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Abstract 
The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- 
quencing) data is very challenging. Once technical difficulties have been sorted, an important 
choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- 
sequencing count data to a continuous variable or continue to work with count data. For each data 
type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis 
of data distribution and structure, are a discussion worth. In this review, open questions regarding 
RNA-sequencing data nature are discussed and highlighted, indicating important future research 
topics in statistics that should be addressed for a better analysis of already available and new ap-
pearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed 
data is presented. This comparison indicates that transforming RNA-seq count data seems appro-
priate, at least for differential expression detection. 
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1. Introduction 
This sequencing of messenger RNA transcripts (RNA-seq) is a recently developed approach to gene expression 
or transcriptome profiling that uses deep-sequencing technologies. Studies using this method have allowed as-
sessing the complexity of transcriptomes. RNA-seq also provides more precise measurement of levels of tran-
scripts and their isoforms than other methods based on hybridization (such as microarrays), that were used pre-
viously, but poses also new challenges [1]. Great issues concerning the identification of the real number of RNA 
fragments taking into account isoforms, mitochondrial and ribosomal RNA have appear but are beyond the in-
terest of this review. Several satisfactory developments assure a good characterization of RNA-seq transcripts  
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[2] to be used for increasing comprehension of biological knowledge. Here, statistical challenges that arise once 
RNA counts are obtained (after mapping), are discussed.  

1.1. RNA-Seq Statistical Challenges 
During the last 15 years, statistical research has been done, driven by the need to analyze properly data from 
high-throughput genomic assays, in particular microarrays. In the last five years, high-throughput sequencing 
technology has been changing the face of biological research, replacing the old microarray technology. As men-
tioned by Datta and Net-tleton (2014), with any new high-throughput technology come new data analytic chal-
lenges that have been solved in proposing new analytical methods based on novel and older concepts of error 
rate control for testing multiple hypotheses, various adaptations of existing [3]. 

Analyzing mapped reads is a major challenge than continuous microarray data, because count data has to be 
modeled using discrete distributions that had not been used so far for gene expression data analysis. Moreover, 
an issue concerning dimensionality appears, because often less replicate samples are available than were for mi-
croarray data. Even though, data produced using these technologies are proving to be the most informative of 
any thus far, very little attention has been paid to fundamental design aspects of data collection and analysis, 
namely sampling, randomization, replication, and blocking [4] (Auer and Doerge, 2010).  

RNA-seq data and its proper analysis has an enormous potential to promote genomic research and enhance 
understanding of biological processes, but a detailed comprehension of this technology and the type of data 
produced is needed in order to obtain confident results. In this review open questions regarding RNA-sequenc- 
ing data nature are discussed and highlighted, indicating important future research topics that should be ad-
dressed for a better analysis of already available and new appearing gene expression data. A comparative analy-
sis of RNAseq count and transformed data is also presented allowing interesting results that make count data 
transformations generally applicable. 

1.2. RNA-Seq Data Preprocessing 
As for microarray data, several similar steps of preprocessing need to be achieved before RNA-seq data can be 
used for analysis. Nevertheless, two main paths can be chosen for RNA-seq data. The first one is to transform 
the count data to a continuous variable using RPKM (reads per kilobase per million mapped reads) as originally 
introduced by [5] and the second path is to continue statistical analysis with count data as it is. Each path re-
quires different analytic tools because each type of data need to be treated in a different way.  

1.2.1. Transformation of RNA-Seq Count Data into a Continuous Variable 
In the case of transformation to RPKM, the preprocessing begins by equalizing sequencing depths, to compare the 
ex-pression measures across different genes and samples. These “normalization” is made by dividing counts by 
gene length (a variable) and the total amount of reads in each experiment (a constant). Then, analysis conceived 
for continuous microarray data are applied without apparent concern about the distribution differences between 
these transformations on count data compared to transformations done on continuous microarray data. Several 
authors have discussed inconsistencies but no deep discussion on distribution of RPKM has been done [6]-[8]. 

More realistic models than RPKM addressed the case for multiple isoforms [9] proposing a Poisson distribu-
tion for counts and create a continuous variable during the mapping process. The major assumption was that the 
number of reads coming from an exon of a certain length is Poisson where the mean is a normalized function of 
the exon length. The first insert length model extended the approach of [9] to paired-end reads [10]. Their algo-
rithm was made available through the software called Cuffllinks in early 2011 and uses FPKM (fragments in-
stead of reads). FPKM is based on a probabilistic assignment method indicating the probability that a fragment 
selected at random originates from a given transcript [11]. Similarities between both types of estimations have 
been reported, but again no known discussion on data distribution of FPKM has been undertaken. FPKM is 
analyzed with Cufflinks developed especially for this data transformation of RNA-seq counts. Therefore, use of 
FPKM seems a more restricted transformation than RPKM.  

1.2.2. Preprocessing or RNA-Seq Count Data without Transformation 
Raw read counts from different experiments are not directly comparable without adjustment for technical varia-
tion due to sequencing depth (a process also called normalization). Complex normalization schemes for RNA- 
seq data have been proposed by [12]-[14] Bullard et al., 2010 Robinson and Oshlack, 2010. Sample specific 
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normalizations are combined with library sizes in these methods. Trimmed mean of M-values normalization 
(TMM) [14] and the normalization scheme provided by [13] are among the most efficient and easy to use. When 
these path is chosen, new methods developed for counts are used for analysis.  

1.3. Maintaining the Integrity of the Specifications 
Depending on the type of normalization or transformation that has been undertaken to raw RNA-seq data, sever-
al tools are available for subsequent analysis.  

1.3.1. Differential Expression for RPKM and FPKM 
Generally, methods developed for continuous microarray data are applied on RPKM [5] transformed data. For 
FPKM, [11] have developed the algorithm Cuffdiff for differential expression. It estimates the expression tran-
script-level resolution and controls for variability across replicates. Following the number of citations of these 
two articles during 2016 (google academics consulted on march 20th 2016), both types of transformations are 
almost equally used (157 citations for [5] and 140 for [11]). No methods developed based on distributional 
properties have been proposed but are also rare for microarray data [15]. 

1.3.2. Count Data 
Several statistical methods and related R packages for differential gene expression analysis based on RNA-seq 
data have been developed over the years. The packages DESeq [13] and EdgeR [16] are a popular choice 
amongst users of RNA-seq. BaySeq [17] is a Bioconductor package that identifies differential expression using 
high throughput sequencing data via empirical Bayesian methods. Another method, called TSPM, is based on a 
two-stage Poisson model [18]. These four methods are compared by [19]. The results suggest that baySeq per-
forms best in terms of ranking genes according to their significance to be declared differentially expressed. Both 
edgeR and DESeq perform similarly and close to baySeq. The results from TSPM are most variable and often 
the poorest when the number of replicates is small [19]. 

One year later, six methods where compared by [20]: DESeq, DEGseq, edgeR, NBPSeq, TSPM and baySeq 
using both real and simulated data with the result that all six methods produce similar fold changes and reasona-
ble overlapping of differentially expressed genes based on p-value, edgeR being little bit superior. However, all 
six methods suffer from over-sensitivity as reported by the authors.  

A recent and not yet popular method based on a hierarchical negative binomial model (borrowing information 
across gene-variety means and across gene-specific over dispersion parameters) and using a computationally 
tractable empirical Bayes approach to inference has been proposed by [20].  

Also, threshold-independent methods for particular cases, for example the detection of marginal expression 
changes in cognitively stratified patients at different disease stages, have been developed [21]. This approach is 
based on the comparison of the distribution of changes in a well-defined gene group with the global distribution 
of the experiment [21]. 

The question of preprocessing and making samples comparable is not yet completely solved for microarrays 
and very far from being solved for RNA-seq data. RPKM seems like a general solution for prokaryotes because 
the nature of transformed data allows using methods developed for microarrays, but limitations have been 
shown, especially for eukaryotes [10]. Algorithms for all other particular cases are being developed. Although 
RNA-seq data has been analyzed and biological conclusions have been drawn, a main question is still unans-
wered: How general is RPKM, can it really be analyzed with algorithms developed for microarray data? An 
answer to this question, based on empirical observations, is given in Section 4.  

A second open question is: Can we combine microarray data and RNA-seq data to increase biological know-
ledge or do we need to repeat all microarray experiments? Assess this comparison is tricky because influence of 
experiment type, data type and method would confounded. Nevertheless, even a partial answer to this question 
would be of general interest for biologists and applied statisticians. 

2. Comparison of Differential Gene Expression between RPKM and Count Data 
2.1. Empirical Characterization of RPKM Data Distribution 
2.1.1. Simulation of Count Data 
The function make Example Count Data Set from the DeSeq Bioconductor package [13] was used to simulate 
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ten RNAseq count tables with 20,000 genes (rows) and 100 samples (50 treatments and 50 controls) as follows: 
1) Mean expression values were sampled from an exponential distribution with parameter 1/250.  
2) Once graphically verified, one table of count data with 50 treatments and 50 controls, and a proportion of 

differentially expressed genes of 0.3 was constructed.  
3) Mean values of gene expression are divided in two conditions (treatment and control) such that the log2 

fold-change is still centered in 0 and with a standard deviation of 2.  
4) Counts were sampled from a negative binomial distribution with mean values of gene expression men-

tioned before and multiplied by size factors between 0.1 and 2.55. The size parameter of the binomial distribu-
tion was set at 1/0.2. 

2.1.2. Simulations of Gene Length 
Using the real gene length of three organisms obtained from NCBI (Escherichia coli, Homo sapiens and Arabi-
dobsis thaliana) the package fitdistrplus [22] was used to adjust a distribution to these data. We concluded that 
the gene length distribution is gamma with outliers.  

In order to simulate gene lengths of the 20.000 genes present in the count data table, the mean of the gamma 
distribution was estimated based on mean gene length of the three organisms we had taken as example. Thou-
sand extreme values were sampled from a distribution with different mean (third quartile of 19.000 simulated 
gene lengths) to end up with 20.000 gene lengths. 

2.1.3. RPKM Transformed Data 
One count tables and gene lengths were generated as explained above. Those counts were then transformed to 
continuous RPKM data [5] dividing each count value by the simulated gene length and the total sum of counts 
for each column (sample). Finally, RPKM data were log2 transformed. The result of the density adjusted to 100 
samples of one of the simulations (treatments and controls) can be observed in Figure 1. 

2.1.4. Verification of RPKM Distribution 
With the estimated mean and variance parameters of each of the 100 simulated samples (50 treatments, 50 con-
trols with 0.3 proportion of differentially expressed genes), 100 samples of normal distribution were generated 
and adjustment was tested using Kolmogorov-Smirnov test. As shown in Figure 2, most p-values are not signif-
icant, indicating that the transformed RPKM data can be considered having a normal distribution. 
 

 
Figure 1. Densities of 100 simulated samples of RPKM transformed count data.                                                
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Figure 2. Boxplot of 100 p-values obtained from Kolmogorov-Smirnov goodness to fit test comparing transformed RPKM 
data to a theoretical normal distribution. Red line indicates a p-value of 0.05.                                             

2.2. Analysis of RNA-Seq Count Data without Transformation 
2.2.1. Real Data 
Three available data sets (NCBI, Genome Expression Omnibus) comparing two conditions (controls vs. treat-
ments) were analyzed using DeSeq standard normalization and detection of differentially expressed genes [13]: 
- GSE67402: Controlled measurement and comparative analysis of cellular components in E. coli reveals 

broad regulatory changes under long-term starvation [23]. 
- GSE76268: Integration of ATAC-seq and RNA-seq Identies Human Alpha Cell and Beta Cell Signature 

Genes [24].  
- GSE72548: RNA-seq analysis of Arabidopsis thaliana wild-type roots and type-A arr3, 4, 5, 6, 7, 8, 9, 15 

mutant roots non-infected and infected with Heterodera schachtii nematodes [25]. Results are shown in Ta-
ble 1. 

2.2.2. Simulated Data 
Deseq results on 10 simulated count data tables are shown in Table 2 and indicate (as expected) approximately 
30% of genes with differential expression. 

2.3. Analysis of RPKM Transformed Data 
2.3.1. Real Data 
Count tables of the three experiments used above, were RPKM and log2 transformed to be analyzed using Sig-
nificance Analysis of Microarray (SAM) [26], a standard method for microarray data analysis. Moreover, we 
retained the propor-tion of genes common to both analysis (Table 3 and Table 4). The results indicate that the 
proportion and identity of genes identified on count data using Deseq or on RPKM transformed data are equiva-
lent. 

2.3.2. Conclusion on RPKM vs. Count Data Comparison 
The most important conclusion of the above comparison is that RPKM transformation with posterior log2 nor-
malization conduces to a data distribution which is very similar to continuous microarray data and that tools  
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Table 1. Table indicating number of differentially expressed genes (DEG), proportion of the total (POT) using Deseq on 
real data. FDR for these results is lower than 0.0001. COUNT-RPKM indicates the proportion of genes that were detected 
by both methods.                                                                                         

Experiment DEG POT COUNT-RPKM 

GSE67402 776 0.173 0.834 

GSE76268 1350 0.067 0.951 

GSE72548 9955 0.296 0.798 

 
Table 2. Table indicating number of differentially expressed genes (DEG), proportion of the total (POT) Deseq on simu-
lations. FDR for these results is lower than 0.0001. COUNT-RPKM indicates the proportion of genes that were detected 
by both methods.                                                                                         

Simulation DEG POT COUNT-RPKM 

1 5458 0.273 0.972 

2 5969 0.298 0.903 

3 5952 0.297 0.902 

4 6002 0.300 0.885 

5 5714 0.286 0.917 

6 6323 0.316 0.850 

7 5486 0.274 0.966 

8 6011 0.301 0.896 

9 5923 0.296 0.902 

10 5889 0.294 0.892 

 
Table 3. Table indicating number of differentially expressed genes (DEG) and proportion of the total (POT) in real data 
sets using SAM. FDR for these results is lower than 0.0001.                                                                                         

Experiment DEG POT 

GSE67402 834 0.186 

GSE76268 967 0.048 

GSE72548 10,796 0.321 

 
Table 4. Table indicating number of differentially expressed genes (DEG), proportion of the total (POT) in simulations 
using SAM. FDR for these results is lower than 0.0001.                                                                

Simulation DEG POT 

1 5306 0.265 

2 5392 0.269 

3 5366 0.268 

4 5311 0.266 

5 5242 0.262 

6 5378 0.2689 

7 5302 0.265 

8 5383 0.269 

9 5342 0.267 

10 5253 0.263 
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developed for the analysis of them can be used and will conduct to almost similar results. Moreover, the analysis 
show that this statement is true: Results obtained using methods developed for count data were very similar to 
results obtained when count data was RPKM transformed and tools developed for continuous microarray data 
are used. Therefore, it is safe to conclude that RPKM transformation conducts to a similar normalization and 
that analysis tools developed for microarrays can be used. This also is encouraging regarding the combined 
analysis of RNA-seq and microarray data. Nevertheless, caution is still required, until an analytic characteriza-
tion of RPKM transformation is done to confirm the here presented results.  

2.3.3. Tools for RNA-Seq Co-Expression Networks 
Reconstructing gene or protein networks is a very important tool in deciphering molecular mechanisms. One of 
the most important data source for this reconstruction has been gene expression data because it reflects coordi-
nated activity of different genes at the same time. Only few examples of gene reconstruction based on RNA-seq 
data exist. As for assess-ing differential expression, two separate pathways have to be taken, depending if counts 
or transformed data is used. Even less discussion on this subject than for detection of differential expression is 
found in literature. Additionally to the already mentioned challenges, difficulties with the gene profile similarity 
estimation appear, which should be a measure suitable for count data if counts are not transformed. 

Some studies addressed the question of comparing gene co-expression network reconstruction with RNA-seq 
data, applying Pearson correlation to both types of data avoiding discussion on usefulness of this similarity 
measure. Iancu et al. [27] conducted a study comparing co-expression networks constructed with count data to 
networks constructed with microarray data using the same method for different data types. They concluded that 
the RNA-seq coexpression network displayed overlapping structure with the microarray network. Pearson cor-
relations from RNA-seq data were higher and therefore, higher network connectivity, heterogeneity and central-
ity was observed in the RNA-seq network. A more recent study constructs co-expression networks using also 
Pearson correlation on a huge Arabidopsis thaliana data set [22]. The authors observe sensitivity to variance sta-
bilizing transformations on RNA-seq data but overall similarities between RNAseq networks and microarray 
networks.  

Gene co-expression construction is a complex procedure and still open questions exist when used on microar-
ray data [28]. These difficulties need to be addressed for RNA-seq data as well, but the most important open 
question regarding RNA-seq networks, is: What similarity measure is more appropriate. Is it right to apply 
Pearson correlation? Or is it better to use similarity measures for count data, perhaps test and adapt association 
measures like has been done for other type of data [29]? How do mutual information and other non-linear simi-
larity measures behave? A research in this sense would also shed some light on gene classification and cluster-
ing, which is performed on similarity or distance matrices between genes and widely used for annotation pur-
poses and functional prediction. 

3. Conclusion 
Although, several studies have used and analyzed RNA-seq data with traditional or new developed statistical 
methods, open questions on data type and nature remain still unanswered and should receive more attention. 
Throughout this review we have highlighted some open questions and addressed one of them regarding the 
RPKM tranformation of count data. Adressing all statistical issues related to RNA-seq data analysis is especially 
important in order to achieve confident results for assessing biological knowledge extracted from gene expres-
sion data, which has proven so far to be highly informative. 
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The authors declare that they do not have any conflict of interest. This article does not contain any studies with 
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