Respiratory Physiotherapy in a Web Browser, Feasibility Study*

Matevz Leskovsek1, Martin Lasić2, Dragomira Ahlin3

1BreathingLabs.com, Zdrav Dih d.o.o., Ljubljana, Slovenia
2University Clinical Centre of Ljubljana, Ljubljana, Slovenia
3Temza d.o.o., Ljubljana, Slovenia
Email: #matevz.leskovsek@gmail.com, support@breathinglabs.com

Received August 4, 2013; revised September 5, 2013; accepted October 14, 2013

ABSTRACT

In this paper, feasibility of web based breathing exercises for respiratory rehabilitation is examined. A system included visual guidance in a web browser and a microphone equipped headset for biofeedback and interaction. Feasibility was assessed in a controlled environment on 34 subjects with anxiety disorders that were not offered any help from the personnel. Weak points of comprehensibility were identified as applying headset (21%) and adhering to breathing exercises instructions (7%). No adverse events were identified. Design flaws that correlated with poor user’s experience were 1) the unpleasant feelings induced by watching the computer screen (21%) and 2) ease/difficulty of physically applying headset (14%). We conclude that conducting breathing exercises by using an acoustic microphone and a web browser is feasible and should be further researched. Additionally we conclude that audio feedback might be more pleasant to some people.

Keywords: COPD; Asthma; Respiratory Physiotherapy; Breathing Exercises

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic condition of breathing malfunction that occurs in longer lasting asthma, emphysema or chronic bronchitis [1-3]. Burden of COPD is best documented in US where the economic burden in 2007 was $42.6 billion in health care costs and lost productivity. In 2006, global average of male and female population diagnosed with COPD was 9.8% and 5.6%, respectively [4-7]. Breathing exercises are prescribed to patients in all stages of COPD [3]. The most commonly taught maneuver in such breathing exercises is exhalation through pursed lips commonly referred to as Pursed Lip Breathing (PLB). PLB is described in the American Thoracic Society guidelines as involving “a nasal inspiration followed by expiratory blowing against partially closed lips, avoiding forceful exhalation” [8,9]. PLB reduces breathing rate, helps make exhalation more efficient, reduces dyspnea (shortness of breath), and improves cellular oxygenation [9-13]. We hypothesize that it would be valuable to improve compliance of such exercises by providing guidance and supervision in a home setting. Objective of our research was to assess the feasibility of guiding users to perform breathing exercises by using an acoustic microphone positioned in front of user’s mouth and visual guidance provided in a web browser. Trial included patients diagnosed with anxiety disorders as we reason that patients with anxiety disorders could identify most design flaws and comprehensibility issues of such a system. Feasibility was assessed by A) evaluating comprehensibility of proposed guidance system and identifying its weak points, B) identifying adverse events and C) identifying design flaws that correlate with poor user’s experience.

2. Materials and Methods

Trial was conducted on four separate days within one month period. Volunteers that participated in the trial were active adults (34 subjects), that were consulting a medical doctor because of a career related burnout or similar stress related disorder and were diagnosed with...
either anxiety, stress related disorder or career related
burnout. Trial was conducted at the psychiatric clinic
TEMZA d. o. o. and had been approved by the Medical
Ethics Committee of Slovenia (application number 120/
02/10) on 24th March 2010. Prior to an experiment vol-
unteers were asked to read and sign an informed consent
that appeared at the top of the questionnaire. Personal
information was not collected although some volunteers
did identify themselves by their full name while some of
them signed as anonymous. Volunteers were then asked
to follow the instructions on the computer screen. The
first instruction showed the following image (Figure 1)
and asked volunteers to install the headset [14] accord-
ingly. When clicking “next” volunteers were shown an
animation (Figure 2).

Volunteers were required to accomplish 50 breathing
cycles in order to complete the exercise. Then volunteers
were asked to answer six questions by checking a YES/
NO checkmark (Table 1).

Additionally volunteers were encouraged to provide
comments of their own choice.

Objective A)
Comprehensibility of guidance system was evaluated
by questions # 1 and # 2. Its weak points were identified
by observing which of those negative answers correlated
with negative answers to questions # 5 or # 6. Addition-
ally user provided comments were screened to identify
those expressing comprehensibility issues of proposed
technology. Those such comments that correlated with
negative answers to questions # 5 or # 6 were also identi-
fied as comprehensibility’s weak points.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Question Options</th>
</tr>
</thead>
</table>
| A | #1 Are computer’s instructions for conducting breathing easy enough to understand? YES/NO
| | #2 Do you think that one can use the device without the help of a therapist? YES/NO
| | #3 Is the use of device painful or unpleasant in any way? YES/NO
| B | #4 Were the breathing exerciseS painful or uncomfortable in any way? YES/NO
| | #5 Do you think that you have achieved deeper breathing and consequently greater relaxation? YES/NO
| C | #6 Would you recommend such computer based breathing exercises to your friends if you were positive that it is helpful to them? YES/NO

Objective B)
Adverse events were evaluated by answers to ques-
tions #3 and #4. Additionally user provided comments
were screened to identify those that expressed unpleasant
feelings of any kind, and if found were included as ad-
verse events.

Objective C)
Design flaws that correlate with poor user’s experience
were assessed by identifying which answers to questions
#1, #2, #3, and #4 correlate with negative answers to
questions #5 or #6. Additionally all comments that cor-
relate with negative answers to questions #5 or #6 were
identified as design flaws.

3. Results
Minimum 7 volunteers and maximum 10 volunteers par-
ticipated in a trial each day. Each volunteer participated
in a trial only once and none of them was withdrawn
from the trial. All volunteers answered all the questions
in the questionnaire. The results are shown in Table 2.
Weak points of comprehensibility are A1) applying
headset (21%) and A2) adhering to breathing exercises
instructions (7%). B) No adverse events are identified. C)
Design flaws that correlate with poor user’s experience
are C1) the unpleasant feeling induced by watching the
computer screen (21%) and C2) ease/difficulty of physi-

cally applying headset (14%).

4. Discussion
Other devices for breathing exercises require users to
force air into device, such as Frolov device (Dinamika
LTD, Russia), [15-19] PowerLung (Powerlung inc.) [20],
SpiroBall/ThreeBall (Leventon Barcelona)\(^1\) [21], and
Threshold PEEP/IMT (Respironics Healthscan Inc.)\(^2\),
[22]. Using acoustic microphone positioned in front of

\(^1\)Aquired by Werfen Corporation.
\(^2\)Aquired by Siemens Corporation.
user’s mouth has some obvious advantages over these devices. Firstly, blowing air into the microphone does not require physical contact with users’ mouth or lips. Therefore it provides fewer possibilities for infection. Secondly, using a microphone to assess the user’s breathing allows for the greatest possible interoperability with other electronic devices that have audio input codecs already implemented, such as mobile phones, tablets and portable music players. It thus allows for low cost integration with various computer games and other multimedia content to improve user’s experience and improve motivation for conducting breathing exercises. Thirdly, using a web browser to conduct breathing exercises allows for the greatest possible supervision of exercise implementation and change their breathing behavior without raising their dependence on technology. Such a behavior can already be observed in humans, for example, when a person exhales through pursed lips as a sign of relief. Some devices do not require a user to exhale against pressure, such as Resperate device (Intercure Ltd) [23-27] and so it has fewer benefits for COPD patients.

We conclude that conducting pursed lip breathing exercises by using an acoustic microphone in front of user’s mouth is feasible and should be further researched. Additionally we conclude that audio feedback might be more pleasant to some people.

5. Acknowledgements

This research was supported by the European Union through the European Social Fund and was coordinated by the Public Agency for Technology of the Republic of Slovenia (TIA) according to the program of Human Resources Development 2007-2013.

REFERENCES

http://dx.doi.org/10.1371/journal.pmed.0030442

http://dx.doi.org/10.3109/09593989509022395

http://dx.doi.org/10.1378/chest.101.1.75

http://dx.doi.org/10.1016/S1579-2129(06)70099-4

http://dx.doi.org/10.1177/1479972312472689

http://dx.doi.org/10.3109/03091902.2011.591481

http://dx.doi.org/10.1186/cc10081

http://dx.doi.org/10.1016/j.biopsycho.2010.02.013

http://dx.doi.org/10.1097/HJH.0b013e328012bf0f

http://dx.doi.org/10.1016/S0895-7061(03)00571-5

http://dx.doi.org/10.1038/jhh.2008.135