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Abstract 
 
The traditional method for creating a gene score to predict a given outcome is to use the most statistically 
significant single nucleotide polymorphisms (SNPs) from all SNPs which were tested. There are several dis-
advantages of this approach such as excluding SNPs that do not have strong single effects when tested on 
their own but do have strong joint effects when tested together with other SNPs. The interpretation of results 
from the traditional gene score may lack biological insight since the functional unit of interest is often the 
gene, not the single SNP. In this paper we present a new gene scoring method, which overcomes these prob-
lems as it generates a gene score for each gene, and the total gene score for all the genes available. First, we 
calculate a gene score for each gene and second, we test the association between this gene score and the out-
come of interest (i.e. trait). Only the gene scores which are significantly associated with the outcome after 
multiple testing correction for the number of gene tests (not SNPs) are considered in the total gene score 
calculation. This method controls false positive results caused by multiple tests within genes and between 
genes separately, and has the advantage of identifying multi-locus genetic effects, compared with the Bon-
ferroni correction, false discovery rate (FDR), and permutation tests for all SNPs. Another main feature of 
this method is that we select the SNPs, which have different effects within a gene by using adjustment in 
multiple regressions and then combine the information from the selected SNPs within a gene to create a gene 
score. A simulation study has been conducted to evaluate finite sample performance of the proposed method. 
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1. Introduction 
 
Due to rapid developments in high-throughput genetic 
technologies, genome-wide association studies (GWAS) 
have become common. The success of GWAS depends 
on genotyping a large number of SNPs (i.e. 500,000 to 1 
million) and determining which of these SNPs are sig-
nificantly associated with the outcome of interest. It is 
expected that genotyping more SNPs should lead to more 
accurate gene localization. However, the benefit of the 
increased number of SNPs is reduced either by multiple 
testing correction if the SNPs are tested one at a time, or 
by the increased number of degrees of freedom in the 
statistical test if multiple regression or haplotype analysis 
is used. Wang and Elston [1] describe the two possibly 
conflicting goals of “catching information” and “cutting 
the cost” of multiple testing or the large number of de-

grees of freedom. They suggested using a weighted score 
test (WST) which has only one degree of freedom to 
achieve the two goals simultaneously. However, Chap-
man and Whittaker [2] show that, if some of the coded 
SNPs are positively correlated with the outcome, while 
others are negatively correlated with the outcome, the 
WST may have low power. Pan [3] suggested an alterna-
tive approach called the sum test, which also has only 1 
degree of freedom. Like WST, the sum test has the same 
problem of sign (i.e. some coded SNPs are positively 
correlated with the outcome and the others are negatively 
correlated with the outcome). To overcome the limitation 
of the sum test, Pan [3] proposed five tests, which are 
closely related to each other. There is a heuristic solution 
to the sign problem, discussed by Wang and Elston [1]: 
before using the WST (or the sum test), one needs to 
adjust the coding of SNPs so that all SNPs are positively 
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correlated with the outcome. The sign problem is not the 
only limitation of the sum test. It uses information from 
all of the SNPs, although the majority of the SNPs might 
not be associated with the trait, and their use may reduce 
the power. To increase power and reduce false positive 
results caused by multiple tests and dependence among 
test statistics, Gu et al. [4] proposed a modified forward 
multiple regression approach. They chose the SNP with 
the maximum order statistics in the regression model if 
its P-value is less than a pre-specified α level and then 
retained the selected SNP in the regression model and 
looked for the second SNP among the SNPs with the 
largest 5% of order statistics in the previous step of re-
gression. Repeating this procedure until no more SNP 
could be selected. Their simulation studies show that the 
modified forward multiple regression approach has 
higher power than the Bonferroni and false discovery 
rate (FDR) procedure for detecting moderate and weak 
genetic effects. 

For multiple testing correction, the current methods 
such as Bonferroni correction, FDR and permutation 
tests, do not consider the situation described in Figure 1, 
where an association pattern of 4 SNPs is provided. All 
of those methods will choose SNP2 before SNP3 since 
SNP2 has a smaller P-value than SNP3, although SNP2 
might be significant just because it is highly linked with 
SNP1 and has nothing to do with the trait as shown in 
Figure 1. This predicament motivates the development 
of the new gene score method.   

We propose a method, which controls false positive 
results caused by multiple tests within genes and be-
tween genes separately. First, the SNPs within a gene 
compete with each other by using Gu et al.’s [4] modi- 

fied forward multiple regression method, which has more 
power to detect multiple weak genetic factors than FDR 
and Bonferroni. We then combine the information from  
the selected SNPs within a gene to create a gene score, 
which has only 1 degree of freedom. To avoid the sign 
problem, we follow an approach, which is similar to 
Wang and Elston’s [1] approach. We adjust the coding of 
SNPs so that all SNPs are positively associated with the 
trait. Finally, the genes compete with each other by using 
gene scores and Bonferroni correction. As shown in Fig-
ure 1, SNP2 will compete with SNP1 first, instead of 
competing with SNP3 directly. Since we compare the 
gene score of gene 1 with that of gene 2, SNP3 in gene 2 
might be chosen before SNP1 in gene 1 if the joint effect 
of gene 2 is stronger than the joint effect of gene 1. This 
is another advantage of our method compared with cur-
rent methods including Gu et al’s modified forward mul-
tiple regression methods for all SNPs. 

 
2. Methods 

Let Xij denote the locus score [5], defined as the number 
of risk alleles (0,1, or 2) for  SNP j (j = 1,2, ,Li) for 
gene i ( I = 1,2, , K) carried by an individual. L (L = 
L1+L2++LK) would denote the total number of SNPs. 
Suppose the trait value is Y and a test is conducted for 
SNP j in gene i by using a generalized linear model 
(GLM) [6]: 




  0 ijh E Y X 1                 (1) 

where E(Y) is the mean of Y, h() is the link function. 
Typical link functions include the identity link for a 
continuous normally distributed outcome and a logit 
link for binary traits. The model can be conditional  
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Figure 1. An association pattern of 4 SNPs within 2 genes: SNP2 has smaller P-value than SNP3, however, SNP2 might be 
significant just because it is in high linkage disequilibrium with SNP1 and has nothing to do with the trait. SNP3 might be 
more important than SNP2. 

Copyright © 2011 SciRes.                                                                              OJS 



C. C. XIE 17
 

2j

GLM for a matched data set or adjusted for some covari-
ates such as age and sex. This test yields P-value pij  
(j = 1,2, ,Li, I = 1,2, ,K). Let pi(1) = min(pij, j = 1,2, 

,Li), whose corresponding SNP is denoted by SNPi(1) 
and corresponding locus score is denoted by Xi(1). If pi(1) 
> a pre-specified , the gene score for gene i is 0. If pi(1) 
 a pre-specified , we ask whether there is another SNP 
(in gene i) which is associated with the trait after the ef-
fect of SNPi(1) is accounted for by using the model: 

 


  0 (1) 1i ih E Y X X               (2) 

where SNP j does not include the selected SNPi(1) and the 
SNPs with P-value > 0.05. The P-value of this test is 
denoted by pij

(2). Let pi(1)
(2) = minj(pij

(2)), whose corre-
sponding SNP is denoted by SNPi(2) and corresponding 
locus score is denoted by Xi(2). If SNPi(2)  the 
pre-specified , we will search the third SNP (in gene i) 
which is associated with the trait  after the effect of 
SNPi(1)  and SNPi(2) is accounted for by using the model: 

  0 (1) 1 (2) 2i i ih E Y X X X 3j               (3) 

where the SNP j does not include the selected SNPi(1), 
SNPi(2) and the SNPs with P-value > 0.05 in model (2). 
These steps continue until no further SNP can be found 
in gene i. Suppose we select SNPi(1), SNPi(2), , SNPi(s) 
from gene i, the gene score for gene i can be defined as 



i i(1) i(2) i(G s)X X    X

1

 .         (4) 

Now we focus on the gene instead of SNPs within the 
gene. In order to obtain the association between the gene 
and the trait, we use the model 

  0 ih E Y b G b                 (5) 

This model is similar to the SUM test [3], having only 
one degree of freedom. However, this model does not 
have the sign problem limitation that the SUM test does, 
because we use Xij , the locus score, which is the number 
of risk alleles. Unlike the SUM test, this method uses 
only selected SNPs to remove noise. To adjust for the 
multiple testing of multiple genes, we use Bonferroni 
correction (P-value  / K) by assuming there is no 
linkage disequilibrium (LD) between different genes. 
Here we consider all genotyped genes, including those 
genes, whose gene scores = 0 because of no selected 
SNPs. Suppose there are t gene scores (for example, G1, 
G2, , Gt) that are significant after Bonferroni correction. 
The total gene score is defined as  

1 2 tG G G G              (6) 

 
3. Simulation 
 
To evaluate the performance of the proposed method, we 
conducted a simulation study to compare power and av-

erage number of false positives to detect associated 
genes for our method, the Bonferroni procedure, the 
FDR method and modified forward multiple regression 
method. The simulated data set is generated to have a 
similar structure to that of the genotype data from the 
INTERHEART genetics study [7]. On average, there are 
15 SNPs per gene and 100 genes in the simulated data set. 
We picked one gene with 8 SNPs and the other gene with 
21 SNPs and then we picked 2 SNPs from each gene. Let 
the probability of complex disease for the tth subject 
follow a logistic function  

 11 12 21 221 1 1 exp 2.5 0.5 0.3 0.25 0.2 

t

t t t

P

X X X X t



        
 

where Xijt denotes the number of risk alleles (0,1, or 2) 
for SNP j (j = 1, 2) for gene i ( I = 1, 2) carried by sub-
ject t. Using Bernoulli distribution, the disease status of 
each subject was generated based on the probability of 
disease for the subject. From the simulated data set, we 
randomly selected 1000 cases (with disease) and 1000 
controls (without disease) to form a data set. To obtain 
1000 replicates, the simulated data set was generated 
1000 times. From each data set, 1000 cases and 1000 
control was randomly selected. We choose  as: 1)  = 
0.05/15 (note that 15 is the average number of SNPs per 
gene); 2)  = 0.05/ # of SNPs within gene. For the first 
case,  is the same for all genes, while for the second 
case,  is different for the genes with different numbers 
of SNPs. The power calculated for detecting each causal 
gene is the number of times detected in 1000 replicates 
divided by 1000. The average number of false positives 
(ANFP) in each replicate is calculated by dividing the 
number of total false-positive genes found in 1000 repli-
cates by 1000. For Bonferroni, FDR and modified for-
ward multiple regression, there are only tests for SNPs , 
not for genes. We define a gene “detected” if one or 
more SNPs in the gene are significant. The results of this 
simulation are listed in Table 1 and Table 2. Our pro-
posed method (GST) has much higher power than Bon-
ferroni, FDR and modified forward multiple regression. 
 
4. Discussion 
 
In this paper, we have proposed a new method to create a 
gene score for each gene and then a total gene score for 
all the genes tested. Compared with the traditional gene 
score method, this method has the advantage of using 
SNPs, which may have weak single effects, yet strong 
joint effects. This method controls false positive results 
caused by multiple tests within genes and between genes 
separately, which has the advantage of identifying 
multi-locus genetic effects, compared with the Bon-
ferroni correction, FDR, and permutation tests for all  
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Table 1. Power and average number of false positives to detect the associated genes (for GST, =0.05/the average number of 
SNPs per gene). 

Power (1000 cases and 1000 controls) ANFP 
Method 

Gene 1 Gene 2  

Bonferroni ( = 6.6 × 10
–5) 49.5% 15.0% 0.068 

FDR (q = 0.046) 42.8% 13.1% 0.068 

MFMR ( = 6.4 × 10
–5) 49.1% 15.1% 0.068 

GST ( = 3.3 × 10
–3) 54.1% 18.7% 0.068 

FDR, false discovery rate; MFMR, modified forward multiple regression; GST, gene score test; ANFP, average number of false positives; q is 

the controlled q-value level. 

 

Table 2. Power and average number of false positives to detect the associated genes (for GST, =0.05/the number of SNPs 

within the gene). 

Power (1000 cases and 1000 controls) ANFP  
Method Gene 1 Gene 2  

Bonferroni ( = 4.5 × 10
–5) 43.7% 13.1% 0.049 

FDR (q = 0.034) 38.9% 11.4% 0.049 

MFMR ( = 4.4 × 10
–5) 43.5% 12.5% 0.049 

GST ( = 0.05/# of SNPs within gene) 63.3% 15.1% 0.049 

FDR, false discovery rate; MFMR, modified forward multiple regression; GST, gene score test; ANFP, average number of false positives; q is 

the controlled q-value level. 

 
SNPs as shown in Figure 1. Unlike the sum test, which 
counts all the SNPs (even when the majority of SNPs are 
not associated with the trait), our method removes these 
SNPs with a resultant increase in power. Our method can 
be easily generalized to consider interaction between 
SNPs within each gene and the interaction between 
genes. Our method can also be modified to develop a 
weighted gene score by using genetic effect sizes as the 
weights if the estimates of the true genetic effect sizes 
are reliable and accurate. Our simulation shows that our 
proposed method (GST) has much higher power than 
FDR to detect associated genes. Further research is re-
quired to assess gene scores that include genes, which 
are not independent because of LD between the genes. 
One solution might be to combine the genes with strong 
LD into one gene cluster and then use the gene cluster to 
replace the genes with strong LD. Another solution 
might be to use permutation tests instead of Bonferroni 
correction for gene scores. 
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