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Abstract 
The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotac-
tic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 
(Bl-90) wt% of sPB, have been investigated by means of differential scanning calorimetry (DSC), 
FT-IR, and wide-angle X-ray diffraction (WAXD) analyses. The melt-crystallization behavior of the 
blend samples was studied by DSC on the cooling process at constant rates. Bl-50, Bl-75, and Bl-90 
showed lower crystallization temperatures than the neat sPP. sPP in Bl-75 showed the lowest 
crystallization rate among the blend samples. Bl-90 showed a two-phase molten state, and sPP in 
Bl-90 crystallized via two-stepprocess. Time evolution of FT-IR spectroscopy at room temperature 
detected conformational transformation of the sPP polymer chain in the blend samples of Bl-50 
and Bl-75. The absorption peaks intensity in the FT-IR spectra derived from the helical conforma-
tions in the crystalline phase decreased, and the planar zigzag conformations in the amorphous 
and mesophase phases decreased over the crystallization time. The time evolution of the WAXD 
profile of Bl-90 indicated that sPP in the blend accelerated the crystallization of sPB. The crystal-
lized Bl-10, Bl-25, and Bl-50 samples showed diffraction peaks in WAXD profiles and melting en-
dothermic peak in DSC profiles derived from only the sPP crystal. The crystallinity and melting 
temperature of sPP in the crystallized Bl-10, Bl-25, and Bl-50 samples were almost independent of 
the sPB content. Both the crystalline structure of sPP and sPB were detected in Bl-75 and Bl-90. 
Bl-75 showed the lowest crystallinity and melting temperature of sPP among the blend samples. 
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1. Introduction 
Development of transition metal catalysts for olefin polymerizations has enabled us to synthesize highly syndi-
otactic poly(α-olefin)s with narrow molecular weight and composition distributions [1]. The syndiotactic-poly 
(α-olefin)s, such as polypropylene (sPP), poly(1-butene) (sPB), poly(1-pentene), poly(1-hexene), poly(1-octene), 
poly(4-methyl-1-pentene), and poly(4-methyl-1-hexene), are of the polymers that can be obtained with Cs- 
symmetrical syndio-selective metallocene catalysts [2] [3]. The crystalline structures of some the syndiotatic- 
poly (α-olefin)s, sPP [4]-[14], sPB [15]-[17], poly(1-pentene) [18], and poly(4-methyl-1-pentene) [19] [20] have 
been reported.  

The Cs-symmetrical syndio-selective metallocene catalysts also promote copolymerization of olefins effec-
tively. The copolymerization of propylene with other olefins is one of the useful methods to control the crystal-
line structure and properties of sPP [20]-[32]. The syndiotactic-poly(propylene-co-olefin)s (olefin = ethylene, 
1-butene, 1-pentene, 1-hexene, and 4-methyl-1-pentene) were synthesized by a syndio-selective zirconocene 
catalyst, and the crystalline structure of the copolymers were studied [23] [27]. The copolymer with 1-butene 
showed a smaller melting point depression than the other copolymers with increasing the comonomer content. 
The 1-butene units in the copolmer expanded the unit cell along a axis with increasing the 1-butene content. A 
(t2g2)2 conformation in the orthorhombic unit cell of both the sPP and sPB crystals should make possible exis-
tance of the 1-butene units in the sPP crystalline phase. This phenomenon is regarded as isomorphism [33].  

Polymer blends of sPP with other crystalline polyolefins, such as isotactic-polypropylene (iPP) [34]-[38] or 
polyethylene [39] [40], have been investigated to modify the properties of sPP. For example, the blend of sPP 
with iPP increased ductility of sPP. The crystallization conditions strongly affected the crystallization behavior 
and crystalline structuresof the sPP-iPP blend. 

As mentioned above, syndiotactic-poly(propylene-co-1-butene) forms the isomorphous crystal. Both the syn-
diotactic-poly(propylene-co-1-butene) [41] [42] and iPP-isotactic-poly(1-butene) blend [43] show the iso-
morphous features. The questions which we would like to consider next are crystallization behavior and crystal-
line structure of the sPP-sPB blend. In this study, we investigate the crystallization of sPP-sPB blend from melt-
ing, and study the effect of sPB content on the crystallization behavior and crystalline structure of the blend 
samples. 

2. Experimental 
2.1. Materials 
sPP and sPB were synthesized by polymerization of the corresponding monomer with a syndio-selective zirco-
nocene catalyst, isopropylidene(cyclopentadienyl)(9-fluorenyl)zirconiumdichloride, using methylaluminoxane 
as a co-catalyst, according to the literature [23]. The number-average molecular weight (Mn) and molecular 
weight distribution (Mw/Mn) of sPP are Mn = 1.98 × 105 g∙mol−1, Mw/Mn = 2.1, and those of sPB are Mn = 5.4 × 
105 g∙mol−1, Mw/Mn = 2.2. The syndiotacticity of the polymers are high, and the [rrrr] pentad fractions of the po-
lymers are more than 0.9. 

2.2. Preparation of Polymer Blends 
sPP and sPB (total 1 g) were dissolved in a 15 mL of o-dichlorobenzene at 160˚C and stirred for 30 min. The 
heated polymer solution was slowly poured into a large excess of methanol with stirring to precipitate the poly-
mer blend. The blend sample was filtered and dried in vacuo at 30˚C for 6 h. The sPB contents in the blends are 
10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt%. 

2.3. Analytical Procedures 
The crystallization process was traced with a Rigaku DSC 8230. The blend samples were heated from room 
temperature to 180˚C at a heating rate of 10˚C/min and kept for 10 min, and cooled to 20˚C at the desired cool-
ing rate under nitrogen atmosphere. The samples for FT-IR measurement were melted at 200˚C and pressed un-
der 10 MPa pressure in a mold of 0.2 mm thickness, and rapidly cooled to room temperature by quenching into 
water. The IR spectra were measured using a FT-IR 800S (Shimadzu) or a Nexus 470 FT-IR (Thermo Nicolet). 

The blend samples were melted at 200˚C and pressed under 10 MPa pressure in a mold of 5 mm radius with 1 
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mm thickness, followed by quenching in water at room temperature. The samples were stored at room tempera-
ture for 4 weeks to prepare crystallized samples. The WAXD patterns of the crystallized samples were recorded 
on a Shimadzu XD-D1 using Cu Kα radiation. The differential scanning calorimetry (DSC) measurement of the 
crystallized polymers was investigated by a Shimadzu DSC-50 at a heating rate of 10˚C/min from room temper-
ature to 200˚C under nitrogen atmosphere. 

3. Results and Discussion 
3.1. Crystallization of sPP in the Blend for Short Period 
The crystallization process of sPP in the blend samples was traced by the DSC measurement from 180˚C to 
20˚C on the constant cooling rate of 3, 6, 12, or 24˚C/min. Figure 1 shows the DSC profiles of the blend sam-
ples on the cooling process at the cooling rate of 3˚C/min. sPP, Bl-10, and Bl-25 showed an exothermicpeak 
with a top (Tc) at 110˚C. Bl-50 or Bl-75 showed the broad exothermic peak with Tc at 108 or 101˚C, respectively. 
The Tcs of those samples were lower than that of sPP. Bl-90 showed the bimodal broad exothermic peaks with 
Tcs at 108˚C and 94˚C, indicating formation of two kinds of crystalline structures. The Tcs of the blend samples 
detected on all the cooling rates are summarized in Table 1. The Tcs of sPP in the blend samples decreased with 
increasing the cooling rate, as previously repoted about the neat sPP [44]. Bl-50, Bl-75, and Bl-90 showed lower 
Tcs than that of the neat sPP. The large a moount of sPB in the blend samples should decrease mobility of the 
sPP molecules due to the limitation of the occupied volume. The molecular state requires super cooling to crys-
talize, and decreases the Tc of sPP in those blend samples.  

Bl-90 showed the bimodal exothermic peaks in the DSC profiles. A Tc of Bl-90 detected at the higher temper-
ature was almost same to that of the neat sPP. The result indicates that a portion of sPP would form isolate crys- 
 

 
Figure 1. DSC profiles of (i) sPP, (ii) Bl-10, (iii) Bl-25, (iv) Bl-50, (v) Bl-75, 
and (vi) Bl-90 on the cooling process at a rate of 3˚C/min.                 

 
Table 1. Crystallization temperature (Tc) and rate of sPP on the constant cooling process.                                   

Cooling 
rate 

˚C/min 

sPP Bl-10 Bl-20 Bl-50 Bl-75 Bl-90 

Tc 
˚C 

t1/2
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s 
Tc 
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˚C 

t1/2
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s 
Tc 
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s 
Tc 
˚C 

t1/2
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3 110.0 3.2 110.0 3.2 110.0 3.0 107.9 3.0 100.8 3.2 107.9, 96.7 3.2 

6 104.7 1.8 104.7 1.9 104.8 2.0 102.7 1.8 94.2 2.3 102.5, 88.7 2.0 

12 99.2 0.98 99.0 1.0 99.0 1.1 97.0 1.0 87.4 1.4 96.0, 81.6 1.1 

24 96.3 0.75 96.0 0.83 95.5 0.80 93.4 0.77 83.4 1.0 92.0, 74.2 0.53 

a: The half time of crystallization. 
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tals in Bl-90. Compatibility of sPP and sPB at the molten state was observed with with hot-stage microscopy at 
200˚C. The blend samples of Bl-10, Bl-25, Bl-50, and Bl-75 showed the miscible molten phase. On the other 
hand, the micro graphs of Bl-90 indicated the texture derived from the two-phase separation. The crystallization 
from the two-phase separated molten state should induce the complex crystallization process and form the two 
kinds of crystals of sPP in Bl-90. 

Figure 2(A) and Figure 2(B) show relationship between crystallization time (t) and weight fraction of crys-
tallized sPP at time t, X(t), of Bl-25 and Bl-90. Bl-25 showed sigmoid curves with induction periods for the nuc-
leation at the early stage of crystallization as shown in Figure 2(A). Other blend samples, except Bl-90, also 
showed the similar profiles. By contrast, the crystallization profile of Bl-90 indicated two-step crystallization, as 
shown in Figure 2(B).  

The half time of the crystallization (t1/2), t at X(t) = 0.5, of the blend samples on the constant cooling rates is 
summarized in Table 1. The t1/2s of Bl-10, Bl-25, and Bl-50 were almost same. The t1/2s of Bl-75 were larger 
than those of the other blend samples. 

Supahol investigated kinetics of non-isothermal crystallization of sPP by various macro kinetic models, and 
found that Ozawa model was suitable to study the crystallization kinetics of sPP [44]. We used this model to 
study the crystallization kinetics of sPP in the sPP-sPB blend samples. Non-isothermal crystallization behavior 
 

 
(A) 

 
(B) 

Figure 2. Relationship between crystallization time (t) and weight fraction of 
crystallized sPP crystalized at time t, X(t), of (A) Bl-25, and (B) Bl-90 from 
180˚C to 20˚C at the cooling rate of 3˚C, 6˚C, 12˚C, or 24˚C/min.                    
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on a constant cooling rate ϕ of polymers can be analyzed by the following Equation (1), developed by Ozawa 
[45]: 

( ){ }ln ln 1 lnX t nχ φ− − = −                                   (1) 

where χ represents the cooling crystallization function and n represents Avrami exponent. The Avrami exponent 
of sPP in the blend samples was determined by the slope of the plots between ln|ϕ| and ln{–ln[1 – X(t)]} at the-
constant temperatures. Figure 3 shows the relationship between ln|ϕ| and ln{–ln[1 – X(t)]} of the blend samples 
at 100˚C. The Avrami exponents (n) of the neat sPP, Bl-10, Bl-25, and Bl-50 were approximately 2.8 - 2.9. Bl- 
75 showed the large n (4.8). Bl-90 did not showed linearity of the plots. The Avrami exponents (n) and the cor-
responding correlation (r2) of the plots at various temperatures of the blend samples are summarized in Table 2. 
The n values increased with increasing of the temperatures, as previously reported about the crystallization of 
sPP [44]. The large n values of Bl-75 should be caused by the slow crystallization of sPP in the blend samples. 
Most of the plots of Bl-90 did not show linearity. The cooling rate strongly affected the two-step crystallization 
behavior of sPP in Bl-90 from the two-phase separated molten state. 
 

 
Figure 3. Relationship between ln|ϕ| and ln{–ln[1 – X(t)]} of sPP (○) and 
sPP-sPB blends, Bl-10 (△), Bl-25 (□), Bl-50 (◇), Bl-75 (●), and Bl-90 (▲) 
at 100˚C.                                                                   

 
Table 2. Avrami exponent of sPP and sPP-sPB onnon isothermal crystallization determined by Ozawa analysis.             

T 
˚C 

sPP Bl-10 Bl-20 Bl-50 Bl-75 Bl-90 

n r2 n r2 n r2 n r2 n r2 n r2 

106 5.14 0.97           

104 3.67 0.96 4.35 0.99 4.05 0.97 4.92 0.97     

102 2.82 0.96 3.51 0.99 3.20 0.97 3.67 0.98     

100 2.77 0.99 2.83 0.99 2.75 0.99 2.94 0.98 4.80 0.98 5.12 0.77 

98   2.32 0.99 2.38 0.99 2.57 0.99 4.66 0.99 2.43 0.89 

96         3.81 0.99 1.60 0.96 

94         3.43 0.99 1.11 0.99 

92           0.79 0.83 

n: Avrami exponent, r2: Corresponding correlation of the plots. 
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3.2. Crystallization Process of Blend Samples for Long Period 
The crystallization process of the blend samples at room temperature was traced by FT-IR spectroscopy to study 
the structure transformation of sPP and sPB in the blend samples for long period. The FT-IR spectra of sPP, 
Bl-10, and Bl-25, did not show any time change. The results indicate that the structures of the crystalline, me-
sophase, and amorphous phase of sPP in the samples should be fixed within a short period approximately 2 min. 
Figure 4 shows the time-resolved FT-IR spectraofBl-75. The peaks intensity at 811, and 867 cm−1 derived from 
the helical structure of sPP in the crystal [46]-[48] increased with increasing the crystallization time within 15 
min. Bl-50 also showed the slight increase of the intensity of these peaks during the crystallization within 5 min. 
An isothermal slow crystallization of sPP at high temperatures showed a similar time change of the FT-IR spec-
tra [49]. The slow crystallization of sPP in Bl-50, and Bl-75 should induce the time change of the intensity of the 
peaks observed in FT-IR spectroscopy. sPB should disturb the formation of the helical structure in the crystal-
line phase of sPP during the crystallization from the miscible molten phase of Bl-50 and Bl-75. Figure 5 shows 
the time-resolved FT-IR spectra of Bl-90. The spectra did not show any time dependence of the profiles of those 
absorption peaks. The crystal of sPP should be formed independent of sPB from the two-phase molten sample of 
Bl-90. 

The FT-IR spectroscopy detects the helical conformation and the planar zigzag conformation in the amorph-
ous phase and mesophase of sPP. The peak intensity at 1153 cm−1, derived from planar zigzag conformations in 
 

 
Figure 4. Time-resolved FT-IR spectra of Bl-75 crystallized for 2 (bottom), 5, 
10, 15, 20, 30, 45, 60, 90, and 120 (top) min.                              

 

 
Figure 5. Time-resolved FT-IR spectra of Bl-90 crystallized for 3 (bottom), 5, 
10, 15, 20, 30, 45, 60, 90, and 120 (top) min.                               
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the amorphous phase, of the Bl-50 and Bl-75 samples decreased with increasing the crystallization time. The 
absorption peaks derived from the planar zigzag and the helical conformations in the mesophase are detected at 
963 and 977 cm−1, respectively [46]-[48]. Intensity ratio of the peaks at 963 and 977 cm−1 R(A963/A977) is useful 
to discuss the conformational change of sPP in the mesophase quantitatively, as previously reported [50]-[52]. 
Figure 6 shows a relationship between the crystallization time and the R(A963/A977) of all the samples. Bl-50 and 
Bl-75 showed decrease of R(A963/A977) ratio with increasing the crystallization time due to the decrease of the 
peak intensity at 963 cm−1. By contrast, the R(A963/A977) ratios of other samples were almost independent of the 
crystallization time. These results indicate that the transformation of the planar zigzag conformations in the me-
sophase of sPP slowly occurs in Bl-50 and Bl-75. One explanation for the results is that sPB of these blend sam-
ples would permeate in the mesophases of sPP, and would decrease the mobility of the polymer chains in the 
planar zigzag conformation. 

All the crystallized blend samples (crystallization for 120 min) showed lower R(A963/A977) values than that of 
the neat sPP. The FT-IR spectra cleared that the decrease of the absorbance intensity at 963 cm−1 (A963), derived 
from planar zigzag conformations of the mesophase phase, caused the decrease of the R(A963/A977) values in the 
blend samples. Bl-75 showed the lowest R(A963/A977) value among the blend samples. These results indicate that 
sPB prevents the formation of the planar zigzag conformations in the mesophase formed on the cooling process 
from the miscible molten state. The R(A963/A977) value of Bl-90 was larger than that of Bl-75, due to the isolated 
crystallization of sPP and sPB from the phase-separated molten state. 

Slow crystallization of sPB in Bl-90 makes it possible to trace the crystallization process by WAXD. Figure 7 
shows the time evolution of the WAXD profiles of Bl-90 and sPB. It took about 4 weeks to almost complete the 
crystallization of sPB due to its low crystallization rate [40]. By contrast, the crystallization of sPB in Bl-90 
completed within 1 week. In the same way, the time evolution of the FT-IR spectra of Bl-90 showed rapid in-
crease of the peak intensity derived from the crystalline structure of sPB at 993 and 1209 cm−1 for 1 week crys-
tallization, as shown in Figure 8. These results indicate that addition of 10 wt% of sPP to sPB accelerates the 
crystallization of sPB. sPP crystals in Bl-90 would play a role of a nucleating agent for sPB. 

3.3. Crystalline Structure of Blend Samples 
Figure 9 shows the WAXD patterns of sPP, Bl-10, Bl-25, Bl-50, and Bl-75 crystallized at room temperature for 
4 weeks. The diffraction angles of the WAXD profiles are summarized in Table 3. sPP and the blend samples 
Bl-10, Bl-25, Bl-50, and Bl-75 showed the diffraction peaks at 2θ = 12.1˚, 15.8˚, and 20.5˚ derived from (200), 
(010) or (020) and (220, 121) reflection planes of the sPP crystal, respectively. Bl-75 also showed a weak dif-
fraction peak derived from the sPB crystal at 2θ = 10.5˚. Bl-90 showed the diffraction peaks derived from not 
 

 
Figure 6. Relationship between crystallization time and intensity ratio of the 
absorbance at 963 and 977 cm−1, R(A963/A977) of sPP (○) and sPP-sPB blends, 
Bl-10 (△), Bl-25 (□), Bl-50 (◇), Bl-75 (●), and Bl-90 (▲).                 
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(A) 

 
(B) 

Figure 7. WAXD profiles of (A) Bl-90 and (B) sPB crystallized for (a) 1, (b) 
2, (c) 3, and (d) 4 week.                                                    

 

 
Figure 8. FT-IR spectra of Bl-90 crystallized for 3 h (bottom) 1, 2, 3, and 4 
week (top).                                                         
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Figure 9. WAXD patterns of sPP and sPP-sPB blends crystallized at room 
temperature for 4 weeks, (i) sPP, (ii) Bl-10, (iii) Bl-25, (iv) Bl-50, and (v) 
Bl-75.                                                              

 
Table 3. Diffraction angles and thermal properties of sPP, sPP-sPB blends, and sPB.                                   

Sample 
sPB 
wt% 

sPP sPB 

TmPP
a 

˚C 
HmPP

b 
J/g 

TmPB
a 

˚C 
HmPB

b 
J/g 

2θ (˚)  2θ (˚) 

(200) (010) 
(200) 
(122) 

I200/I010
c (200) (110) (210) 

sPP 0 12.3 15.9 20.5 1.41    147.7 42.3   

Bl-10 10 12.3 15.9 20.5 1.12    147.0 41.2   

Bl-25 25 12.3 15.9 20.5 1.05    147.0 40.8   

Bl-50 50 12.3 15.9 20.5 1.03    146.8 40.4   

Bl-75 75 12.3 15.9 20.5 0.93 10.5   142.0 30.5 37.9 4.8 

Bl-90 90 11.9    10.5 15.3 19.1 144.5 32.8 39.3 10.4 

sPB 100     10.4 15.2 19.0   44.7 9.6 

a: Melting temperature derived from sPP (TmPP) or sPB (TmPB), b: Heat of fusion derived from sPP (ΔHmPP) or sPB (ΔHmPB) determined by DSC, c: 
Intensity ratio of the diffraction peaks derived from (200) and (010) planes of sPP crystal. 
 
only the sPB crystal at around 2θ = 10.5˚, 15.3˚, and 19.1˚ but a weak peak derived from the (200) planes of sPP 
at 2θ = 11.9˚, as shown in Figure 7(A). The diffraction angles of sPB in Bl-90 were almost same to those of sPB 
derived from the (200), (110), and (210) planes, respectively, as shown in Figure 7(B). 

Figure 10 illustrates the DSC melting curves of the blend samples, which were crystallized at room tempera-
ture for 4 weeks, on the heating process form room temperature to 200˚C at a heating rate of 10˚C/min. The data 
are summarized Table 3. Bl-10, Bl-25, and Bl-50 showed a melting peak at around 147˚C derived from melting 
of the sPP crystal. The melting temperature (TmPP) and heat of fusion (ΔHmPP) of sPP in the bled samples showed 
only a slight decrease with increasing the sPB content. The DSC melting curves of Bl-75 and Bl-90 showed two 
melting peaks at around 38˚C - 40˚C and 142˚C - 147˚C. The lower melting peak is derived from the melting of 
sPB crystal. The TmPP and ΔHmPP values of sPP in Bl-75 were the lowest among the blend samples. This result 
agrees with the WAXD profiles, that Bl-75 shows the lowest peak intensity, as shown in Figure 9. The melting 
temperature of sPB (TmPB) in the blend samples, detected in Bl-75, Bl-90, and sPB, increased with increasing of 
the sPB content. The increase of occupied volume of sPB in the blend should promote the formation of the sPB 
crystals with thick lamellae.  
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Figure 10. DSC melting curves of sPP and sPP-sPB blends crystallized at 
room temperature for 4 weeks, (i) sPP, (ii) Bl-10, (iii) Bl-25, (iv) Bl-50, (v) 
Bl-75, (vi) Bl-90, and (vii) sPB.                                            

4. Conclusions 
The crystallization and crystalline structure of the sPP-sPB blends were successively investigated with the 
WAXD, DSC, and FT-IR measurements. The WAXD patterns and the DSC profiles showed that the large 
amount of sPP in the blend samples in Bl-10, and Bl-25 prevented the crystallization of sPB. The crystallization 
behavior and thermal properties of sPP in those blend samples were not affected by sPB. The Tcs of sPP in Bl-50, 
Bl-75, and Bl-90 were lower than that of the neat sPP. The Tm and ΔHm of sPP in Bl-75 were the lowest among 
the blend samples. A part of sPP in Bl-90 formed the isolate crystals, and induced the heterogeneous two-step 
crystallization. The portion of planar zigzag conformations in the mesophase and amorphous phase of sPP in 
Bl-50, and Bl-75 gradually decreased with increasing the crystallization time. The ratio of the planar zigzag 
conformation to the helical (t2g2)2 conformation of sPP in the mesophases decreased with increasing of the sPB 
content in the blend samples, except Bl-90. sPB could be crystallized in Bl-75 and Bl-90. 

More detailed studies, especially transmission electron microscopic study and solid NMR spectroscopy, of the 
crystalline structure of the blend samples are now being carried out, and the results will be reported elsewhere. 
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