
Open Journal of Statistics, 2015, 5, 502-510 
Published Online October 2015 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2015.56052  

How to cite this paper: Mwangi, O.W., Islam, A. and Luke, O. (2015) Bootstrap Confidence Intervals for Proportions of Un-
equal Sized Groups Adjusted for Overdispersion. Open Journal of Statistics, 5, 502-510.  
http://dx.doi.org/10.4236/ojs.2015.56052  

 
 

Bootstrap Confidence Intervals for  
Proportions of Unequal Sized Groups  
Adjusted for Overdispersion 
Olivia Wanjeri Mwangi, Ali Islam, Orawo Luke 
Department of Mathematics, Egerton University, Njoro, Kenya 
Email: owanjeri@yahoo.com, asislam54@yahoo.com, orawo2000@yahoo.com    
 
Received 17 August 2015; accepted 8 October 2015; published 13 October 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Group testing is a method of pooling a number of units together and performing a single test on 
the resulting group. It is an appealing option when few individual units are thought to be infected 
leading to reduced costs of testing as compared to individually testing the units. Group testing 
aims to identify the positive groups in all the groups tested or to estimate the proportion of posi-
tives (p) in a population. Interval estimation methods of the proportions in group testing for un-
equal group sizes adjusted for overdispersion have been examined. Lately improvement in statis-
tical methods allows the construction of highly accurate confidence intervals (CIs). The aim here is 
to apply group testing for estimation and generate highly accurate Bootstrap confidence intervals 
(CIs) for the proportion of defective or positive units in particular. This study provided a compar-
ison of several proven methods of constructing CIs for a binomial proportion after adjusting for 
overdispersion in group testing with groups of unequal sizes. Bootstrap resampling was applied 
on data simulated from binomial distribution, and confidence intervals with high coverage proba-
bilities were produced. This data was assumed to be overdispersed and independent between 
groups but correlated within these groups. Interval estimation methods based on the Wald, the 
Logit and Complementary log-log (CLL) functions were considered. The criterion used in the com-
parisons is mainly the coverage probabilities attained by nominal 95% CIs, though interval width 
is also regarded. Bootstrapping produced CIs with high coverage probabilities for each of the three 
interval methods. 
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1. Introduction 
Group testing started or originated with [1] during World War II as a frugal method of testing blood specimens 
of army inductees in order to detect the presence of infection. Group testing has been applied in many areas: 
plant disease assessment [2], fisheries [3], quality control, drug discovery and transmission of viruses by insect 
vectors [4]. It has also been used to screen the population for the presence of HIV/Aids antibody [5]. [1] pro-
posed that, rather than testing each blood specimen individually, portions each of k specimens can be pooled and 
the pooled specimen can be tested. If the pooled specimen is free of infection, all k inductees are passed with no 
further tests, otherwise the remaining portions of each of the blood specimens are to be tested individually. If the 
prevalence of infection is low, the expected number of tests per inductee and thus the expected cost per inductee, 
would be reduced. [1] assumed that tests were perfect, that is, a negative reading indicated the group contained 
no defective item and a positive reading indicated the presence of at least one defective item. 

Group tests save resources since many units are tested without testing them individually. One of their advan-
tages as a method of estimation is they are time efficient. In most of the studies carried out, the experimental 
unit/group is a litter. It has been observed that there is a tendency of littermates to respond more alike than ani-
mals from different litters, the “litter effect”. This litter effect is also known as the extra-dispersion (over/under- 
dispersion) or the intra-litter correlation. These litters may be of equal or unequal sizes. The concern here is with 
methods of establishing the confidence interval for the proportion of defective units p in unequal groups with 
adjustment for overdispersion using bootstrap technique. 

Overdispersion is the phenomenon of having greater variability than predicted by the random component of 
the model; this is common in the modeling of binomial distribution for group testing [6]. Overdispersion is a 
very common feature in applied data analysis because naturally populations are frequently heterogeneous con-
trary to the assumptions implicit within widely used simple parametric models. The over-dispersion parameter is 
common in proportions in biology, toxicology, medicine, genetics and other similar fields and is important in 
making inference regarding the regression parameters on the mean [7].  

Maximum likelihood estimation gives a unified approach to estimation, which is well-defined, in binomial 
distribution and many other problems. The maximum likelihood as an estimator has been studied and seconded 
as an approach for using the proposed extended Beta-Binomial (BB) model to analyze over/under-dispersed 
proportions [8]. They estimated this parameter using maximum likelihood estimation (MLE). This concurred 
with the observation that the MLEs may be biased when the sample size n or the total Fisher information is 
small [9]. This bias is usually ignored in practice, the justification being that it is small compared with the stan-
dard errors.  

Studies on point estimation in terms of bias and efficiency and the test for presence of overdispersion for both 
counts and proportions data have been done [10]. Interval estimation methods in which groups were of unequal 
sizes were carried out using interval based on the MLE, the Logit and CLL [11]. The quasi-likelihood approach 
to correct for overdispersion is used by [6], he examines interval estimation methods based on functions of the 
MLE, the Logit and CLL functions.  

2. Literature Review 
2.1. Bootstrapping 
The bootstrap method was introduced by [12]. It is a very general resampling procedure for estimating the dis-
tributions of statistics based on independent observations. It has spread fast in statistical sciences within the last 
decades. The primary task of a statistician is to summarize a sample based study and generalize the finding to 
the parent population in a scientific manner. Of course, a summary statistic like the sample mean will fluctuate 
from sample to sample and a statistician would like to know the magnitude of these fluctuations around the cor-
responding population parameter. 

To understand bootstrap, suppose it were possible to draw repeated samples (of the same size) from the popu-
lation of interest, a large number of times. Then, one would get a fairly good idea about the sampling distribu-
tion of a particular statistic from the collection of its values arising from these repeated samples. But, that does 
not make sense as it would be too expensive and defeat the purpose of a sample study. The purpose of a sample 
study is to gather information cheaply in a timely fashion. The idea behind bootstrap is to use the data of a sam-
ple study at hand as a “surrogate population”, for the purpose of approximating the sampling distribution of a 
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statistic, that is, to resample (with replacement) from the sample data at hand and create a large number of 
“phantom samples” known as bootstrap samples. These samples can be used to obtain more improved estima-
tion of unknown parameter (s) of a probability model. 

Recently, study has been done on the construction of bootstrap confidence intervals for the overdispersion 
parameter in equal proportions in Beta Binomial using Maximum Likelihood Estimator, Method of Moments 
Estimator and Quasi-likelihood [13]. Bootstrapping has been seen to provide improved CIs and is useful even 
when very little is known about the underlying distributions [14].   

2.2. Estimation of Proportions 
2.2.1. Confidence Intervals Based on the Maximum Quasi-Likelihood Estimate 
Overdispersion causes one to underestimate the variance of parameter estimates. A quasi-likelihood approach 
can be employed to correct for the overdispersion phenomenon which occurs with binary data [15]. For binary 
data, an alternative method for handling overdispersion is to use models for which a binomial parameter itself 
has a beta distribution [16]. However, the MLE of the beta-binomial method has been shown to be less flexible 
than that of the quasi-likelihood approach, and so cannot be recommended for general use. For comparisons of 
CI methods in previous literature, the overdispersion phenomenon needs to be taken into account for construct-
ing the CI of the proportion. Therefore, the objective is to use quasi-likelihood methodology to evaluate several 
asymptotic CI methods and construct bootstrap CI based on these methods for groups of different sizes, adjusted 
for overdispersion in group testing. 

Suppose for 1, ,i m=   and in  groups of size ik , are tested, and iY  of these groups test positive. The bi-
nomial parameter for the distribution of iY , which is the probability the groups tests positive is, ( )1 1 ikp− − , 
where p is the probability an individual unit tests positive. Therefore considering overdispersion, the expected 
value and the variance of iY  are 

( ) ( )( )1 1 ik
i iE Y N p= − −                                   (1) 

( ) ( )( )( )2 1 1 1i ik k
i iVar Y N p pσ= − − −                             (2) 

When groups of unequal size occur and overdispersion occurs together, the variance of the quasi-score func-
tion of p is 
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And  

( )( )ˆ ˆ1 1 ik
i iN pµ = − −                                     (6) 

( ).V  is a variance function, and 2X  is the generalized Pearson statistic. 
Under the usual limiting conditions on the pi , the asymptotic variance of p̂  is 

( ) 1ˆ pVar p i−=                                         (7) 

Then the ( )100 1 %α−  Wald type CI for p is 2
ˆ

1ˆ
p

p z
iα±  

where 2Zα  is the 1 2α−  quantile of the standard normal distribution. 
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2.2.2. Confidence Intervals Based on the Logit 
Asymptotic-likelihood methods to construct the ( )100 1 %α−  confidence intervals of p̂  using the Logit trans- 
formations were presented [11]. 

Let ( )I θ  be the Fisher information that Y contains about the parameter θ . If ( )hθ ε=  and h is differen-  

tiable, then the information that Y contains about ε  is ( ) ( ) ( ) 2
I I h hε ε ε= ⋅      ′   

For the logit transformation 

( ) ( )log log
1

ph p it p
p

 
= =  − 

                                (8) 

( ) ( )
1

1
h p

p p
′ =

−
                                     (9) 

Thus the information of logit (p) is 

( ) ( ) ( )22log 1I it p p p I p= −                                  (10) 

After adjusting for overdispersion, the ( )100 1 %α−  approximate CI for p is 
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where  

( ) ( ) ( )( )1log exp 1 expit θ θ θ− = +                                (12) 

2.2.3. Confidence Intervals Based on the Complementary Log Log (CLL) 
Hepworth also presented the CLL parameter transformations. 

Suppose  

( ) ( ) ( )( )log log 1h p CLL p p= = − −                                (13) 

And 

( ) ( ) ( )
1

1 log 1
h p

p p
−′ =

− −
                                   (14) 

                                                                                       
 

The information of ( )CLL p  is  

( ) ( ) ( ) ( )2 21 log 1I CLL p p p I p = − −                                 (15) 

Then the ( )100 1 %α−  approximate CI for p after allowing for overdispersion is given by 

( )
( ) ( )

1
/2 22

ˆ

1ˆ
ˆ ˆ1 log 1 p

CLL CLL p z
p p i

α
−
 
 ±
 − −   

                           (16) 

where ( ) ( ){ }1 1 exp expCLL θ θ− = − −                                 (17) 

2.3. Choice of Group Sizes 
A lot of attention has been devoted in studies to problems involving the group sizes, k. The question being what 
values should be chosen for k, the number of units in each group. If k is too large, π is close to 1 and all groups 
are likely to test positive, also if k is too small, π is closer to 0 [17]. When k is large group testing becomes un-
informative and expensive. Therefore it is suitable to choose group sizes that produce some positives and some 
negatives. We therefore ensured that the sample sizes used yielded the desirable level, that is, margin of error is 
minimized. 
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2.4. Interval Width and Coverage Probability 
Each Interval was examined for its Interval width and coverage probability. Confidence Intervals based on MLE 
ordering and Sterne’s technique for a dilution assay with 64 outcomes was compared [18], those with the shorter 
widths were considered superior. The width of the intervals is considered an important criterion in comparing CI 
methods. Interval widths of the intervals were examined since the three methods; Wald, Logit and CLL do not 
differ a great deal with respect to coverage. 

Coverage probability gives the proportion of the time that the interval contains p. Bootstrapping enabled us to 
estimate the coverage of the CIs with respect to the number of hypothetical repetitions of the entire procedure. 
The nominal coverage will be set at 0.95. The actual coverage of the three methods will be compared to the no-
minal coverage, greater coverage than the nominal is preferable and hence conservative. 

3. Simulation 
First, positive groups, ( )~ , , 1, 2, , ,i i iY bin N i mπ =   are simulated from the number of groups, iN  with their 
respective sizes ik  for 0.02p = . This is followed by bootstrapping Yi’s and then computing the estimate of p. 
Coverage probabilities of the three interval methods for the estimate of p for 500 bootstrap simulations are ob-
tained, and the program is run repetitively in order to see how the three method’s coverage probabilities vary.   

The nominal coverage probability is set at 0.95. 
This is then compared to estimating p from the same data that is the Yi’s without bootstrapping and the pro-

gram run repetitively so as to calculate the coverage probability.  
The number of bootstraps B’s were varied for the same combination of p, ik ′  and iN . Coverage probabili-

ties are generated. This was to assess the performance of the coverage probabilities as the number of bootstrap 
simulations increase for each method. 

Next p was varied for the same Ni, ki and the same number of bootstrap simulations (500), and coverage 
probabilities are obtained. 

Lastly, interval widths for the data are calculated for bootstrapping technique for the three interval methods 
and compared to those intervals got from each of the three methods without bootstrapping. This is in order to 
investigate whether bootstrapping gives more precise intervals. 

4. Discussion 
Group testing was primarily used to inspect individual members from a large population [1]. Therefore probabil-
ity used in this study ranged from 0.01 to 0.2. From Table 1 it was seen that the CLL and the Logit gave more 
conservative coverage probabilities consistently for different bootstrap simulations for p = 0.02. All the three 
methods differ only slightly with CLL and Logit sometimes taking the same values of coverage probability. The 
coverage probabilities oscillate about the nominal level with Wald being less conservative than CLL and Logit. 
This was then compared to coverage probabilities of the three methods for the same data combination without 
applying bootstrapping technique. Similarly CLL outperformed the Wald interval method and at times the Logit 
Interval method as seen in Table 2. It is clearly seen that without bootstrapping technique, CIs generated have 
lower coverage probabilities than CIs generated after applying bootstrapping. 

In Table 3 and Figure 1, the number of bootstrap simulations was varied. It was seen that as the number of  
 
Table 1. Coverage probabilities for the three Interval methods for 500 simulations for p = 0.02.                                     

Method Wald CLL Logit 

 0.938 0.9461 0.946 

 0.954 0.948 0.948 

p = 0.02 0.942 0.9441 0.943 

 0.938 0.952 0.952 

 0.95 0.958 0.958 

 0.932 0.9481 0.948 
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Table 2. Coverage probabilities for data for 500 simulations without bootstrapping for p = 0.02.                                                

Method Wald CLL Logit 

 0.812 0.862 0.862 

 0.822 0.873 0.87 

 0.832 0.912 0.91 

p = 0.02 0.81 0.852 0.85 

 0.802 0.844 0.844 

 0.804 0.812 0.81 

 
Table 3. Coverage probabilities for the three methods for varying bootstrap simulations (B) for p = 0.02.                                                

Number of    

Simulations (B) Wald CLL Logit 

200 0.937 0.945 0.94 

400 0.936 0.9486 0.948 

600 0.9283 0.9417 0.9416 

800 0.935 0.9512 0.951 

1000 0.932 0.945 0.945 

1500 0.94 0.951 0.952 

2000 0.944 0.9556 0.9556 

2500 0.9525 0.9565 0.956 

3000 0.951 0.9562 0.9561 

3500 0.93514 0.95457 0.9544 

4000 0.93425 0.94525 0.9451 

5000 0.9416 0.9556 0.9554 

7000 0.9405 0.9521 0.952 

10,000 0.9512 0.967 0.967 

 

 
Figure 1. The figure shows a plot of coverage probabilities for the three methods for varying bootstrap simulations for p = 
0.02 and for a nominal coverage probability of 0.95.                                                                   

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

number of simulation(B)

co
ve

ra
ge

 p
ro

ba
bi

lty



O. W. Mwangi et al. 
 

 
508 

bootstrap simulations increased, all the three methods became more precise, that is, their coverage probabilities 
hovered slightly above and below the nominal coverage probability. 

Group testing works best when the prevalence rate or the proportion is sufficiently small. According to Table 
4 and Figure 2, we see that as the proportion increases to 0.1 the coverage probability becomes very low for all 
the three interval methods. Between 0.03 and 0.08, the coverage probabilities for the three methods are conserv-
ative.  

From Table 5 and Table 6, it is seen that the interval widths for both CLL and Logit are not differing a great 
deal for the same bootstrap simulations. CLL has shorter widths than logit. However, interval widths for the 
Wald for the three bootstrap simulations are considerably wider than those of the other two interval methods. 
When interval widths are compared without bootstrap simulations to those interval widths with bootstrap simu-
lations we note that they are wider.  

According to Table 4 and Figure 2, all the three methods perform well as the number of bootstrap simula-
tions increases, with the coverage probabilities of the CLL and Logit being oftentimes greater than the nominal 
coverage probability. 

 

 
Figure 2. The figure above is a plot of coverage probabilities for the three methods for 500 bootstrap simulations for varying 
probability, that is, 0.01 < p < 0.2.                                                                                              

 
Table 4. Coverage probabilities for varying p for the same 500 simulations for a nominal coverage of 0.95.                         

  Coverage Probability  

Probability Wald CLL Logit 

0.01 0.904 0.922 0.922 

0.03 0.92 0.934 0.93 

0.04 0.982 0.986 0.984 

0.06 0.988 0.99 0.99 

0.08 0.99 0.992 0.99 

0.1 0.988 0.992 0.99 

0.2 0.842 0.857 0.857 
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Table 5. Table of interval widths for the three interval methods for data without bootstrapping.                                     

Interval Method 
Y = (2,2,4,3,3) ˆ 0.02121051p =   

Upper Confidence Limit Lower Confidence Limit Interval Width 

Wald 0.02654614 0.01587489 0.01067125 

CLL 0.02726701 0.01648786 0.01077915 

Logit 0.02725691 0.01648266 0.01077426 

 
Table 6. Table of interval widths for the three interval methods after bootstrapping.                                            

Interval Method 
Y = (2,2,4,3,3) ˆ 0.02142545p =   

Upper Confidence Limit Lower Confidence Limit Interval Width 

Wald 0.02673085 0.016212005 0.0106108 

CLL 0.02743541 0.01672070 0.01071471 

Logit 0.02742548 0.01671553 0.01070995 

5. Conclusion 
Bootstrap methods produce good confidence intervals by an order of magnitude upon the accuracy of standard 
intervals [19]. In this paper we implement bootstrapping to the three interval methods: Wald, CLL and Logit. 
The comparison results in this study show that bootstrapping produces more precise confidence intervals than 
standard intervals for all the three procedures. Likewise the coverage probabilities from the three methods are 
consistent with the CLL being most conservative. Wald is more liberal. As the number of bootstrap simulations 
increases the more conservative the coverage becomes. 
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