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Abstract 
We introduce and develop a novel approach to outlier detection based on adaptation of random 
subspace learning. Our proposed method handles both high-dimension low-sample size and tradi-
tional low-dimensional high-sample size datasets. Essentially, we avoid the computational bottle-
neck of techniques like Minimum Covariance Determinant (MCD) by computing the needed de-
terminants and associated measures in much lower dimensional subspaces. Both theoretical and 
computational development of our approach reveal that it is computationally more efficient than 
the regularized methods in high-dimensional low-sample size, and often competes favorably with 
existing methods as far as the percentage of correct outlier detection are concerned. 
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1. Introduction 

We are given a dataset { }1 2, , , n= x x x , where ( ) 1
1, , p

i i ipx x ×= ∈ ⊂x  


 , under the special scenario in  

which n p  refers to as high dimensional low sample size (HDLSS) setting. It is assumed that the basic dis-
tribution of the iX ’sis multivariate Gaussian, so that the density of X  is given by ( ); ,pφ x Σµ , with 

( )
( )

( ) ( )11 1; , exp
22π

p p
φ − = − − − 

 
x x xΣ Σ

Σ
µ µ µ .                  (1) 

It is also further assumed that the data set   is contaminated, with a proportion ( )0,ε τ∈  where 1eτ −< , 
of observations that are outliers, so that under ε -contamination regime, the probability density function of X  
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is given by 

( ) ( ) ( ) ( )| , , , , 1 ; , ; ,p pp ε η γ ε φ εφ η γ= − + +x x xΣ Σ Σµ µ µ ,                   (2) 

where η  represents the contamination of the location parameter µ , while γ  captures the level of contami-
nation of the scatter matrix Σ . Given a dataset with the above characteristics, the goal of all outlier detection 
techniques and methods is to select and isolate as many outliers as possible so as to perform robust statistical 
procedures non-aversely affected by those outliers. In such scenarios, where the multivariate Gaussian is the as-
sumed basic underlying distribution, the classical Mahalanobis distance is the default measure of the proximity 
of the observations, namely 

( ) ( ) ( )2 1
, id −= − −x x x
Σ Σµ µ µ .                             (3) 

And experimenters of often addressing and tackling the outlier detection task in such situations using either 
the so-called Minimum Covariance Determinant (MCD) algorithm [1] or some extensions or adaptations thereof. 
The MCD is described as followed: 

Minimum Covariance Determinant (MCD) 
Step 1. Select h observations, and form the dataset H , { }1, ,H n⊂  ; 
Step 2. Compute the empirical covariance ˆ

HΣ  and mean ˆHµ ; 
Step 3. Compute the Mahalanobis distances ( )2

ˆ , ˆ , 1, ,
H H id i n= xµ Σ

; 

Step 4. Select the h observations having the smallest Mahalanobis distance; 
Step 5. Update H  and repeat Steps 2 to 5 until ( )ˆdet HΣ  no longer decreases; 

The MCD algorithm can be formulated as an optimization problem. 

( ) ( ){ }
, ,

ˆ ˆ, argmˆ in ,, ,H H
H

H H= 
µ

µ µ
Σ

Σ Σ .                           (4) 

The MCD algorithm can be formulated as an optimization problem. The seminal MCD algorithm proposed by 
[1], which is turned out to be rather slow and did not scale well as a function of the sample size n. That limita-
tion of MCD leads its author to the creation of the so-called FAST-MCD [2], focused on solving the outlier de-
tection problem in a more computationally efficient way. Since the algorithm only needs to select a limited 
number h of observations for each loop, its complexity can be reduced when sample size n is large, since only a 
small fraction of the data is used. However, it must be noted that the bulk of the computations in MCD has to do 
with the estimation of determinants and the Mahalanobis distances, both requiring a complexity of ( )3O p  
where p is the dimensionality of the input space as defined earlier. Therefore, it becomes crucial to find out how 
MCD fares when n is large and p is also large, even the now quite ubiquitous scenario where n is small but p is 
very larger, and indeed much larger than n. This p larger than n scenario, referred to as high dimension low 
sample size (HDLSS) is very common nowadays in application domains such as gene expression datasets from 
RNA-sequencing and microarray, audio processing, image processing, just to name a few. As noted before, with 
the MCD algorithm, h observations have to be selected to compute the robust estimator. Unfortunately, when 
n p , neither the inverse nor the determinant of covariance matrix can be computed. As we’ll show later, the 
( )3O p  complexity of matrix inversion and determinant computation renders MCD untenable for p as moderate 

as 500. Therefore, it is natural, in the presence of HDLSS datasets, to contemplate at least some intermediate 
dimensionality reduction step prior to performing the outlier detection task. Several algorithms have been pro-
posed, among which PCOut by [3], Regularized MCD (R-MCD) by [4] and other ideas by [5]-[8]. When insta-
bility in the data makes the computation of Σ  problematic in p dimension, regularized MCD may be used with 
objective function 

( ) ( ) ( )1, , , , , traceH Hλ λ −= + µ µΣ Σ Σ ,                            (5) 

where λ  is the so-called regularizer or tuning parameter, chosen to stabilize the procedure. However, it turns  
out that even the above Regularized MCD cannot be contemplated when p n , since ( )ˆdet Σ  is always zero  

in such cases. The solution to that added difficulty is addressed by solving 

( ) ( ){ } ( ) ( ) ( )1 11ˆ ˆ, argmax log det traˆ , ceH H
i H

H
h

λ− −

∈

 = + − − + 
 

∑  x xµ µ µΣ Σ Σ Σ ,           (6) 
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where the regularized covariance matrix Σ  is given by 

( ) ( ) ( )ˆ ˆ1 trace pp
αα α= − + IΣ Σ Σ .                             (7) 

With ( )0,1α ∈ , for many HDLSS datasets however, the dimensionality p of the input space is often large, 
with numbers like 310p ≥  or even 410p ≥  rather very common. As a result, even the above direct regulari-
zation is computationally intractable, because when p is large, the ( )3O p  complexity of the needed matrix in-
version and determinant calculation makes the problem computationally untenable. The fastest matrix inversion 
algorithms like [9] [10] are theoretically around ( )2.376O p  and ( )2.373O p , and so complicated that there are 
virtually no useful implementation of any of them. In short, the regularization approach to MCD like algorithms 
is impractical and unusable for HDLSS datasets even for values of p around a few hundreds. Another approach 
to outlier detection in the HDLSS context has revolved around extensions and adaptations of principle compo-
nent analysis (PCA). Classical PCA seeks to project high dimensional vectors onto a lower dimensional ortho-
gonal space while maximizing the variance. By reducing the dimensionality of the original data, one seeks to 
create a new data representation that evades the curse of dimensionality. However, PCA, in its generic form, is 
not robust, for the obvious reason that it is built by a series of transformations of means and covariance matrices 
whose generic estimators are notoriously non robust. It is therefore of interest to seek to perform PCA in a way 
that does not suffer from the presence of outliers in the data, and thereby identify the outlying observations as a 
byproduct of such a PCA. Many authors have worked on the robustification of PCA, and among them [11] 
whose proposed ROBPCA, a robust PCA method, which essentially robustifies PCA by combining MCD with 
the famous projection pursuit technique ([12] [13]). Interestingly, if instead of reducing the dimensionality 
based on robust estimators, one can first apply PCA to the whole data, then outliers may surprisingly lie on sev-
eral directions where they are then exposed more clearly and distinctly. Such an insight appears to have moti-
vated the creation of the so-called PCOut algorithm proposed by [3]. PCOut uses PCA as part of its preprocess-
ing step after the original data has been scaled by Median Absolute Deviation (MAD). In fact, in PCOut, each 
attribute is transformed as follows 

( )
, 1, ,

MAD
j j

j
j

j p∗ −
= =

x x
x

x




,                                 (8) 

where ( ) 1
1 , , n

j j njx x ×= ⊂x    and jx  is the median of jx . Then 1 2, , ,[ ]p
∗ ∗ ∗ ∗= xX x x , PCA can be per-

formed, namely 
∗ ∗ =X VX V Λ .                                     (9) 

From which the principal component scores ∗= ⋅Z X V  may then be used for the purpose of outlier detec-
tion. In fact, it also turns out that the principal component scores Z  may be re-scaled to achieve a much lower 
dimension with 99% variance retained. Unlike MCD, PCA based re-scaled method is not only practical but also 
performs better with high dimensional datasets. 99% of simulated outliers are detected when 2000,n =

2000p = . A higher false positive rate is reported in low dimensional cases, and less than half of the outliers 
were identified in scenarios with 2000, 50n p= = . It is clear by now that with HDLSS datasets, some form of 
dimensionality reduction is needed prior to performing outlier detection. Unlike the authors just mentioned who 
all resorted to some extension or adaptation of principal component analysis wherein dimensionality reduction is 
based on transformational projection, we herein propose an approach where dimensionality reduction is not only 
stochastic but also selection-based rather than projection-based. The rest of this paper is organized as follows: in 
Section 2, we present a detailed description of our proposed approach, along with all the needed theoretical and 
conceptual justifications. In the interest of completeness, we close this section with the general description of a 
nonparametric machine learning kernel method for novelty detection known as the one-class support vector 
machine, which under suitable conditions is an alternative to the outlier detection approach proposed in this pa-
per. Section 3 contains our extensive computational demonstrations on various scenarios. We specifically pre- 
sent the comparisons of the predictive/detection performances between our RSSL based approach and the PCA 
based methods discussed earlier. We mainly used simulated data here, with simulations seeking to assess the 
impact of various aspects of the data such as the dimensionality p of the input space, the contamination rate ε  
and other aspects like the magnitude γ  of the contamination of the scatter matrix. We conclude with Section 4, 
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in which we provide a thorough discussion of our results along with various pointers to our current and future 
work on this rather compelling theme of outlier detection. 

2. Random Subspace Learning Approach to Outlier Detection 
2.1. Rationale for Random Subspace Learning 
We herein propose a technique that combines the concept underlying Random Subspace Learning (RSSL) by 
[14] with some of the key ideas behind minimum covariance determinant (MCD) to achieve a computational ef-
ficient, scalable, intuitive appealing and highly accurate outlier detection method for both HDLSS and LDHSS 
datasets. With our proposed method, the computation of the robust estimators of both location and scatter matrix 
can be achieved by tracing the optimal subspaces directly. Besides, we demonstrate via practical examples that 
our RSSL based method is computationally very efficient, specifically because it turns out that, unlike the other 
methods mentioned earlier, our method does not require the computationally expensive calculations of determi-
nants and Mahalanobis distances at each step. Moreover, whenever such calculations are needed, they are all 
performed in very low dimensional spaces, further emphasizing the computational strength of our approach. The 
original MCD algorithm formulates the outlier detection problem as the problem of finding the smallest deter-
minants of covariance computed from a sequence ( ) , 1, ,k

h k m=   of different subsets of the original data set
 . Each subset contains h observations. More precisely, if optimal  is the subset of   whose observations 
yield the estimated covariance matrix with the smallest (minimum) determinant out of all the m subsets consi-
dered, then we must have follows 

( )( ) ( )( )( ) ( )( )( ) ( )( )( ){ }1 2
optimal

ˆ ˆ ˆ ˆdet min det ,det , ,det m
h h h=    Σ Σ Σ Σ ,                (10) 

where m is the number of iterations needed for the MCD algorithm to converge. optimal  is the subset of   
that produces the estimated covariance matrix with the smallest determinant. The MCD estimates of the location 
vector and scatter matrix parameters are given by follows 

( ) ( )MCD optimal MCD optimal
ˆ ˆanˆ dˆ= = Σ Σµ µ .                          (11) 

The number h of observations in each subset is required to be 2n h n≤ < . It turns out that ( )1 2h n p= + +  
reaches its highest possible breakdown value according to [15]. It is obvious that with ( )1 2h n p= + +    be-
ing the highest breakdown point, 2n h n≤ <  cannot be achieved in the HDLSS context, since in such a con-
text p n . It is therefore intuitively appealing to contemplate a subspace of the input space  , and de-
fine/construct such a subspace in such a way that its dimensionality d p<  is also such that d n<  to allow 
the seamless computation of the needed distances. 

2.2. Description Random Subspace Learning for Outlier Detection 
Random Subspace Learning in its generic form is designed for precisely this kind of procedure. In a nutshell, 
RSSL combines instance-bagging (bootstrap i.e. sampling observations with replacement) with attribute-bag- 
ging (sampling indices of attributes without replacement), to allow efficient ensemble learning in high dimen-
sional spaces. Random Subspace Learning (Attribute Bagging) proceeds very much like traditional bagging, 
with the added crucial step consisting of selecting a subset of the variables from the input space for training ra-
ther than building each base learners using all the p original variables. 

Random Subspace Learning (RSSL): Attribute-bagging step 
Step 1. Randomly draw the number d p<  of variables to consider; 
Step 2. Draw without replacement the indices of d variables of the origina p variables; 
Step 3. Perform learning/estimation in the d-dimensional subspace. 
This attribute-bagging step is the main ingredient of our outlier detection approach in high dimensional 

spaces. 
Random Subspace Outlier 
Step 1. Draw with replacement ( ) ( ){ }1 , ,b b

ni i , from { }1,2, , n  to form the bootstrap sample ( )b ; 

Step 2. Start for 1b =  to B do: 
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Draw without replacement from { }1, 2, , p  a subset ( ) ( ){ }1 , ,b b
dj j  of d variables 

Drop unselected variables from ( )b  o that ( )b
sub  is d dimensional 

Build the b th determinant of covariance ( )( )( )ˆdet b
subΣ  

End for 

Step 3. Sort the ensemble ( )( )( ){ }ˆdet , 1, ,b
sub b B= Σ ; 

Step 4. Form ( ) ( )( )( ){ }ˆ: det argmin det , 1, ,b
sub b B∗ ∗ = =   Σ ; 

Step 5. Compute ˆ ∗µ  and ˆ ∗Σ  base on ∗ . 
We can build the robust distance by 

 ( ) ( ) ( )1ˆˆ ˆδ ∗ ∗ ∗− ∗= − −x x x


µ µΣ .                            (12) 

The RSSL outlier detection algorithm computes a determinant of covariance for each subsample, with each 
subsample residing in a subspace spanned by the d randomly selected variables, where d is usually selected to be  

( )min 5,n p . A total of B subsets are generated, and their low dimensional covariance matrices are formed  

along with the corresponding determinants. Then the best subsample, meaning the one with the smallest cova-
riance determinant is singled. It turns out that in the LDHSS context ( )n p , our RSSL outlier detection al-
gorithm always robustly yields the robust estimators ˆ ∗µ  and ˆ ∗Σ  needed to compute the Mahalanobis distance 
for all the observations. Then the outliers can be selected using the typical cut-off built on classical 2

,5%pχ . In 
HDLSS context, in order to handle the curse of dimensionality, we need to involve a new variable selection 
procedure to adjust our framework and concurrently stabilize the detection. The modified version of our RSSL 
outlier detection algorithm in HDLSS is then given by 

Random Subspace Learning for Outlier Detection when n p  
Step 1. Draw with replacement ( ) ( ){ }1 , ,b b

ni i , from { }1,2, , n  to form the bootstrap sample ( )b ; 

Step 2. Start for 1b =  to B do: 
Draw without replacement from { }1, 2, , p  a subset ( ) ( ){ }1 , ,b b

dj j  of d variables 

Drop unselected variables from ( )b  so that ( )b
sub  is d dimensional 

Build the b th determinant of covariance ( )( )( )ˆdet b
subΣ  

End for 

Step 3. Sort the ensemble ( )( )( ){ }ˆdet , 1, ,b
sub b B= Σ ; 

Step 4. Keep the k smallest samples based on elbow to form ( )η , where 1, , kη =   and k B< ; 
Step 5. Start for 2j =  to d do: 
Select jν =  most frequent variables left in ( )η  to compute ( )( )( )1ˆdet sub j

η=
=Σ  

End for 

Step 6. Form ( ) ( )( )( ){ }1ˆ: det argmin det , 2, ,sub j j dη=∗ ∗
== =   Σ ; 

Step 7. Compute ˆ ∗µ  and ˆ ∗Σ  base on ∗ . 
We can build the robust distance by the same way: 

 ( ) ( ) ( )1ˆˆ ˆδ ∗ ∗ ∗− ∗= − −x x x


µ µΣ . 

Without selecting the smallest determinant of covariance, we choose to select a certain number of subsamples 
to achieve the variable selection through a sort of voting process. The portion of the most frequently appearing 
variables are elected to build an optimal space that allow us to compute our robust estimators. The simulation 
results and other details will be discussed later. 
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2.3. Justification Random Subspace Learning for Outlier Detection 
Conjecture 1. Let   be the dataset under consideration. Assume that a proportion ε  of the observations in 
 are outliers. If 1eε −< , then with high probability, the proposed RSSL outlier detection algorithm will effi-
ciently correctly identify a set of data that contains very few of the outliers. 

Sketch 1. Let i ∈x   be a random observation in the original dataset  . Let ( )b  denote the b th boot-  
strapped sample from  . Let ( )Pr b

i
 
 ∈x   represent the proportion of observations that are in   but also  

present in ( )b . It is easy to prove 

( ) 1Pr 1 1
n

b
i n

 ∈ = − − 
 

 
x  .                                 (13) 

In other words, if ( ) [ ]Pr Prb
i nO 

 =∉x   denotes the observations from   not present in ( )b , we must  
have 

( ) [ ]1Pr 1 Pr
n

b
i nO

n
 ∉ = − = 
 

 
 x  .                             (14) 

Since [ ]Pr nO  is known to converge to 1e−  as n goes to infinity. Therefore for each given bootstrapped 
sample ( )b , there is a probability close to 1e−  that any given outlier will not corrupt the estimation of loca-
tion vector and scatter matrix parameters. Since the outliers as well as all other observations have an asymptotic 
probability of 1e−  of not affecting the bootstrapped estimator that we build. Therefore over a large enough 
re-sampling process (large B), there will be many bootstrapped samples ( )b  with very few outliers leading to 
a sequence of small covariance determinants as desired, if 1eε −< . It is therefore reasonable to deduce that by 
averaging this exclusion of outliers over many replications, robust estimators will naturally be generated by the 
RSSL algorithm. 

2.4. Alternatives to Parametric Outlier Detection Methods 
The assumption of multivariate Gaussianity of the ix ’s is obviously limiting as it could happen that the data 
does not follow a Gaussian distribution. Outside of the realm where location and scatter matrix play a central 
role, other methods have been proposed, especially in the field of machine learning, and specifically with simi-
larity measures known as kernels. One such method is known as One-Class Support Vector Machine (OCSVM) 
proposed by [16] to solve the so-called novelty detection problem. It is important to emphasize right away that 
novelty detection although similar in spirit to outlier detection, can be quite different when it comes to the way 
the algorithms are trained. OCSVM approach to novelty detection is interesting to mention here because despite 
some conceptual differences from the covariance methods explored earlier, it is formidable at handling HDLSS 
data thanks to the power of kernels. Let :iΦ →x   . The one-class SVM novelty detection solves 

2

1, ,

1 1argmin
2n

n

i
inρ
ξ ρ

ν =∈ ∈ ∈

 + − 
 

∑
w ξ

w
 

,                            (15) 

subject to 

( ), , 0, 1, ,i i i i nρ ξ ξΦ > − ≥ =w x  ,                           (16) 

using ( ) ( ) ( ) ( ) ( ), , i j i j i j= Φ Φ = Φ Φx x x x x x  we get 

( ) ( )
1

ˆ ˆ ˆsign ,
n

i j i j
j

f α ρ
=

 
= − 

 
∑x x x ,                            (17) 

so that any ix  with ( )ˆ 0if <x  is declared an outlier. The ˆ jα ’s and ρ̂  are determined by solving the qua-
dratic programming problem formulated above. The parameter ν  controls the proportion of outliers detected. 
One of the most common kernel is the so-called RBF kernel defined by 

( ) 2

2

1, exp
2i j i jσ

 = − − 
 

x x x x .                            (18) 



B. H. Liu, E. Fokoué 
 

 
624 

OCSVM has been extensively studied and applied by many researchers among which [17]-[19], and later en-
hanced by [20]. OCSVM is often applied to semi-supervised learning tasks where training focuses on all the 
positive examples (non-outliers) and then the detection of anomalies is performed by searching points that fall 
geometrically outside of the estimated/learned decision boundary of the good (non-outlying trained instances). It 
is a concrete and quite popular algorithm for solving one-class problems in fields like digital recognition and 
documentation categorization. However, it is crucial to note that OCSVM cannot be used with many other real 
life datasets for which outliers are not well-defined and/or for which there are no clearly identified all-positive 
training examples available such as gene expression mentioned before. 

3. Computational Demonstrations 
3.1. Setup of Computational Demonstration and Initial Results 
In this section, we conduct a simulation study to assess the performance of our algorithm based on various 
important aspects of the data, and we also provide a comparison of the predictive/detection performance of 
our method against existing approaches. All our simulated data are generated according to the ε-contami- 
nated multivariate Gaussian introduced via Equation (1) and Equation (2). In order to assess the effect the 
covariance between the attributes, we use an AR-type covariance matrix of the following form 

( )

1
1

1

1

p p p

ρ ρ
ρ

ρ ρ
ρ

ρ ρ

 
 
 = = − +
 


 







I



 

  



1 1Σ .                           (19) 

where pI  is the p-dimensional identity matrix, while p1  is p-dimensional vector of ones. For the remaining 
parameters, we consider 3 different levels of contamination { }0.05,0.1,0.15ε ∈ , namely mild contamination to 
strong contamination. The dimensionality p will increase in low-dimensional case as{ }30,40,50,60,70  and 
high dimensional case as { }1000,2000,3000,4000,5000  and the number of observations are fixed at 1500 and 
100. We compare our algorithm to existing PCA based algorithms PCOut and PCDist, both of which are availa-
ble in Rwithin the package called rrcovHD. 

As can be seen in Figure 1, the overwhelming majority of samples lead to determinants that are small as 
evidenced by the heavy right skewness with concentration around zero. This further confirms our conjecture 
that as long as 1eε −<  which is a rather reasonable and easily realized assumption, we should isolate sam-
ples with few or no outliers. 

 

 

Figure 1. (left) Histogram of the distribution of the determinants from ( )b
sub  when n = 100, p = 3000; (right) Histogram of 

log determinants for all the bootstrap samples.                                                                           
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Since each bootstrapped sample selected has a small chance of being affected by the outliers, we can select 
the dimensionality that maximize this benefits. In our HDLSS simulations, determinants are computed based on 
all the randomly selected subspaces, and are ruled by predominantly small values, which imply the robustness of 
the classifier. Figure 1 patently shows the dominance of small values of determinants, which in this case are the 
determinants of all bootstrapped samples based on our simulated data. A distinguishable elbow is presented in 
Figure 2. The next crucial step lies in selecting a certain number of bootstrap samples, say k, to build an optimal 
subspace. Since most of the determinants are close to each other, it is a non-trivial problem, which means that k 
needs to be carefully chosen to avoid going beyond the elbow. However, it is important to notice if k is too small 
then the variable selection in later steps of the algorithm will become a random pick, because there is no oppor-
tunity for each variable to appear in the ensemble. Here, we choose k to be the number of roughly the first 30% 
to 80% of B bootstrap samples ( )η  according to their ascending order of the determinants. This choice is 
based on our empirical experimentations. It is not too difficult to infer the asymptotic normal distribution of the 
frequencies of all variables in ( )η  as we can observe in Figure 2. Thus, the most frequently appearing va-
riables located on the left tail can be adopted/kept to build our robust estimator. Once the selection of k is made, 
the frequencies of variables appearing in this ensemble can be obtained/computed for variable selection. The 2 
to m most frequently appearing variables are included to compute the determinants in Figure 2. m is usually 
small, since we assume from the start that the true dimensionality of the data is indeed small. Here for instance, 
we choose 20 for the purposes of our computational demonstration. A sharp maximum indicates the number of 
dimension ν  from that sorted ensemble that we need to choose. Thus, with the bootstrapped observations hav-
ing the smallest determinant with the subspace that generates the largest determinant, we can successfully com-
pute ( )1

sub
η

ν
=∗
==  . Then the robust estimators can be formed by ˆ ∗µ  and ˆ ∗Σ . Theoretically then we are in a 

presence of a minimax formulation of our outlier detection problem, namely 

( ) ( ){ }
( ) ( )

( ) ( )( )( )( )( ){ }* * ˆ, argmax argmin det cov
b b

b b 
=  

  

   Σ .             (20) 

By Equation (20), it should be understood that we need to isolate the precious subsample ( )*  that achieves 
the smallest overall covariance determinant, but then concurrently identify along with ( )*  the subspace ( )*  
that yields the highest value of that covariance determinant among all the possible subspaces considered. 

3.2. Further Results and Computational Comparisons 
As indicated in our introductory section, we use the Mahalanobis distance as our measure of proximity. As since 
we are operating under the assumption of multivariate normality, we use the traditional distribution quantiles

2
, 2d αχ  as our cut-off with the typical 10%α =  and 10%α = . As usual, all observations with distances larger  
 

 

Figure 2. (left) Tail of sorted determinants in high dimensional ( )b
sub , where B = 450. k can be selected before reaching the 

elbow; (right) The concave shape can be observed by computing determinants of covariance from 2 to m dimension.                                                         
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than 2
, 2d αχ  are classified as outliers. The data for simulation study are generated with { }, 2,5η κ ∈  repre- 

senting both easy and hard situation for RSSL algorithm to detect the outliers, and , pε  as the rate of contami-
nation. Throughout, we use 200R =  replications for each combination of parameters for each algorithm, and 
we use the average test error AVE as our measure of predictive/detection performance. Specifically, 

( ) ( ) ( )( )( )
1 1

1 1ˆ ˆAVE ,
R m

r r
i r i

r i
f f

R m= =

 =  
 

∑ ∑ y x ,                    (21) 

where ( )( )ˆ r
r if x  is the predicted label of the test set observation i yielded by f in the r-th replication. The loss  

function used here is the basic zero-one loss defined by 

( ) ( )( )( ) ( ) ( ){ }
( ) ( )( )

ˆ

ˆ1ˆ, 1
0 otherwise.

r r
ri i

r r
r r i r i

i r i
f

f
f

 ≠  
 

 ≠= = 


y x

y x
y x .               (22) 

It will be seen later that our proposed method produces predictive accurate outlier detection results, typically 
competing favorably against other techniques, and usually outperforming them. Firstly however, we show in 
Figure 3 the detection performance of our algorithm based on two randomly selected subspaces. The outliers 
detected by our algorithm are identified by red triangles and contained in the red contour, while the black circles 
are the normal data.  

The improvement of our random subspace learning algorithm in low dimensional data with dimensionality 
such that { }30,40,50,60,70p∈  and relative large sample size 1500n = , is demonstrated in Figure 4 in 
comparison to PCOut and PCDist. Given a relatively easy task, namely with , 5κ η = , the outliers are scattered 
widely and shifted far from normal, the RSSL with 1 α−  equals 95% and 90% perform consistently very well, 
typically outperforming the competition. When the rate of contamination is increasing in this scenario, almost 
100% accuracy can be achieved with RSSL based algorithm. When the outliers are spread more narrowly and 
closer to the mean with , 2κ η = , the predictive accuracy of our random subspace based algorithm is slightly 
less powerful but still very strong, namely with { }1000,2000,3000,4000,5000p∈  a predictive detection rate 
close to 96% to 99%. In high dimensional settings, namely with and low sample size 100n = , RSSL is also 
performs reasonably well as shown in Figure 5. With 1 95%α− =  chi-squared cut-off, when , 5κ η = , 96% 
to 98% of outliers can be detected constantly among all simulated high dimensions. Under more difficult condi-
tions, as with , 2κ η = , a decent amount of outliers can be detected with accuracy around 92% to 96%. Based 
on the properties of robust PCA based algorithms, the situation that we define as “easy” for RSSL algorithms is 
actually “harder” for PCOut and PCDist. The principle component space is selected based on the visibility of 
outliers, and especially for PCOut, the components with nonzero robust kurtosis are assigned higher weights by  

 

 
Figure 3. (left) The outliers detected in a two dimensional subspace are marked as red triangles. Selection is based on

2
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Figure 4. The average error and standard deviation in low dimensional simulation with , 5κ η =  (left column) 
and , 2κ η =  (right column).                                                                                                                 
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Figure 5. The average error and standard deviation in high dimensional simulation with , 5κ η =  (left column) 
and , 2κ η =  (right column).                                                                                 
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the absolute value of their kurtosis coefficients. This method is shown to yield good performances when dealing 
with small shift of mean and scatter of the covariance matrix. However, if the outliers lied on larger η  and κ
where excessive choices can be made then, it is more difficult for PCA to find the dimensionality to make the 
outliers “stick out”. Reversely, with a small values of κ  and η , the most obvious directions are emphasized 
by PCA but less chance for algorithms like RSSL to obtain the most sensible subspace to build robust estimators. 
So in Figure 5, when , 2κ η =  the accuracy reduced to around 92% but in all other high-dimensional settings 
the performance of RSSL is consistent with PCOut and identically stable. 

4. Conclusion 
We have presented what we can rightfully claim to be a computational efficient, scalable, intuitive appealing 
and highly predictively accurate outlier detection method for both HDLSS and LDHSS datasets. As an adapta-
tion of both random subspace learning and minimum covariance determinant, our proposed approach can be 
readily used on vast number of real life examples where both its component building blocks have been success-
fully applied. The particular appeal of the random subspace learning aspect of our method comes in handy for 
many outlier detection tasks on high dimension low sample size datasets like DNA Microarray Gene Expression 
datasets for which the MCD approach is proved to be computational untenable. As our computational demon-
strations section above reveal, our proposed approach competes favorably with other existing methods, some-
times outperforming them predictively despite its straightforwardness and relatively simple implementation. 
Specifically, our proposed method is shown to be very competitive for both low dimensional space and high di-
mensional space outlier detection and is computationally very efficient. We are currently seeking out interesting 
real life datasets on which to apply our method. We also plan to extend our method beyond settings where the 
underlying distribution is Gaussian. 
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