-point. For the 
PWPH model with more than one cut-point, the derivation of ˆ

Y
S ∗  is similar. 

Typically for the PWPH model with two cut-points, 

( ) ( ){ } ( ) ( ) [ )( ) ( ){ } ( )1 2 3, , exp exp 1 1 , 1o oh t u r v z t h t u t a r t a b v t b h tβ β β β′= = < + ∈ + ≥ , 

where ( )1 2 3, ,β β β β ′= , the covariate  
( ) ( ) ( ) ( )( ) ( )1 ,1 ,1 , ,z t D t a a t b t b u r v ′= < ≤ < ≥ , and D  is a 3 × 3 diagonal 

matrix. Then (3) yields  

( )

( )( ) ( ) ( )

( )( ) ( ) ( )
( )

( )

[ )

( )( ) ( ) ( )
( )

( ) ( )
( )

( )

[ )

1

2
1

2 3
1

exp

exp
exp

exp exp
exp

if  ,

, , , , , if  ,

if  , ,

u
o

r
u o

o o
o

r v
u o o

o
o o

S t t a

S t
S t u r v S S a t a b

S a

S b S t
S a t b

S a S b

β

β
β

β β
β

β




∈ −∞


 
= ∈   

 


   
∈ ∞       

   

 

( ) ( )
1

ˆ ˆ ˆ, , , , , ,
n

i i i oY
i

S t S t U R V S nβ∗
=

= ∑  

where β̂  is an estimator of β .  
3) Case of ( ) ( ) ( )1g t t a t a= ≥ − , i.e., the LDPH model. In this situation, 
( ), , ,oS t u S β  is not a simple form in terms of ( )oS t . Let ˆ

oS  be defined as in 
(4) and let 0 1 ka b b b= < < <  be the discontinuous points of ( )ˆ

oS t  for  
t a> , we propose to estimate ( ), , ,oS t u S β  and ( )Y

S t∗  by  

( )
( )

( ) ( )
( )

( )

)

1
ˆ

11
1

ˆ if  

ˆ ˆ
ˆ if  ,ˆ

i

o

b a ue
Y U j o i

o j ji
o i

S t t b

S t u S b
S a t b b

S b

β
∗

−

+=
−

 <

=   
 ∈     

∏
       (7) 

and ( ) ( )1
ˆ ˆn

iiY Y U
S t S t U n∗ ∗=

= ∑ . The reason is as follows. Notice that ˆ
oS   

defined in (4) is a step function. It has the same consistency property as  

( )
( )
( ) ( )( )
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i ia b= −  , 1, 2, ,i k= 
, { }1min : 1, ,j jb b j k n−= − =  , and  

( ) ( )ˆ
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 in implementation and they 
have the same asymptotic properties. Simulation results in section 3 suggest that 
ˆ
Y

S ∗  is consistent under the selected PH model. 
4) The case of other forms of ( )g t  or ( )( ), g t⋅ . It can be shown that the 

estimator ( )ˆ
Y U

S t u∗  in the previous three cases of ( )g t  are all in the form 
that it is a step function with discontinuous points 1, , mb b , which are as the 
same as those of ˆ
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where jb ’s are defined in the case of ( ) ( ) ( )1g t t a t a= − ≥ . It can be shown 
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that if ( )( ),u g t  is piece-wise continuous in t , then it also leads to a con- 
sistent estimator of ( )

Y
S t∗ . 

2.4. Supplementary Diagnostic Plots 

The MD plot needs to know ( )g t . One possible way to conjecture the form of 
the function ( )g t  for a time-dependent covariate is to extend the PWPH plotting 
method in Wong et al. [11] as follows:  

( )( ) ( )( )( )1̂
ˆPlot ln , ln   for  0 and check whether it is piecewise linear,oS t S t t− − >   (11) 

( )
( )

( )
1 (3 )

11
1 1 (3 )

11

1 ,ˆwhere  
1

n p
i ii

n p
ii

Y t Z z rn
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−
=

−
=

> − <
=

− <

∑
∑

            (12) 

r  is a positive constant and 1z  belongs to the support of Z . For instance, 
for a PWPH model defined in (6), 
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which corresponds to two lines: 1y b x=  and 2 2y a b x= + , and the cut-points 
can be determined from the PWPH plot (see Figure 3 in Section 3). 

Let 1 mb b< <  be all the distinct exact observations. In view of the ex- 
pression in (7) under the PH model with ( ) ( ) ( )1g t t a t a= − ≥ , if ib a≥ , then  
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where 1̂S  and 1z  are given in (11) and (12). Thus another diagnostic plotting 
method is  

( ) { }to plot , ,  for  1, ,i ib G i m∈               (13) 

and check whether it appears as a two-piecewise-linear curve: one is 0y =  and 
another one is ( )y x a b= − . If so, it is likely that ( ) ( ) ( )1g t t a t a= − ≥ , where 
a  is the intersection of the two line segments. We shall call the plotting method 
the LDPH plot, as ( ) ( ) ( )1g t t a t a= − ≥  corresponding to the LDPH model. 
The advantage of the PWPH plot and the LDPH plot is that they provide clues 
on the cut-points, which are needed in the MD plot, unless the cut-point is 
given. 

Remark 4. If the cut-points in the PWPH or TDPH model vary from 
observation to observation, then the PWPH plot as in (11) and LDPH plot as in 
(13) do not work. However the cut-points ia  are also observations in such 
cases, in addition to ( ),i iY U ’s (in the case of complete data). Thus we do not 
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need to guess the cut-points, and one can replace ˆ
jS  in (12) by  

( )
( )

( )
1 3 1 (3 )

1 21

1 3 1 (3 )
1 21
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j n p
l j ll
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S t
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− −
=

> − < − <
=

− < − <

∑
∑

 

where a  is a predetermined reference cut-point and 1r  and 2r  are positive 
constants. 

3. Simulation Study  

In order to compare the MD plot to the other plots, we present three sets of 
simulation results in § 3.1, § 3.2 and § 3.3, respectively. The mode is 0 as 
assumed in AS1. oS  can be uniform or exponential distributions. The covariate 
can be discrete or continuous. The data do not need to be from a PH model. 
There is no unit in time t  due to the simulation.  

3.1. Simulation Study under the Assumptions in Example 1 

Two random samples of 30n =  and 300n =  pseudo random numbers iY  
are generated from U(0,1) distribution. For each i iY y= , generate iZ  from 
( )1,i iU y y−  with probability 0.5 and from ( )3, 4U  with probability 0.5. 

These ( ),i iY Z  satisfy the assumptions given in Example 1. Let ( )1 3i iW Z= ≥ . 
Then the family of distributions ( ) ( ) ( ){ }1 1

 : 1,1 3, 4Y ZS z z⋅ ∈ − ∪  does not satisfy 
the null hypothesis ( ) ( ) ( )0 : expoH h t z h t zβ= , but it can be shown that  

( ) { }{ }1 1
: 0,1Y WS z z⋅ ∈  does. 

The sample of size 300n =  is only used for the MD plots in panels (1,3) and 
(3,3) of Figure 1 with data ( ),i iY Z ’s and data ( ),i iY W ’s respectively. 

3.1.1. The MD Plots Successfully Identify the Violation of the TIPH  
Model Assumption When Data Are (Yi,Zi)’s 

Since Y ZS  does not satisfy the PH model, a proper estimate of 
Y

S ∗  is expected 
to deviate from ˆ

YS . It is seen from the two MD plots with data ( ),i iY Z ’s in 
panels (1,2) and (1,3) of Figure 1 that (a) when 30n = , ˆ

Y
S ∗  lies most of the 

time outside or around the edge of the 95%  confidence band of ˆ
YS ; (b) when 

300n = , ˆ
Y

S ∗  is totally outside the confidence band of ˆ
YS . The MD plots 

suggest that our estimator ˆ
Y

S ∗  appears quite different from ˆ
YS  even when 

30n =  and they suggest that the data ( ),i iY Z , 1, 2, ,i n=   are not from the 
TIPH Model, as expected. 

3.1.2. The MD Plots Correctly Support the TIPH Model for (Yi,Wi)’s  
Since Y WS  satisfies the PH model, a proper estimate of 

Y
S ∗  should be close to 

ˆ
YS . It is seen from both of the MD plot with data ( ),i iY W ’s in panels (3,2) and 

(3,3) of Figure 1 that the curves of ˆ
Y

S ∗  corresponding to 30n =  and 300n =  
both lie within the confidence bands of ˆ

YS . It is a strong evidence that the data 
( ),i iY W ’s are from the TIPH model, as expected. 

3.1.3. About 
Y

S ∗  Defined in Remark 2 

To show that the consistent estimator of oS  is the key in the MD approach, we  
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Figure 1. Diagnostic plots based on Example 1. 
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present in panels (1,1) and (3,1) of Figure 1 the plots of the curves of “ph est” 
(

Y
S ∗
 ) and the curves of ˆ

YS , together with its confidence band, with data 
( ),i iY Z ’s and ( ),i iY W ’s, respectively. It is seen that the curves of “ph est” and 
ˆ
YS  almost coincide for both data sets even when 300n = . These plots suggest 

that the curve of “ph est” is always close to the curve of the KME , regardless of 
whether the pre-assumed model fits the data. Thus YS  is not a proper choice 
for the diagnostic plot. 

3.1.4. About Residual Plots 
In panels (2,1) and (4,1) of Figure 1, the residual plots using the score process by 
the cumulative martingale residuals method are plotted with data ( ),i iY Z ’s and 
( ),i iY W ’s, respectively. There is no big difference in pattern between these two 
plots. Notice that Y ZS  does not satisfy the TIPH model but Y WS  does. Thus 
this residual plot can not tell whether the data satisfy the TIPH model in this 
example. 

In panels (2,2) and (4,2) of Figure 1, the deviance residuals are plotted with 
data ( ),i iY Z ’s and ( ),i iY W ’s, respectively. In panels (2,3) and (4,3) of Figure 1, 
the scaled Schoenfeld residuals are plotted with data ( ),i iY Z ’s and ( ),i iY W ’s, 
respectively. There is no big difference in pattern between these two pairs of 
plots. Thus these two types of residual plots can not tell whether the data satisfy 
the TIPH model in this example. 

3.1.5. About Residual Tests 
We also carried out simulation study on the testing ( ) ( ) ( )0 : expoH h t z h t zβ ′=  
with data ( ),i iY Z ’s and using the residual test in the existing R package. Our 
simulation study suggests that for 50n = , 100 or 200 and with a replication of 
5000, the residual test does not reject the incorrect 0H  for more than 93%  of 
the time. Thus, it is not surprised that the residual plots do not work well. 

3.2. Simulation Based on Data from the TIPH Model 

A sample of complete data with 300n =  is generated from the TIPH model: 
( ) ( ) ( )2exp oh t z z h tβ= , where 1β = , ( ) 1oh t =  and ( )Norm 0,1Z ∼ . Panels 

(1,1), (1,2), (1,3) and (3,1) in Figure 2 presents four different plots by fitting the 
data set into the TIPH model ( ) ( ) ( )exp oh t z z h tβ= . Thus the covariate is 
mis-specified. 

The second sample of complete data with size 300n =  is generated from the 
model , ( ) ( ) ( )exp oh t z z h tβ= , where 1β = , ( )Norm 0,1Z ∼  and ( ) 1oh t = , 

0t > . Panels (2,1), (2,2), (2,3) and (4,1) in Figure 2 presents 4 plots by fitting 
the data set into the TIPH model ( ) ( ) ( )exp oh t z z h tβ= . Thus the covariate is 
correctly specified. 

3.2.1. Residuals Plots 
Panels (1,1) and (2.1) in Figure 2 display the residual plots using the score 
process by the cumulative martingale residuals method by fitting data from the 
first and the second TIPH model respectively into ( ) ( ) ( )exp oh t z z h tβ= . It is  
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Figure 2. Diagnostic plots based on data from Model: ( ) ( ) z
oh t z h t eβ=  or ( ) ( ) 2z

oh t z h t eβ= . 
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not easy to distinguish the mis-specified model from the correct one by this pair 
of residual plots. 

Similarly, in Figure 2, Panels (3,1) and (4,1) display the scaled Schoenfeld 
residual plots for fitting the first and second samples, respectively, into the TIPH 
model ( ) ( ) ( )exp oh t z z h tβ= . Moreover, Panels (1,2) and (2,2) present the 
log-log plots in a similar pattern. Again, those methods do not provide enough 
information about the overall fitting of the models. 

3.2.2. Residuals Tests 
In fact, with the data from the first mis-specified model and with a moderate 
sample sizes 50n ≥ , our simulation study with a replication of 5000 suggests 
that the residual test in the existing R package (e.g., ( )cox.zph ) would not 
reject the mis-specified TIPH model for more than 70%  of the time. Thus it is 
not surprised that the residual plots cannot detect the mis-specified TIPH 
model. 

3.2.3. MD Plots 
The MD plot in panel (1,3) fits the mis-specified TIPH model with data from the 
first sample. It successfully identifies that the functional form of the covariates 
Z  is mis-specified for the first data set, as ˆ

Y
S ∗  is almost totally outside the 

95%  confidence band of ˆ
YS . In other words, the MD approach suggests that 

the first data set does not follow the PH model ( ) ( ) ( )exp oh t z z h tβ= . On the 
other hand, the MD plot in panel (2,3) successfully identifies that the functional 
form of the covariates Z  is correct for the second data set, as ˆ

Y
S ∗  is totally 

inside the 95%  confidence band of ˆ
YS .  

Based on the second sample, the modified PWPH plot and the LDPH plot are 
displayed in panels (3,2) and (4,2); the MD plots under the PWPH and LDPH 
Models are displayed in panels (3,3) and (4,3). The PWPH plot in panel (3,2) 
suggests that the data are either from a TIPH Model, or from a PWPH model 
with one cut-point at 0.7a ≈ . The MPLE of the regression coefficient under the 
TIPH Model is ˆ 1.26β =  and the MPLE of the regression coefficients under the 
PWPH model with 1k =  is ( ) ( )1 2

ˆ ˆ, 1.30,1.20β β =  with ( )0.170,0.136SE = . 
Both 1̂β  and 2β̂  are not significantly different from β̂ , as their differences 
from β̂  are within two SEs. Both MD plots in panels (2,3) and (3,3) suggest 
that the PWPH model with at most one cut-point fits the data, as expected, as 
both curves of ˆ

Y
S ∗  are totally inside the 95%  confidence band of ˆ

YS . 
The LDPH plot in panel (4,2) suggests that the LDPH Model may fit the data, 

but it is seen from panel (4,3) that even within the interval [0,1], only less than 
30% of the curve of ˆ

Y
S ∗  lies inside the confidence band of ˆ

YS . Thus the MD 
plot suggests that the data are not from the LDPH Model, as expected. It is seen 
that the LDPH plot performs not as good as the MD plot. 

3.3. Simulation on the LDPH Model 

A sample of 300n =  right-censored data is generated under the LDPH Model, 
where ( ) ( )( ) ( )exp oh t z ug t h tβ= , ( ) ( ) ( )1g t t a t a= − ≥ , 0.2a = , and  
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( ) t
oh t e−= . U  has a Poisson distribution with mean 1, and 10β = . It is 

subject to right censoring and the right censoring variable ( )1, 2C U∼ . 
The modified PWPH plots and the LDPH plot are given in panels (1,1), (2,1) 

and (3,1) in Figure 3. The MD plots and the qqplots for the TIPH, PWPH and 
LDPH Models are given in the second and the third columns of Figure 3. 

Both the PWPH plot and the MD plots with corresponding qqplot in panels 
(1,1), (1,2) and (1,3) suggest that the data are not from the TIPH Model. We  

 

 
Figure 3. Diagnostic plots based on data from the LDPH Model. 
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need the information from the PWPH plot to decide the cut-point needed in the 
MD plots. The PWPH plot in panel (2,1) suggests that the data may be from a 
PWPH model with a cut-point a  satisfying ( )ln 0 0.05S a− ≈ , that is, 0.1a ≈ . 
However, the MD plot in panel (2,2) suggests that the data are not from the 
PWPH model. This again indicates that the MD plot performs better than the 
modified PWPH plot. 

The LDPH plot in panel (3,1) in Figure 3 suggests that the data are from the 
LDPH Model with the cut-point a  in ( )0.2,0.4 . The MD plot and the cor- 
responding qqplot in panels (3,2) and (3,3) suggest that the data are from the 
LDPH Model, as expected. Thus the LDPH plot has the advantage that it can 
suggest the cut-point a  in the case that a  is not given in the LDPH Model. 
Since U  is discrete in this case, the PWPH plot and the LDPH plot perform 
better than those in the previous simulation studies when U  is continuous. 

4. Data Analysis  

A common situation that will involve the use of the PH model is a long-term 
clinical follow-up study. In such a study, the impact of a prognostic variable may 
change at different time periods. This is the case in the breast cancer data 
analyzed in Wong et al. [11]. The data are obtained from an Institutional Review 
Board approved long-term clinical follow-up study on 371 women with stages 
I-III unilateral invasive breast cancer treated by surgery at Memorial Sloan- 
Kettering Cancer Center in New York City between 1985 and 2001. The median 
follow-up time of the study is 7.4 years (range is 1 month-180 months (14.8 
years)), which is the longest among published studies on bone marrow micro- 
metastasis (BMM). 

One objective of the study is to investigate whether tumor diameter is 
significant in predicting early or late relapse. Then the relapse time Y  is the 
response and the tumor diameter Z  is the covariate. Clinical consideration 
and survival plots suggest late failure can be considered at time greater than 5 
years from initial breast cancer surgery. Data analysis based on a PWPH model 
with two cut-points at 2 years and 5 years with covariate Z  is carried out in 
Wong et al. [11]. We apply our diagnostic plotting methods to check whether 
such a PWPH model fits our data in the case that Z  is continuous and Z  is 
discretized as a dichotomized variable ( 2>  cm or 2≤  cm), as is done in 
Wong et al. [11]. In the latter case, we try the log-log plots as well. 

We apply our data to the TIPH model with covariate Z  (which is basically 
continuous), the regression coefficient is ˆ 0.35β =  and is significant. We shall 
only present our new methods for the case that the tumor diameter Z  is 
continuous in panel (2,1) of Figure 4. The modified log-log plots in panel (1,1) 
seems to suggest that the TIPH Model fits the data, but the MD plot in panel (2,1) 
suggests that the TIPH Model does not fit our data, as the curve of ˆ

Y
S ∗  lies 

almost totally outside the 95%  confidence band of ˆ
YS . Thus the partial like- 

lihood estimate ˆ 0.35β =  is not valid. 
Wong et al. [11] suggest to do data analysis by dichotomizing Z  according  
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Figure 4. Diagnostic plots for cancer data with the tumor diameter measurements. 

 
to 2 cmZ >  or 2 cmZ ≤ . Then the covariate is discrete, and the standard 
log-log plots, as well as the PWPH plot proposed by Wong et al. [11], is 
applicable. These two plots are given in panels (1,2) and (1,3) of Figure 4. In 
view of the graph, the log-log plots suggest that the TIPH Model does not fit the 
discretized data. Moreover, it does not present useful information on the other 
possible PH models. However, the PWPH plot in panel (1,3) does suggest that 
the PWPH model with two cut-points close to 1.5 years and 6 years fits the 
discretized data. Wong et al. [11] suggest to do data analysis using a PWPH 
model with the cut-points at 2 and 5 years (which are close to 1.5 and 6). Thus 
we further compute the partial likelihood MLE for model with  
( ) ( ) [ )( ) ( )( )1 2 ,1 2,5 ,1 5g t t t t= < ∈ ≥ . The estimates 1̂β , 2β̂  and 3β̂  are −1.76, 
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2.02 and 0.34, with p-value 0.77, 0.001 and 0.52, respectively. In panels (2,2) and 
(2,3) of Figure 4, we provide the MD plots based on the discrete and continuous 
covariates, respectively, for fitting the PWPH model. In particular, since the 
curve of ˆ

Y
S ∗  lies totally inside the 95%  confidence band of ˆ

YS  in panel (2,2), 
the MD plot suggests that the PWPH model considered in Wong et al. [11] fits 
the discretized data. Thus their data analysis is valid. However, the MD plot in 
panel (2,3) indicates that the original data set with the continuous covariate Z  
does not fit a PWPH model, as the curve of ˆ

Y
S ∗  lies totally on one edge of the 

95%  confidence band of ˆ
YS . 

5. Concluding Remarks  

Our simulation results and the data analysis suggest that the MD plot has certain 
advantages over the existing residual plots, especially when the null hypothesis 

0H  in (2) is mis-specified or the data are not from any PH model. Our MD plot 
does not involve residuals studied in the literature, and this is the first difference 
between the residual approaches and the MD approach. 

5.1. Drawback and Remedy of the MD Plot 

The MD approach is closely related to 0H  in (2) with ( ) ( )( ),Z t U g t=  , 
where the parameter β  is unknown but ( )( ), g t⋅  is given. The MD plot is 
applicable to all PH models with ( ) ( )( ),Z t U g t=   and with all types of 
covariates U , provided that ( )( ), g t⋅  is given. The assumption of a given 

( )( ), g t⋅  may be viewed as a drawback of the MD plot if one wants to find a 
certain PH model to fit the data. There are several ways to overcome this 
drawback. 

1) For the case that ( )( ) ( ),u g t ug t= , we also propose a modified PWPH 
plot and LDPH plot in § 2.4 for inferring the functional form of ( )g t . 

2) One can apply the MD approach to several possible typical models. For 
instance, in § 3.2 and § 3.3, given a data set, the MD approach finds which of 
the 3 semi-parametric PH models fits. 

3) Of course, one can also make use of the existing residual approaches in the 
literature for guessing ( )g t . There is no harm to inspect all diagnostic plots 
available based on the data. 

On the other hand, the MD plot can further check the validity of the function 
forms suggested by the existing residual plots. As illustrated in the paper, with 
the help of the confidence band of the KME ˆ

YS , it is more reliable and more 
informative than the residual plots on whether the model suggested by the 
residual plots is appropriate for the data. Thus the MD plot is a nice complement 
to the existing diagnostic methods, not a replacement to them. 

5.2. A Naive but Valid Model Test 

As seen from the simulation results, when the data are not from any PH model 
(see Example 1 in § 3.1) or 0H  is mis-specified (see simulation on the TIPH 
Model in § 3.2), the MD plots can successfully reject 0H , provided that n  is 
large enough ( )30n ≥ . Thus the MD plot can play a role of a model checking 
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test mdφ , that is, 

( )( )
( )( )

( )( )

0

0

ˆreject  if    lies inside the confidence band case

ˆdo not reject  if    lies outside the confidence band case

inconclusive otherwise case .

Y

Y

H S I

H S II

III

∗

∗







 

On the contrary, in such case, our simulation results suggest that the residual 
plots often cannot detect that 0H  is incorrect and the residual tests often do 
not reject 0H . There must be some reasons. 

As summarized in Therneau and Grambsch [13] “Interestingly, nearly all of 
the tests for proportional hazards that have been proposed in the literature are 
( )T G  tests” “and differ only in their choice of the time transform g(t)”. The 

parameter space rΘ  for the residual approach contains all distributions that 
follow Model (1) with ( ) ( ) ( )2, ,z t U t U tγ β θ= +  , where ( ),γ β θ= . For 
instance, in the case of Example 1, let ( )z t u utγ β θ= + . So a residual test is to 
test 0 : 0rH θ =  v.s. 1 : 0rH θ =/ , instead of testing 0H  in (2) v.s. 1 0:H H  is not 
true. The parameter space rΘ  for testing 0

rH  v.s. 1
rH  is a subset of the para- 

meter space Θ  for testing 0H  v.s. 1H , where Θ  is the collection of all ,Y UF , 
where Y  is continuous. When the data are not from any PH model or rΘ  is 
mis-specified, the residual tests are not valid. Moreover, in that case, it is some- 
what true that 0θ =  most of the time, and thus when 0H  is not rejected, it is 
likely to make type II error. In real applications, we do not know whether the 
data are indeed from some PH model, or whether we select a correct sub-model 
of the PH model. 

Remark 5. In summary, if the existing residual tests reject 0H , the decision is 
likely to be correct. Otherwise, we have no confidence to believe that the test is 
valid. In this regard, it is interesting to point out that the parameter space for the 
aforementioned “test” induced by the MD plot is actually Θ . Thus the MD 
approach is valid even if ,Y U rF ∉Θ . It can also detect the incorrect model 
assumption rΘ  by testing the new null hypothesis 0 ,: Y U rH F ∈Θ  when n  is 
not too small, but the residual approach cannot accomplish this task. This is the 
second  difference between the MD approach and the residual approach. In 

application, if 0H  is not rejected, the residual tests often make type II error, 
and we strongly suggest to consider the MD approach then. 

Of course, very often, neither case (I) nor (II) happens, then we need some 
more rigorous model checking tests. The difference of ˆ

YS  and ˆ
Y

S ∗  is a natural 
choice for a test statistic, and it is one of our on-going research. The other is to 
extend the MD approach to other common regression models, such as the linear 
regression model and the generalized additive model. 
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