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Abstract 
The acceleration mechanisms by a photosensitive onium salt for the nitroxide-mediated photo-
controlled/living radical polymerization (photo-NMP) were determined. The photo-NMP of methyl 
methacrylate was performed by irradiation at room temperature using 4-methoxy-2,2,6,6-tetra- 
methylpiperidine-1-oxyl (MTEMPO) as the mediator and (2RS, 2’RS)-azobis(4-methoxy-2,4-dime- 
thylvaleronitrile) as the initiator. The polymerization was accelerated in the presence of (4-tert- 
butylphenyl)diphenylsulfonium triflate (tBuS) to produce a polymer with a molecular weight dis-
tribution as narrow as the polymerization in its absence. (±)-Camphor-10-sulfonic acid or 2-fluoro- 
1-methylpyridinium p-toluenesulfonate had no effect on the polymerization speed, suggesting that 
tBuS did not serve as the photo-acid generator for the photo-NMP. It was found that the accelera-
tion of the polymerization was based on the electron transfer from MTEMPO into tBuS in the ex-
cited state to temporarily generate a free radical propagating chain end and an oxoaminium salt 
(OAS), the one-electron oxidant of MTEMPO. This electron transfer mechanism was verified on the 
basis of the fact that the photo-NMP in the presence of tBuS was still accelerated by triphenylamine, 
the electron transfer inhibitor, to partly produce a polymer with an uncontrolled molecular 
weight. The formation of an uncontrolled molecular weight polymer indicated the generation of a 
free radical propagating chain end due to the deactivation of the OAS by the triphenylamine. It was 
deduced that tBuS served as the electron acceptor from MTEMPO in the excited state to tempora-
rily produce a free radical propagating chain end along with OAS, resulting in the acceleration of 
the polymerization. 
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(4-tert-Butylphenyl)Diphenylsulfonium Triflate, 4-Methoxy-2,2,6,6-Tetramethylpiperidine-1-Oxyl, 
Oxoaminium Salt 

 
 

1. Introduction 
The controlled/living radical polymerization (CLRP) has been an indispensable technique to design and create 
highly functional and efficient materials supporting today’s cutting-edge technologies in many fields, such as 
drug and gene deliveries [1]-[4] and anti-bacterial treatment [5] in medical care, photolithography in electronics 
[6]-[8], water purification in environmental engineering [9], and surface modifications of wettability in the tex-
tile and vehicle industries [10]-[12]. The significance of the CLRP is the improvement of the functions by un-
ifying the physical properties based on strict control of the molecular weight related to the structure of the po-
lymers. Many CLRP systems have been established using various catalysts to provide well-controlled molecular 
weight polymers; e.g., the atom transfer radical polymerization (ATRP) [13] [14], reversible addition-fragmen- 
tation chain transfer (RAFT) [15], organoheteroatom-mediated polymerization [16], nitroxide-mediated polyme-
rization (NMP) [17], iniferter polymerization [18], and iodide transfer polymerization [19] [20]. These thermal 
CLRPs produced a number of architectures with precisely controlled structures including supra molecules with 
high dimensional structures.  

The photo-induced CLRP provides an environmental benefit, local application, and processing without ther-
mal damage. The photo-CLRP to strictly control the molecular weights for various monomers was achieved by 
Yamago and coworkers using the organotellurium complex [21]. The photo-induced systems were also devel-
oped for the ATRP [22]-[24], RAFT [25], and iniferter polymerization [26] [27], although some of them still 
required heating to proceed [23] [24]. On the other hand, the photo-induced NMP to highly control a molecular 
weight have not been attained in spite of the fact that many efforts have been made using the mediators sup-
ported on the photosensitive groups [28]-[33]. In recent years, the photo-NMP using 4-methoxy-2,2,6,6-tetra- 
methylpiperidine-1-oxyl (MTEMPO) has been reported to proceed at room temperature to produce polymers 
with a comparatively narrow molecular weight distribution (Mw/Mn ≈ 1.4) [34]-[47]. This photo-NMP was ac-
celerated in the presence of an iron-arene complex [48] and photosensitive onium salts, such as the diarylido-
nium salts [34] [35] and triarylsulfonate salts [49] [50]. These onium salts served only as the accelerator for the 
polymerization and had no influence on the molecular weight control. However, the mechanisms of the accele-
ration by the onium salts were unclear, although possible mechanisms were proposed [51]-[53]. The present 
study determined that the acceleration by the onium salts for the photo-NMP was based on the electron transfer 
mechanism from MTEMPO to the onium salt in the excited state. This paper describes the acceleration mechan-
isms of the photo-NMP using a photosensitive triarylsulfonium salt. 

2. Experimental 
2.1. Instrumentation 
The photopolymerization was carried out using an Ushio optical modulex BA-H502, an illuminator OPM2- 
502H with a high-illumination lens UI-OP2SL, and a 500 W super high-pressure UV lamp (USH-500SC2, Ushio 
Co. Ltd.). Gel permeation chromatography (GPC) was performed using a Tosoh GPC-8020 instrument equipped 
with a DP-8020 dual pump, a CO-8020 column oven, and a RI-8020 refractometer. Three polystyrene gel col-
umns, Tosoh TSKGEL G2000HXL, G4000HXL, and G6000HXL were used with N,N-dimethylformamide as the 
eluent at 40˚C. 

2.2. Materials 
MTEMPO [54] and oxoaminium hexafluoroantimonate (OASbF6) [55] were prepared as reported previously. 
(2RS, 2’RS)-Azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) was obtained by separation from a mix-
ture of the racemic and meso forms of 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) [56]. Methyl methacry-
late (MMA) was washed with 5 wt.% sodium hydroxide solution and water, then distilled over calcium hydride. 
(4-tert-Butylphenyl)diphenylsulfonium triflate (tBuS) was purchased from Sigma-Aldrich. (±)-Camphor-10- 
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sulfonic acid (CSA) was obtained from Wako Pure Chemical Industries. 2-Fluoro-1-methylpyridinium p- to-
luenesulfonate (FPT) and triphenylamine were purchased from Tokyo Chemical Industry. These chemicals were 
used as received. Exrapure N2 gas with over 99.9995 vol% was purchased from Taiyo Nippon Sanso Corpora-
tion. 

2.3. The Photo-NMP Using MTEMPO: General Procedure 
MMA (936.0 mg, 9.35 mmol), r-AMDV (14.0 mg, 0.0454 mmol), MTEMPO (9.0 mg, 0.0483 mmol), and tBuS 
(12.0 mg, 0.0256 mmol) were placed in an ampoule. The contents in the ampoule were degassed several times 
using a freeze-pump-thaw cycle and were charged with N2. The photopolymerization was carried out in the ni-
trogen atmosphere at room temperature for 5.5 h using a reflective light from a mirror in order to avoid any 
thermal polymerization caused by the direct irradiation. The product was dissolved in dichloromethane (10 mL). 
The solution was concentrated by an evaporator to remove the dichloromethane and unreacted monomer and 
was freeze-dried with benzene (15 mL) at 40˚C to obtain the product as white powder (657.1 mg). The monomer 
conversion was estimated gravimetrically. The product was dissolved in dichloromethane (5 mL) and poured 
into hexane (500 mL). The precipitate collected by filtration and dried in vacuo for several hours was subjected 
to GPC analysis. 

2.4. The Photo-NMP Using OAS: General Procedure 
MMA (936.0 mg, 9.35 mmol), r-AMDV (14.0 mg, 0.0454 mmol), and OASbF6 (20.4 mg, 0.0483 mmol) were 
placed in an ampoule. The contents in the ampoule were degassed several times using a freeze-pump-thaw cycle 
and were charged with N2. The photopolymerization was carried out in the nitrogen atmosphere at room temper-
ature for 5.5 h using a reflective light from a mirror. The product was dissolved in dichloromethane (10 mL). 
The solution was concentrated by an evaporator to remove the dichloromethane and unreacted monomer and 
was freeze-dried with benzene (10 mL) at 40˚C to obtain the product as white powder (299.0 mg). The monomer 
conversion was estimated gravimetrically. The product was dissolved in dichloromethane (1.5 mL) and poured 
into hexane (200 mL). The precipitate collected by filtration and dried in vacuo for several hours was subjected 
to GPC analysis. 

3. Results and Discussion 
The photo-NMP of MMA was performed at room temperature for 5.5 h using MTEMPO as the mediator and 
r-AMDV as the initiator in the presence of tBuS. The polymerization was accelerated by tBuS at a 0.53 molar 
ratio to MTEMPO to produce poly(MMA) at a 68% MMA conversion (Mn = 13,600, Mw/Mn = 1.43), whereas 
the polymerization in the absence of tBuS yielded a polymer at a 35% conversion (Mn = 8490, Mw/Mn = 1.40). 
It was confirmed that tBuS played a role only as the accelerator because the polymerization provided a molecu-
lar weight distribution as narrow as that by the polymerization in its absence. The photosensitive onium salts are 
often used as a proton source in many photoreactions by eliminating a proton from the solvent or monomer in 
the excited state [57]. While the photosensitive onium salts serve as a photo-acid generator, the salts also act as 
an electron acceptor in the presence of an electron donor in the excited state [58] [59]. Hence, two mechanisms 
are considered for the cause of the acceleration by tBuS for the MTEMPO-mediated photopolymerization as 
shown in Scheme 1. The polymerization should be accelerated by the protonation to MTEMPO when tBuS 
serves as the photo-acid generator, whereas the acceleration is caused by the temporary generation of a free rad-
ical propagating chain end along with the formation of an oxoaminium salt (OAS), the one-electron oxidant of 
MTEMPO, when tBuS acts as the electron acceptor. 

In order to clarify the mechanisms of the acceleration by tBuS, the possible mechanism of tBuS as the photo- 
acid generator was first explored. For the thermal nitroxide-mediated controlled/living radical polymerization, 
CSA and FPT accelerated the polymerization by serving as a proton donor or a Lewis acid [60]. These acids 
were adopted as the accelerator instead of tBuS for the MTEMPO-mediated photopolymerization (Table 1). 
Neither CSA nor FPT produced a significant difference in the MMA conversion and molecular weight distribu-
tion of the resulting polymers, indicating that the polymerization was not accelerated in the presence of the acid. 
Consequently, the role of tBuS as the photo-acid generator is negated for the acceleration of the polymerization. 

When tBuS acts as the electron acceptor from MTEMPO, the OAS is temporarily generated in the excited 
state. In order to verify this electron transfer mechanism for the acceleration, the polymerization using OASbF6  
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            Scheme 1. The acceleration mechanisms of the photo-NMP by tBuS.                      
 
            Table 1. The photo-NMP using MTEMPO in the presence of acida.                       

Acid Conversion (%) Mnb Mw/Mnb 
CSA 30 7990 1.36 
FPT 42 9250 1.40 
- 35 8490 1.40 

a. Acid/MTEMPO = 0.53, MTEMPO/r-AMVD = 1.06. Polymerization time = 5.5 h. b. Estimated by GPC based 
on PMMA standards. 

 
instead of MTEMPO was investigated. The polymerization using OASbF6 in the absence of tBuS produced a 
polymer at a 31% conversion (Mn = 9670, Mw/Mn = 1.35) at a 1.06 molar ratio of OASbF6/r-AMDV, while the 
MTEMPO-mediated polymerization yielded a polymer at a 35% conversion (Mn = 8490, Mw/Mn = 1.40) at the 
identical molar ratio of MTEMPO/r-AMDV. The polymerization by OASbF6 produced a polymer with a com-
paratively narrow molecular weight distribution at a conversion similar to that for the polymerization by 
MTEMPO, implying that OASbF6 served as the mediator to control the molecular weight as did MTEMPO. It is 
expected that the oxoaminium cation eliminated an electron from the counter anion to convert into MTEMPO in 
the excited state because it is difficult to eliminate an electron from the propagating radical chain end attached to 
the electron-withdrawing group. The conversion of the oxoaminium cation to MTEMPO by the electron elimi-
nation from the counter anion is supported by previous reports that the OAS eliminated an electron from elec-
tron donors to provide their radical cations, and converting into MTEMPO [61]-[65]. Accordingly, the polyme-
rization was examined in the presence of the electron transfer inhibitor, triphenylamine. These results are sum-
marized in Table 2. The MTEMPO-mediated polymerization was retarded by triphenylamine. This retardation 
was caused by preventing the bond cleavage between the propagating radical and MTEMPO due to more elec-
tron-donating triphenylamine, resulting in no influence on the molecular weight distribution. On the other hand, 
the OASbF6-mediated polymerization was accelerated by the triphenylamine, accompanied by the formation of 
a polymer with an uncontrolled molecular weight over 1,000,000. The ratio of the polymer with the uncontrolled 
molecular weight to that with the controlled molecular weight was estimated to be 0.454/0.546 for Mn = 
1,630,000/10,300 based on the area percent by the GPC analysis. The formation of the polymer with the uncon-
trolled molecular weight implies the generation of a free radical propagating chain end without the counter radi-
cal of the mediator, indicating the deactivation of OASbF6. This deactivation is considered to occur by the β- 
elimination of OASbF6 by the triphenylamine (Scheme 2). The triphenylamine has the potential to act as the  
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            Table 2. The photo-NMP in the presence of triphenylamine a.                            

Mediator Ph3N/Mediator Time (h) Conversion (%) Mnb Mw/Mnb 
MTEMPO 1.0 7.0 22 5200 1.35 
MTEMPO 0 5.5 35 8490 1.40 

OASbF6 1.0 5.5 49 1,630,000c 
10,300 

2.88 
1.47 

OASbF6 0 5.5 31 9670 1.35 

a. Mediator/r-AMVD = 1.06. b. Estimated by GPC based on PMMA standards. c. The ratio of the area % for Mn 
= 1,630,000/10,300 was 0.454/0.546. 

 

 
Scheme 2. The generation of a free radical propagating chain end based on the deactivation of 
OASbF6 by the triphenylamine.                                                     

 
electron donor to OASbF6, however this possibility is negated because OASbF6 should be converted into 
MTEMPO to control the molecular weight if the electron transfer occurs from the triphenylamine to OASbF6. 

In order to verify the formation of the OAS in the excited state by the electron transfer from MTEMPO to 
tBuS, the acceleration by tBuS for the MTEMPO-mediated photopolymerization was explored in the presence of 
the triphenylamine. The results are shown in Table 3. The triphenylamine significantly increased the polymeri-
zation rate, accompanied by broadening of the molecular weight distribution, indicating the formation of a po-
lymer with an uncontrolled molecular weight. This uncontrolled molecular weight along with the rapid polyme-
rization is caused by the generation of a free radical propagating chain end losing the mediator radical based on 
the deactivation of the OAS by the triphenylamine. It was confirmed that the OAS was formed in the excited 
state by the electron transfer from MTEMPO to tBuS (Scheme 3). tBuS served as the electron acceptor to tem-
porarily produce the OAS along with a free radical propagating end. The electron transfer from MTEMPO in the 
excited state lengthens the time for which the propagating radical is in the free state, causing an increase in the 
number of monomers inserted between the propagating radical and MTEMPO. Hence, this longer free state time 
of the propagating radical resulted in the acceleration of the polymerization. The propagating radical is coupled 
again with MTEMPO formed by the reverse electron transfer from the tBuS radical to the OAS. This reverse 
electron transfer maintains the molecular weight control of the polymerization against the acceleration by tBuS. 

The electron transfer mechanism for the acceleration by tBuS is supported by the photo-NMP of glycidyl me-
thacrylate (GMA) [66]. The uncontrolled photopolymerization initiated by r-AMDV in the presence of tBuS pro- 
vided a gel product due to the simultaneous progress of the free radical polymerization of the vinyl groups by r- 
AMDV and the cationic ring-opening polymerization of the epoxy group by tBuS serving as the photo-acid ge-
nerator [60]. On the other hand, the photo-NMP using MTEMPO in the presence of tBuS produced a poly(GMA) 
obtained only by the vinyl group polymerizing and retained the epoxy groups in the structure, supporting the fact 
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            Table 3. The acceleration by triphenylamine for the photo-NMP in the presence of tBuSa.     

Ph3N/tBuS Time (h) Conversion (%) Mnb Mw/Mnb 
1.0 2.5 88 18,600 2.32 
 0 5.5 68 13,600 1.43 

a. MTEMPO/r-AMVD = 1.06, tBuS/MTEMPO = 0.53. b. Estimated by GPC based on PMMA standards. 
 

 
Scheme 3. The electron transfer mechanism for the acceleration of the photo-NMP by tBuS.    

 
that tBuS served as the electron acceptor from MTEMPO during the photo-NMP.  

4. Conclusion 
The acceleration mechanisms by the photosensitive onium salts for the photo-NMP were determined. The onium 
salts did not serve as the photo-acid generator, but as the electron acceptor from MTEMPO to temporarily pro-
duce the OAS along with a free radical propagating end in the excited state. The formation of the OAS by the 
electron transfer was confirmed by obtaining a polymer with an uncontrolled molecular weight by the polyme-
rization in the presence of the electron transfer inhibitor. The conversion from MTEMPO into the OAS in the 
excited state lengthened the time for which the propagating radical was in the free state, resulting in the accele-
ration of the polymerization. MTEMPO that was reproduced by the reverse electron transfer from the onium 
radical to the OAS controlled the molecular weight. 
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