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Abstract 
The paper introduces a theoretical model aimed to calculate the ionization 
energies of many electron atoms and their ions. The validity of the model, 
which implements the statistical formulation of the quantum uncertainty to 
infer a simple formula of ionization energy, has been already proven in a pre-
vious paper comparing systematically experimental and calculated values for 
elements with atomic numbers 2 29Z≤ ≤ , whose electron configurations 
include all ions with numbers en  of electrons 2 en Z≤ ≤ . The present paper 
enhances and extends the results previously obtained; the approach is now 
generalized to include even the transition elements and in particular the lan-
thanides and actinides. The validity of the proposed model is proven examin-
ing all experimental data of ionization energies of these elements and their 
ions available in literature.  
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1. Introduction 

The calculation of the electron energy levels of atoms and ions is a challenging 
topic of quantum chemistry for its scientific [1] [2] and technological [3] 
importance. After the success of Bohr’s model, the next task was that of 
describing the many electron atoms. The first issue to be considered was then 
the mutual interaction between electrons. In the simplest case of He, for 
example, it is possible to calculate with classical methods the mutual repulsion 
energy between two electrons averaging the interaction between small elements 
of charge density of the first electron with that of the second electron in 1s 
orbitals [4]. Correcting the hydrogenlike binding energy of two electrons with 
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this repulsive term, the ionization energy of one electron from the neutral atom 
was then 01.5E  with 4 2

0 2E e m= � . Yet this value, 20.42 eV, poorly agrees 
with the experimental value 24.58 eV. A full quantum mechanical approach 
appeared soon necessary, e.g. to take into account also the electron spins. To this 
purpose the orbitals of many-electron atoms are assumed similar to those of the 
hydrogenlike atom, so the quantum numbers are still suitable to describe the 
energy levels of the orbitals; however, whereas in H the electron energy depends 
essentially on n only, in a many-electron configuration the orbital energies 
depend in general on l and s, and m as well in the presence of an external field. 

In general, the main problem of the theoretical approach to solve the wave 
equation of a cloud of electrons in the field of a nuclear charge is the electron 
correlation, due to the mutual interaction between electrons [5]. For example the 
Coulomb correlation concerns the spatial positions of electrons due to their 
repulsive interaction, whereas two electrons with parallel spins cannot be found 
at the same point in space according to the the so called Fermi correlation. 
Furthermore, a form of correlation is also related to the overall symmetry of the 
concerned quantum system. In principle the Schrödinger equation allows to take 
into account any effect possibly contributing to the electron energy level through 
an appropriate potential energy term, e.g. the mutual repulsion between 
electrons. However a simple analytical solution of the full Schrödinger equation 
does not exist because of the terms ijr  expressing the mutual distances between 
the i-th and j-th electrons; approximation methods are necessary. As the 
chemical properties of atoms, and thus the pertinent group of the periodic table, 
are essentially controlled by the outer valence shells, a typical approximation is 
to replace the nuclear charge Z e  with effective charge effZ e  accounting for 
the shielding effect of core electrons in the atom on the valence electrons. 

The variety of effects involved to describe how the dynamics of one electron is 
perturbed by the interaction with the other ones requires in general a difficult 
mathematical formalism. Electron correlation is someway considered by the 
Hartree-Fock (HF) approximation via the exchange term of electrons with 
parallel spin, whose anti-symmetric wave function is approximated by a single 
Slater determinant. Exact wave functions, however, cannot generally be ex- 
pressed in this way. A single-determinant approximation does not take fully into 
account Coulomb correlation, so that the electron energy calculated via the 
non-relativistic Schrödinger equation is higher than its true value. Currently 
approximate methods of calculation of energy levels implement HF and post-HF 
computational models [6], among which deserve to pay attention to the Con- 
figuration Interaction (CI) [7] and the Density Functional Theory (DFT) [8] [9]. 

CI is a variational method to solve the non-relativistic Schrödinger equation 
of a multi-electron system, whose wave function is defined mathematically by a 
linear combination of Slater determinants. The interaction is introduced by 
mixing different electronic states, which specify the orbital occupation [10]. The 
CI calculations are suitable to describe small quantum systems because the 
method requires long calculation times. 
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Larger quantum systems are approachable via the density functional theory 
(DFT), which is used to describe the ground state of the electronic structure of 
many-body systems, consisting of single atoms or atoms in condensed phase. 
The properties of quantum systems are determined by functionals, i.e. functions 
of an appropriate function that typically represents the space distribution of 
electron density of an assigned electron configuration. 

The calculation of the energy levels is particularly significant for the transition 
elements (TE) [11], whose technological importance is acknowledged mostly in 
catalysis [12] and electronics [13]. From a quantum standpoint the “Aufbau” of 
quantum states leaves empty some orbitals, according to the idea that the 
ground state corresponds to the minimum configuration energy [14]. 

In fact the “Aufbau” principle' is useful to account for the electronic structures 
of most atoms, yet it fails with some elements; the underlying theory is not 
generalizable “as such” to all elements of the periodic table [15]. The TE are 
characterized by the nd electron shell partially filled; this determines their 
positions in the periodic table. From a chemical point of view is interesting their 
chance of forming coordination compounds if a donor atom provides an 
electron that occupies an empty level; they act as Lewis acids to form complexes 
with a variety of Lewis bases. A coordination compound consists thus of one or 
more metal complexes, with a central metal atom/ion bonded to ions/molecules 
that contain one or more pairs of electrons shareable with the metal (ligands). 

Are identifiable four d block elements that involve the nd  and ( )1n s+  
levels. Owing to the energy of the level 4s lower than 3d, the electron 
configurations of elements with 3n = , the first block includes elements from Sc 
to Ni, whereas Cu has the “regular” 10 13 4d s  ground level configuration. 
Analogous considerations hold for the second d block series involving the levels 
4d and 5s of elements from Y to Ag. 

At higher Z, are acknowledged in the periodic table two more series, the so 
called 5d and 6d block series, known as lanthanides and actinides.The former 
includes elements from La to Hf through Au, the latter from Ac to Lr. 

The Lanthanides have a similar outer shell electron configuration and thus 
physical similarities. The peculiarity of these TE is that they have electrons in the 
f orbital. After La the energy of the 4f sub-shell is slightly lower than that of the 
5d sub-shell; so the electrons fill the former sub-shell before the latter. This 
causes the so called lanthanide contraction, where the 5s and 5p orbitals 
penetrate the 4f sub-shell; so the 4f orbital is not shielded from the increasing 
nuclear change, i.e. the atomic radius of the atom decreases throughout the 
series. This fact affects the ease at which lanthanides lose electrons, i.e. their 
basicity and thus their reactivity with other elements. The basicity decreases at 
increasing atomic numbers, which explains the different solubility of their salts 
and the formation of the complex species and their magnetic properties 
depending on whether the electrons are paired or unpaired. 

In the actinide series the energy in the 6d orbitals is lower in energy than in 
the 5f orbitals. Despite the energy gap between the 25 7if s  and 1 25 6 7if d s−  
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configurations is small, the electrons fill preferentially 5f orbital, 6d orbital and 
then 7s orbital. 

The 5f orbitals are not shielded by the filled 6s and 6p sub shells and do not 
shield effectively each other from the nucleus; their energies decrease rapidly at 
increasing atomic numbers. 

It is clear that the ground energy levels of these TE and their ions are the key 
to explain the configuration sequences at increasing Z and thus their chemical 
and physical properties. On the one hand, investigating the electron structure of 
TE is challenging from a theoretical point of view. While the general idea is clear, 
i.e. the stable state corresponds to that of minimum energy, the calculation of the 
energy levels is very complex mostly because are involved several electrons; also, 
the schematic approximation of inner shell and outer shell, acceptable for 
example in the case of the alkali metals, is doubtful because the anomalous 
“Aufbau” involves inner d, f and s shells with several electrons. On the other 
hand, this topic has crucial technological implications: the diamagnetic or 
paramagnetic properties of the various elements depend on their electron 
configurations, as well as the catalytic properties and the ability to form 
coordination compounds and importance in electronics [16]. Is comprehensible 
thus the usefulness of investigating in particular the energy levels and ionization 
energies of TE, even at the scale of isolated ions/elements only, through a general 
and systematic calculation scheme. 

It is worth quoting in this respect a possible theoretical approach alternative 
to CI and DFT based on the statistical formulation of the quantum space time 
uncertainty [17], initially aimed to describe isolated atoms/ions and successively 
extended to the diatomic molecules [18]. The approach proposed here is an 
extension and enhancement of the previous model, purposely aimed to include 
the TE. Indeed the validity of the model was preliminarily tested up to an 
electron configuration of atoms and their ions up to 29 electrons. In the quoted 
paper the elements examined were characterized according to the standard 
“Aufbau” principle; remained instead untested and unanswered the problem of 
verifying whether or not the model could also describe the peculiar filling 
sequence of the electron levels in the TE. 

Just this is the purpose of the present paper. 

2. Physical Background 

This section reminds shortly a few crucial points of [17] to better understand the 
model proposed in this paper and make the following exposition as self 
contained as possible. 

It is possible to describe the properties of many electron atoms/ions 
implementing uniquely the statistical formulation of the space time uncertainty  

.xx p n tε∆ ∆ = = ∆ ∆�                      (2.1) 

The second equality follows from the former defining t x v∆ = ∆  and 

xv pε∆ = ∆ . Both equalities introduce uncertainty ranges of the respective 
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dynamical variables, n is the number of allowed quantum states. All range sizes 
are by definition unknown and conceptually unknowable. For brevity this 
equation has been introduced as unique postulate of the model, despite it has 
been actually inferred as a corollary of an operative definition of space time [19]. 
The following remarks exemplify shortly on the one hand how to exploit the 
agnostic positions (2.1) replacing systematically the local dynamical variables 
with the respective uncertainty ranges, and on the other hand to show that the 
minimal information accessible in this way through Equation (2.1) only is in fact 
equivalent to that available through the usual operator formalism of wave 
mechanics. 

The quantum angular momentum M  and energy elε  of hydrogenlike 
atoms are concerned first. 

The classical component of M  along an arbitrary direction defined by the 
unit vector w is wM = × ⋅r p w , being r  the radial distance of any particle 
from the origin O of an arbitrary reference system R and p  its momentum. 
The positions →∆r r  and →∆p p  enable the number l of states to be 
calculated considering only the total ranges ∆r  and ∆p  of distances and 
momenta physically allowed to the particle, about which no hypothesis is 
necessary; instead the random local values r  and p  themselves have no 
physical interest. So ( ) ( )wM = ∆ ×∆ ⋅ = ×∆ ⋅∆r p w w r p , i.e. wM = ∆ ⋅∆W p  
being ∆ = ×∆W w r ; hence wM  has itself a range of allowed values 
correspondingly to all local moduli of ×w r  and p . If ∆p  and ∆W  are 
orthogonal, then 0wM = ; else, rewriting ∆ ⋅∆W p  as ( )W W∆ ⋅∆ ∆ ∆p W  
with W∆ = ∆W , the component Wp W±∆ = ∆ ⋅∆ ∆p W  of ∆p  along ∆W  
yields w WM W p= ±∆ ∆ . Thus, according to Equation (2.1), wM l= ± � , being l 
the usual notation for the integer quantum number of angular momentum. So 

wM  is effectively a multi-valued function because of the uncertainties initially 
postulated for r  and p . Moreover one component of M  only, e.g. along the 
z-axis, is knowable; repeating the same approach for the y and x components 
would trivially mean changing w . Just this conclusion on the physical 
uniqueness of wM  suggests that the average values 2

xM , 2
yM  and 2

zM  
should be equal; so the quantity of physical interest to describe the properties of 
quantum angular momentum is l, as a function of which 2M  is now inferred as 
well. The components averaged over the possible states summing ( )2l�  from 

L−  to L+ , where L is an arbitrary maximum value of l, yield  
( ) ( )22 2 1i

i

l L
i l LM l L=

=−
= +∑ �  i.e.  

( )
3

2 2 2

1
1 .i

i
M M L L

=

= = +∑ �  

Consider the quantum system formed by a particle in a central force field, e.g. 
an electron around a nuclear charge. Assuming the origin O of R on the nucleus, 
let 2 22p m Ze rε = −  be the classical electron energy, where m is the electron 
mass. As 2 2 2 2

rp p M r= + , putting again r rp p→∆  and r r→∆ , one finds 
2 2 2 22 2rp m M m r Ze rε = ∆ + ∆ − ∆ . Two numbers of states, i.e. two quantum 

numbers, are expected because of the radial and angular uncertainties. In effect 
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the eqs (2,1) and the quantum 2M  yield  
( )2 2 2 2 2 22 1 2n m r l l m r Ze rε = ∆ + + ∆ − ∆� � , which reads  

( ) 2 21 2o ol l m r Eε ε= + + ∆ −�  with 2 4 2 22oE Z e m n= �  and  

( )22 2o n r Ze m n mε = ∆ −� � . Minimize ε  putting 0oε = , which yields  

2 2 2

2 , ,C C
n n er n

Z mc cZe m
λ λ α

α
∆ = = = =

� �
�

             (2.2) 

and thus ( ) 2 2
min 1 1 ol l n E nε  = + −  ; so 1l n≤ −  in order to get 0ε < , i.e. a 

bound state. The reason of both ways to express r∆  will be explained in the 
section 6. Here are of interest the electron energy levels and rotational energy of 
the atom as a whole around O  

( )22 2 4

min 0 0 02 4 2

1
, , , .

2 2el rot el rot
Z l lZ Ze e mE E E

rn n
ε ε ε ε ε

+
= + = − = − = =

∆ �
 (2.3) 

It appears once more that neither the local coordinates nor the range sizes 
play any role in determining quantum angular momentum and energy levels. 
The physical meaning of r∆  is related to the early Bohr radius, i.e. elε  is due 
to charges of opposite sign delocalized within a diametric distance 2 r∆  apart. 

Note that n and l are properties of the phase space, i.e. numbers of allowed 
quantum states; they describe the whole quantum system "nucleus + electron" 
rather than the nucleus and the electron separately, in agreement with the fact 
that nucleus and electron share a unique uncertainty radial range. 

Consider now the identity r n r nω ω∆ ≡ ∆� � . So it is consequently true that  

2π 1 , , ,r v v r n
nh p

ω ω
∆

= = = ∆ = �
               

 (2.4) 

where the last equation of the chain introduces the momentum p by dimensional 
reasons and reads  

2π , .hr n pλ
λ

∆ = =
                    

 (2.5) 

It shows the link between De Broglie momentum, Planck energy and 
condition 2πn rλ = ∆ , according which an integer number of steady electron 
wavelengths λ  is defined along a circumference of radius r∆  along which the 
electron wave propagates at rate v. For such electron waves one finds  

2 2 2

, .
2 2el

Z pc Z mc e
n n c

α
ε α α = − = − = 

  �             
 (2.6) 

The first chain of equalities will be explained in the next section 6, in 
particular as concerns the evident link of pc  and 2mc  with 0E . Note here 
that introducing α  to express the quantum energy levels implies defining the 
De Broglie momentum as a corollary: appears interesting that the energy levels 

elε  of the system are linked to the kinetic energy pc  of the electron moving 
along the circumference of radius r∆  via the coefficient 2Z nα . On the one 
hand, this result emphasizes the electromagnetic character of the interaction 
between electron and nucleus; comprehensibly r∆  is proportional to 1α− , as 
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the coupling constant determines the force exerted in an interaction. On the 
other hand, it also appears that the key role of the quantum uncertainty in 
determining the allowed energy levels (2.6) also evidences the kind of interaction 
itself. 

It has been shown in [17] that the approach based on the considerations of 
this section implies by consequence also the following expression of ionization 
energy  

( ) ( )
2

2 2
1 ,e

i e
n QZ Za b n Q

n na
ε  = + − + − 

 
             (2.7) 

where en  is the current number of electrons in the atom/ion. Of course the 
present paper skips 1en =  that trivially concerns the hydrogenlike ion. This 
equation has been calculated in the quoted paper taking a and b as universal 
constants  

0.8835, 0.0695,a b= =                    (2.8) 

whereas one value of ( )eQ Q n=  only was early taken as best fit constant for 
each electron configuration. The validity of the Equation (2.7) has been verified 
comparing calculated and experimental ionization energies for atomic numbers 
2 29Z≤ ≤ . 

The previous model aimed essentially to show that the Equation (2.1) enable 
the ionization energies to be successfully calculated. This is understandable 
because in fact the Equations ((2.4) and (2.5)) show the chance of inferring in a 
natural way from the Equation (2.1) also the basic ideas of the quantum theory; 
moreover further fundamental concepts, e.g. the spin and the Pauli principle, 
can be deduced as corollaries, as it will be shown in the next section 6. 

The enhanced model described in this paper aims to extend the range of 
atomic numbers and to overcome the best fit assumption about Q, whose 
physical meaning is introduced in a general way; the numerical value of Q is 
calculated in the conceptual frame of the model for all values of atomic numbers 
and electron configurations. So the input parameters of the model are the two 
constants (2.8) only. 

In this paper the ionization energies ionE  are regarded with positive sign and 
expressed for simplicity of notation in 0E  units  

0
0

, 13.598 eV.ion
i

E E
E

ε = =                   (2.9) 

All experimental data have been taken from [19]. 

3. Outline of the Present Model 

The Equation (2.7) admits two values of Q  compatible with a given value of 

iε ; calling 1Q  and 2Q  the solutions,  

( ) ( )2 2 2 2 2 2

1 2

1 1
, ,

i i

e e

Z Z a a ab an Z Z a a ab an
Q Q

n n a n n a

ε ε+ − − + + − − − + +
= =  (3.1) 

trivial manipulations of the Equation (2.7) yield  
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( )
2

2
12 12 1 21 ,i e

Za b n Q Q Q Q
n

ε  = + − − = 
 

            (3.2) 

while also being  
2

1 2
2 1 1 .i
e

ZQ Q Q a b
n a n

ε  ∆ = − = − − + +  
  

           (3.3) 

The reminder of this section aims to calculate 1Q  and 2Q , thus removing 
the necessity of regarding them as mere numerical best fit parameters. Of course 
their values have variability ranges necessarily finite, see the next Equations 
((3.8) and (3.9)), and should expectedly fulfill the reasonable boundary 
condition of minimum interaction energy between the electrons present in the 
shell. In other words, it is necessary not only to infer two equations to calculate 
them, but also to show how these equations are compliant with the given 
boundary condition. All this will highlight that the values of 1Q  and 2Q  have 
statistical meaning; they represent and summarize the link between i iε ε=  
and the average interaction energy rε . The calculations of these equations will 
be introduced in the next section 4. 

Note now that  

1 2
2

e

ZQ Q
nn a

+ =                       (3.4) 

is calculable as a function of Z for a configuration of en  electrons and an 
appropriate quantum number n of the electron to be removed once knowing the 
constant a only. Hence  

( )
2

2
2 2

21 .i e
e

Z Za b n Q Q
n nn a

ε
  = + − + −       

           (3.5) 

Since the energy of an electron hypothetically interacting with the nuclear 
charge only would be described by the mere hydrogenlike term ( )2Z n , one 
infers that n governs not only iε  but in principle also any form of interaction 
energy rε  of the ne-th electron with the other ones in the shell of 1en −  
residual electrons. Let rε  be defined by  

( )
2 2

2
2 2

2 ;r i e
e

Z Z Zb a n Q Q
n n nn a

ε ε
    = − = − − −                   

 (3.6) 

the fact of having extracted from the global energy (2.7) the amount of energy at 
the right hand side of the Equation (3.6), residual with respect to the binding 
hydrogenlike term ( )2Z n  and discrete itself according to n, implies that the 
quantization of the atom/ion requires the quantized correlation content involved 
by the Q terms. Just the result ( )r r nε ε=  makes reasonable the Equation (3.6), 
as it introduces explicitly the distinctive property of the electron correlation: in 
principle, any calculation scheme that implements correlation terms taking 
arbitrary continuous energies seems “a priori” incompatible with the existence 
of discrete energy levels. Rather it appears conceptually sensible that the electron 
correlation resulting from all forms of interactions, whatever these latter might 
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be, should be quantized itself. This consideration was in effect one of the starting 
points to formulate and propose the present model; it is anticipated here that 
just the quantities 1Q  and 2Q  include all necessary forms of correlation. Note 
that, strictly speaking, one could replace ( )2Z n  at the left hand side of the 
Equation (3.6) with the more accurate Dirac-like energy term; however the 
additional terms accounting for this correction can be included in an 
appropriate choice of 1Q  or 2Q , as it will be shown below. These latter, indeed, 
are related to rε  and directly calculable through iε . In this respect one 
equation has been already found, i.e. (3.4); a further equation is necessary. 

To determine 2Q , proceed according to the basic ideas outlined in the 
previous section: nothing is known and knowable about local coordinates and 
mutual distances between the various electrons, whose positions change randomly, 
arbitrarily and unpredictably around the nucleus. Although the uncertainty 
prevents local information about their instantaneous repulsion energy, the 
previous considerations yield however the chance of defining the range allowed 
for the corresponding iε : it is reasonable to assume ( )20 i Z nε< < . The upper 
limit concerns the case where two electrons are so far apart each other that the 
ionization energy of one of them tends asymptotically to the hydrogenlike value, 
as anyway the i-th energy level cannot overcome that due to the mere binding 
effect of the nuclear charge. The lower limit concerns the case of two electrons 
approaching each other so closely that their mutual repulsion energy balances the 
binding energy, so that the ionization energy tends asymptotically to zero; this 
condition is necessary for the existence itself of the atom/ion. Expectedly, therefore, 
the true value of both 1Q  and 2Q  corresponding to the resulting ionization 
energy should fall within the respective intervals calculated replacing iε  with 
( )2Z n  and with 0 in the Equation (3.5). Hence for ( )2lim

i i Z nε ε→ =  and 
0lim

i iε ε→ =  one finds that 2Q  turns respectively into  
2 21 1 1 1, .Z o

e e

Z ab a Z ab a aQ Q
n nn a n a

± + − ± + − −
= =        (3.7) 

As this reasoning holds for both 1Q  and 2Q , even oQ  and ZQ  consist of 
two respective values. Figure 1 clarifies the dependence of iε  upon Q  in its 
allowed range of values and explains why iε  is related to Q∆ . Trivial 
manipulations with the help of the Equation (3.4) show that  

2 2

1 1 1 1 1
1 1 1 1, ,Z o o Z

e e

Z ab a Z ab a aQ Q Q Q Q
n nn a n a

+ + − + + − −
< < = =

  
 (3.8) 

2 2

2 2 2 2 2
1 1 1 1, , ;o Z Z o

e e

Z ab a a Z ab aQ Q Q Q Q
n nn a n a

− + − − − + −
< < = =   (3.9) 

both boundaries of the allowed ranges of 1Q  and 2Q  defined in this way are 
numerical limits calculable as a function of Z and en  and thus known. 

Despite the total lack of information about position and momentum of the 
various electrons, it is possible to define the average ionization energy and 
calculate the average of the Equation (3.5) with respect to the possible values of  
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Figure 1. Plot of iε  vs Q . The plot emphasizes the particular values of 1Q  and 2Q  
and their corresponding experimental ionization energy. The link between iε  and 

2 1Q Q Q∆ = − , Equation (3.3), is also evidenced. 
 

2Q  in an arbitrary range compatible with (3.8) and (3.9). By definition, one 
infers in general from the Equation (3.5)  

( ) ( )
2

12
2 2 2

21 d .
u

i e
w e

Z Za b n u w Q Q Q
n nn a

ε −   = + − + − −       
∫     (3.10) 

The integral is calculable in closed form; the result is  

( )
3 3 2 2

1
2 2 2

2 1d , .
3

u

w e e

Z u w u w ZI u w Q Q Q
n u w u wn a n n a

ξ ξ−   − −
= − − = − =   − − 

∫  (3.11) 

The asymptotic limits ow Q≠  and Zu Q≠  just introduced in (3.7) make 

iε  compliant with a minimum condition: u and w are indeed physical 
boundaries, whereas oQ  and ZQ  are asymptotic extrapolations of u and w. 
Calculate then the minimum of I with respect to u; so  

( ) ( )2 21 , 2 3 0
3

II u uw w u w u w
u

ξ ξ
∂

= + + − + = + − =
∂      

 (3.12) 

yield 3 2w uξ= − . Next, replacing w in I one finds according to (3.6)  
2 2 2

min 2 .e eI n u n uξ= −                     (3.13) 

Hence  
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( )
2

2 2 21 2 ,i e e
Za b n u n u
n

ε ξ = + − + − 
 

             (3.14) 

whereas the average repulsion energy results to be  

( )
2

2 2 22 .r e e
Zb a n u n u
n

ε ξ = − − + 
 

              (3.15) 

By direct substitution of the Equation (3.4) into the Equation (3.13) one finds 
thus  

2
1 22 0, ,s s sQ Q Q Q Qξ− = = +                 (3.16) 

as it is evident recalling the Equation (3.11). Moreover it also appears that in 
particular, owing to the definition of minI , the Equation (3.14) is identical to the 
Equation (3.10) once putting 2u Q≡  and 1u Q≡ , i.e.  

1 2, , ;i i u Q Qε ε≡ ≡                    (3.17) 

this emphasizes that the Equation (3.7) represent range boundaries of Q and, 
more in general, the statistical meaning of Q in the initial Equation (2.7). In 
other words 2Q  actually introduces iε  in (3.5) as average value between all 
allowed values of repulsion energy physically compatible with the electron 
configuration of the atom/ion: the experimental ionization energy is averaged 
between asymptotic hydrogenlike properties with negligible interaction between 
electrons apart each other and asymptotic repulsion interaction so strong for 
electrons very close each other to balance the binding effect of the nuclear charge; 
even the probabilistic concept of local electron density is bypassed in this 
reasoning: according to the positions (2.1), indeed, the lack of any information 
about x∆  implies that the electrons could be anywhere. On the one hand this 
consideration, which can be verified through the measurable ionization energy, 
allows to estimate the average repulsion energy as well via the values of 1Q  and 

2Q ; also, the Equations ((3.14) and (3.15)) show that even rε  is uniquely 
defined by these values. On the other hand the pertinent Equation (3.17) clarifies 
the statistical physical meaning of Q in the Equation (2.7), which evidences how 
to infer the second equation to calculate 1Q  and 2Q  via the experimental 
values of iε ; it is indeed possible to write  

( )

( )

2
2 2 2

1 1

2
2 2 2

2 2 1 2

1 2

1 2 , .

i e e

e e

Za b n Q n Q
n

Za b n Q n Q Q Q
n

ε ξ

ξ

 = + − + − 
 

 = + − + − ≠ 
 

        (3.18) 

The second inequality, self-evident, emphasizes that the problem is now to 
find couples of different values 1Q  and 2Q  compatible with a unique value of 

iε  for a given electron configuration and selecting among the couples the one 
consistent with the corresponding minimum iε : according to Figure 1 and the 
Equation ((2.7) and (3.1)), indeed, 1Q  and 2Q  represent the sought couple of 
values of Q of en  electrons. Thus holds the condition  

( )2 2
1 1 2 2 1 22 2 0, .Q Q Q Q Q Qξ ξ− − − = ≠             (3.19) 
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In principle one could try to implement the conditions (3.19) and (3.16) by 
introducing trail couples of random values 1

trQ  and 2
trQ  to guess which one 

best fits the unknown 1Q  and 2Q  and fulfills both equations: the physical 
meaning of this procedure is to reproduce through the values of each trial couple 
the corresponding conditions of repulsion energy till to find that effectively 
representing the minimum condition (3.12). This method however, despite its 
physical compliance with the non-deterministic arrangement of electrons 
required by the uncertainty (2.1), would be presumably long and unforeseeable 
from a numerical point of view without a leading criterion to choose the couples. 
An alternative analytical approach appears necessary. Consider that the 
Equation (3.19) identifies the specific values 1Q  and 2Q  fulfilling by definition 
the condition (3.12) of minimum repulsion energy of a given electron 
configuration, whereas instead 1

trQ  and 2
trQ  imply in general any possible 

repulsion energy to which corresponds pertinent values tr
iε . This suggests to 

find an appropriate variable parameter linking 1
trQ  and 2

trQ  as a function of 
which is identified in particular that consistent with the minimum condition for 

1 1
trQ Q→  and 2 2

trQ Q→ . This approach has in fact physical valence: it describes 
the ability of the system of electrons to attain the configuration energetically 
most favorable for the stability of the atom/ion. 

Note in this respect that iε  of the Equation (3.2) is uniquely defined by a 
given value of the product 1 2Q Q  regardless of the individual values of 1Q  and 

2Q ; in other words, it is possible to replace 1 2Q Q  with 1 2
tr trQ Q  thus regarding 

the former as a particular case of the latter. This allows generating and 
examining various values tr

iε  defined by 1 2
tr trQ Q  among which to identify the 

correct experimental value of iε  compliant with (3.12). Moreover, since 1Q  
and 2Q  are linked by the condition (3.16), it is reasonable to expect that even 

1
trQ  and 2

trQ  do analogously so; it is clear indeed that  

1 2 1 2 ,tr tr tr
s sQ Q Q Q Q Q= + = + =                 (3.20) 

i.e. 1
trQ  and 2

trQ  fulfill the Equation (3.4) because in principle 1 2Q Q+  does 
not depend on iε  according to the Equation (3.1). This holds even for the sum 
of 1

trQ  and 2
trQ  corresponding to tr

iε , whatever their separate values and tr
iε  

itself might be. Moreover implement the reasonable positions  

12
2 2 2, ,

trtr
trsQ QQQ Q gQ

g g
−

= = =              (3.21) 

where g is an arbitrary variable parameter that turns the true values of Q fixed by 
the experimental value of iε  into the variables trQ  related to tr

iε . Replace 

1Q  with 1
trQ  in the eq (3.19), which thus in general is no longer fulfilled, and 

multiply all terms by 2
en ; so one defines a function 0F ≠  that reads  

( )
2

22 2 2 21 1
1 12 2 ,

tr tr
tr tr s s

e e e e
Q Q Q QF n Q n Q n n

g g
ξ ξ

 − −
= − − + 

   
     

 
(3.22) 

and yields eventually  
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( )
2

2 2 2
1 11 2 .tr tr tr

i e e
Za b n Q n Q
n

ε ξ = + − + − 
 

           (3.23) 

Of course 0F =  for 1 1
trQ Q≡  and 1g = , in which case the Equation 

(3.22) reduces to the (3.19); thus the former is the sought generalization of the 
latter. Indeed F represents in general any value of repulsion energy in the atom 
related to any possible random distance between electrons, whereas the zeros of 
F represent instead the condition of minimum repulsion energy between 
electrons in a given configuration. 

In conclusion, the product 1 2Q Q  of the Equation (3.2) has been rewritten via 
the arbitrary parameter g, whose change enables to reproduce corresponding 
values of tr

iε  resulting from the random arrangement of electrons interacting 
according to the Equations ((3.6) and (3.15)). From a mathematical point of 
view the Equation (3.22) introduces the second equation additional to (3.4) 
necessary to find 1Q  and 2Q . 

4. Preliminary Calculations 

This section highlights in detail how to implement the considerations so far 
exposed, in particular the Equation (3.22). The experimental values of ionization 
energy reported in the literature are numbered as Iε  for the first outer electron 
of the shell of neutral atom with Z electrons, IIε  for the second electron of the 
ion with one positive charge and 1Z −  electrons, and so on. In an atom of 
atomic number Z, the number of residual electrons after in  ionizations is 
clearly iZ n− . Yet, is more significant for the model the relationship between 

in  electrons already removed and the number en  representing the actual 
electron configuration from which a further electron is to be removed; in effect 
the ionization energy measures the binding energy of this electron interacting 
with all 1en −  electrons. Hence let be 1e in Z n= − + : for example the first 
ionization concerns 1in =  in the ground configuration of neutral atom, i.e. 

en Z= ; so Iε  implies ( )n n Z= , i.e. according to the “Aufbau” rule the 
principal quantum number is that of the Z-th electron in the whole shell 
required by the Pauli principle. Instead the last Z-th ionization energy, i.e. 

in Z= , implies 1en =  as it concerns the ground configuration of hydrogenlike 
ion characterized obviously by ( )1 1n n= =  to calculate the hydrogenlike 
energy. 

The first numerical example is carried out in particular for 25Z =  and 
2in = , where in  implies the second ionization energy IIε  of Mn; in this case 

the electron to be removed is one among those in a shell of 24 electrons. The 
input data are thus, according to the Equation (3.16) and Figure 1,  

( )min

1 2

25, 24, 3, 2 8.1848,
0.73881;

e i s

s

Z n n Q
Q Q Q

ε ε= = = = = −

= + =
    (4.1) 

moreover the Equations ((3.8) and (3.9)) imply the following ranges 1 1Z oQ Q→  
and 2 2o ZQ Q→  allowed for 1Q  and 2Q   

0.00229 0.25020, 0.48861 0.73652.→ →  
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As previously emphasized, sQ  and range boundaries are calculable regard- 
less of any assumption on 1Q  and 2Q , so the positions (4.1) and (4.2) are 
effectively input data. Now, for clarity and gradualness of exposition, 1Q  is 
preliminarily regarded as a known quantity too, calculated from the pertinent 
experimental value 15.63999 eV of ionization energy [19]. So, owing to the 
Equations (2.7) and (2.9) it is possible to write  

11.150, 0.49671.II Qε = =                   (4.3) 

As concerns the number of decimal places in these introductory steps of 
calculations, note that the Equaiton (2.7) yields  

22 ;e
i e

n Zn Q Q
n

δε δ
α

 
= − 
 

                  (4.4) 

in the present example, calculating with 1Q Q≡  and 24en =  the quantity in 
parenthesis, 1359II Qδε δ=  shows that even a small error in estimating 1Q  
implies large error on IIε . Hence the necessity of very small iδε  requires 
accurate estimate of 1Q  and thus the quoted decimal places reported in (4.1) 
and (4.3). 

Write the Equaiton (3.22) as explicit function of 1gQ  according to the 
Equaiton (3.21)  

( )
2

22 2 2 21 1
1 12 2 ;s s

e e e e
Q gQ Q gQF n gQ n gQ n n

g g
ξ ξ

 − −
= − − + 

      
 (4.5) 

the plot of the Equaiton (4.5) vs g, with 1Q  known, is reported in Figure 2. The 
direct solution of this equation with respect to g yields four values  

1.81810, 0.81810, 1, 1.48740.n u q sg g g g= − = = =        (4.6) 

to which correspond four values of 1
tr
j jQ g Q= ; the notations will be clear soon 

below. As expected, F admits the solution 1g = . Waiving the negative solution 

ng , which is clearly outside the ranges fixed by the Equations ((3.8) and (3.9)), 
remain three values of jg  useful to calculate as many tr

jQ  and respective 
ionization energies via the Equation (3.23). Note now that the condition posed 
by the Equations ((3.16) and (3.17)) requires that two among the 0tr

jQ >  must 
correspond to 1Q  or 2Q  and to 1 2Q Q+ ; moreover, the former two must fall 
in the allowed ranges evidenced by Figure 1. As s qg g>  and s ug g> , it must 
be true that 1 1 2sg Q Q Q= + , whereas qg  yields of course just 1Q  itself 
according to (3.21); instead ug  that yields 1 0.40636ug Q =  has no physical 
interest, because the resulting tr

uQ  corresponds to a value of 1Q  outside both 
allowed ranges indicated in (4.2). These considerations clarify that the notation 
“n” stands for negative, “s” for sum, “q” for 1Q  and “u” for unphysical value of 

1Q . In conclusion  

1 1
0.738811.48740 0.73881, 0.49671
1.48740

tr tr
s q qQ Q Q g Q= = = = =     (4.7) 

yield the sought value of 1Q  that by definition determines the correct value of 

IIε  according to the Equation (4.3). 
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Figure 2. Plot of F  vs g , Equation (4.5), solid line. The dashed line shows the cor-
responding iε .  

 
Note that despite four solutions are provided by the Equaiton (4.5), two of 

them only are physically valid, in agreement with the two positions (3.21). 
These steps and their conclusions suggest the way of generalizing the 

Equation (3.22) while skipping the necessity of preliminary knowledge of 1Q , 
which is actually the sought parameter as a function of which is inferable iε . It 
is enough to examine the Equation (4.5) when 1Q  takes an arbitrary set of test 
values, 1

testQ , still in either allowed range of Figure 1; the results then will show 
themselves which one among the corresponding range of test

iε  is physically 
significant. 

For clarity it is useful to remark: 1
trQ  is a physical parameter describing the 

change of the related tr
iε  corresponding to different space arrangements of the 

electrons within the whole shell around the nucleus, to which correspond the 
resulting values of repulsion energy; 1

testQ  is a free numerical parameter aimed 
to identify which value of 1Q , now regarded as unknown in its allowed range, is 
appropriate to make the solutions of the Equation (4.5) numerically compliant 
with sQ  of the Equation (4.1). 

Being g arbitrary, 1
trQ  and 1

testQ  are independent variables, both subjected 
however to vary within either allowed interval (4.2); only so they are referable to 

1Q  or 2Q  at the end of the calculations. Also this point is highlighted by a 
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numerical example. 
In fact, the calculation of the Equation (4.5) is identical to that already shown, 

it is simply repeated for all desired test values of 1
testQ  to be examined: once 

assigning arbitrarily various input values of 1
testQ  in either interval (4.2), the 

Equation (4.5) is again solved with respect to g and yields values with physical 
meaning analogous to that just remarked in (4.6). The results are reported in the 
Table 1, whose columns show in the order: the test inputs 1

testQ , the three 
positive solutions jg  analogous to that of the eqs (4.6), the respective values of 

sQ  corresponding to 1
testQ  i.e. 1

test test
s sQ g Q= ; next, in analogy with (4.7), are 

reported 1
test test

q s sg Q Q g=  and eventually test
iε  calculated with each input 

value of 1
testQ . In principle, waiving 1

test
ug Q , unphysical for the reason 

previously explained, all values of test
iε  are acceptable; but clearly one row only 

of the table is correct, the one fulfilling the condition (3.16) test
s sQ Q= . Also now 

hold identically the considerations leading to the eq (3.20). 
Hence, examining Table 1, one concludes uniquely that 1.150IIε =  and 

1 0.49671Q =  are to be accepted among the test values of the first column. In 
particular it is confirmed that the solutions jg  of the Equation (4.5) imply the 
key relationship between two of them only  

1 ,
test test
s

s q

Q Q
g g

=  

which clarifies the purpose of this preliminary exposition aimed to highlight the 
physical meaning of the values (4.6): the input sQ  is known, the solutions sg  
and qg  are calculable for any 1

testQ  in the allowed range of Figure 1, the 
sought 1Q  is uniquely identified by test

s sQ Q= . 
Of course this procedure can be identically applied to any values of Z  and 

in ; in this respect a further example is worth being reported in Table 2 to 
ensure that the agreement just found in Table 1 is not accidental. This table is 
understood exactly as the former one as concerns the necessity of considering 
again the specific 1

testQ  that yields the correct value of ionization energy, despite 
a different set of test input values deliberately introduced to confirm that the 
particular choice of the input values of the first column is effectively arbitrary 
and irrelevant. 

It is worth noticing that the exact coincidence between one of the calculated 
test
sQ  and the required sQ  is actually obtained because the arbitrary inputs 

1
testQ  have been purposely introduced in order to include in particular also the 

value 1
testQ  coincident with the actual 1Q ; this aims to evidence that just this 

latter test value, and this latter only, fulfills the required boundary conditions 
(3.16) and (3.17). In practice the inputs in the first column have not been 
randomly defined, but calculated for mere numerical purposes as 1 1

testQ g Q′= , 
with g′  of course arbitrary and progressively increasing but optionally 
including 1g′ ≡  too. In fact, from a calculation point of view, this is a mere 
shortcut to avoid trivial numeric procedures, e.g. interpolation between 
contiguous 1

testQ  or best fit calculations and so on to include and identify the  
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Table 1. Solution of the Equation (4.5) calculated for 25Z =  and 2in =  (second ioni-
zation potential), with 3n = . Relevant quantities that characterize the 24 electron con-
figuration: 10.48861 0.73652Q< <  and 0.73881sQ = . The values to be calculated are: 

1 0.49671Q =  and 1.150exper
IIε = . The first column shows the arbitrary input values 1

testQ .  

1
testQ  ug  qg  sg  

test
sQ  

test
s sQ g  

test
IIε  

0.49075 0.82494 1.00000 1.50547 0.72995 0.49075 0.2965 

0.49274 0.82265 1.00000 1.49940 0.73290 0.49274 0.5765 

0.49472 0.82037 1.00000 1.49338 0.73586 0.49472 0.8611 

0.49671 0.81811 1.00000 1.48741 0.73881 0.49671 1.1502 

0.49870 0.81586 1.00000 1.48148 0.74177 0.49870 1.4438 

0.50069 0.81362 1.00000 1.47560 0.74472 0.50069 1.7420 

0.50267 0.81140 1.00000 1.46977 0.74768 0.50267 2.0448 

. . . . . . . 

0.53645 0.77563 1.00000 1.37723 0.79792 0.53645 7.8873 

. . . . . . . 

0.63579 0.68829 1.00000 1.16204 0.94568 0.63579 32.6885 

. . . . . . . 

0.73513 0.62027 1.00000 1.00501 1.09344 0.73513 68.8587 

 
Table 2. Solution of the Equation (4.5) calculated for 36Z =  and 6in =  (six-th ioni-
zation potential), with 4n = . Relevant quantities that characterize the 31 electron con-
figuration: 13.61851 5.45446Q< <  and 5.47143sQ = . The values to be calculated are: 

1 5.15514Q =  and 248.640exper
VIε = . The first column shows the arbitrary input values 

1
testQ . 

1
testQ  ug  qg  sg  

test
sQ  

test
s sQ g  

test
VIε  

4.74273 0.68476 1.00000 1.15365 5.03372 4.74273 159.1894 

4.84583 0.67435 1.00000 1.12910 5.14315 4.84583 179.9893 

4.94893 0.66429 1.00000 1.10558 5.25258 4.94893 201.8309 

5.05204 0.65456 1.00000 1.08302 5.36201 5.05204 224.7143 

5.15514 0.64514 1.00000 1.06136 5.47143 5.15514 248.6395 

5.25824 0.63602 1.00000 1.04054 5.58086 5.25824 273.6064 

5.67065 0.60221 0.96487 1.00000 5.80713 5.47143 278.8120 

5.36135 0.62718 1.00000 1.02053 5.69029 5.36135 299.6149 

5.46445 0.61861 1.00000 1.00128 5.79972 5.46445 326.6645 

5.56755 0.61029 0.98274 1.00000 5.80713 5.47143 303.6490 

 
key condition test

s sQ Q= . Clearly the present procedure is preferable to 
introduce explicitly also the correct input that identifies directly, without 
ambiguity due to mere numerical interpolation approximations, just the 
required result 1 1

testQ Q≡  among the various inputs. 
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What is really crucial, indeed, is that in the first column of Table 1 and 
Table 2 there is no conceptual reference to anything explicitly or implicitly 
referable to the true value 1Q : this latter is simply “hidden” in the first column 
until the mere comparison between the known sQ  and test

sQ  calculated from 
the various 1

testQ  reveals the true physical identity of the correct input test 
value. 

Actually there is a more substantial physical reason to propose such a 
calculation strategy. In the present model the repulsion energy (3.6) is quantized; 
i.e. not only iε  but also rε  are calculable through the same 1Q  and 2Q  
identified as shown above and through n. Both are actually eigenvalues; in fact 
the specific value of n is implemented to calculate the values of Table 1 and 
Table 2 according to the “Aufbau” criterion, as it appears in the list of input 
values (4.1). Hence n, appearing in the early Equation (3.1) as a consequence of 
(2.1), could take in principle arbitrary integer values higher than that required 
by the Pauli “Aufbau” defining the ground energy levels. On the one hand the 
calculated rε  can only take discrete values contributing to the respective 

iε , discrete as well of course; on the other hand the experimental values of 
ionization energies are in practice exact values, they are measured with the 
accuracy of several decimal places. 

These statements merged together allow two alternatives only: either the 
model provides exact values for the ground state of atoms/ions or the model is 
wrong. 

To verify this conclusion Table 3 and Table 4 extend the outcomes of such 
calculations for all electron configurations from 2en =  to en Z=  for various 
atomic numbers Z initially selected to verify correctness and reliability of the 
model: have been examined 16Z =  (S), 17Z =  (Cl), 18Z =  (Ar), 19Z =  
(K), 20Z =  (Ga) and 25Z =  (Mn) and all of their ions implementing 
anyway “Aufbau” input values of n. These tables are significant because they 
exemplify the cases of non-metal, gas, noble gas and metal elements. In all cases 
the calculated results coincide with the experimental values reported in the 
literature: the monotonous repetition of identical calculated and experimental 
values relies on the reasoning based on the discreteness of allowed values just 
exposed. Is in particular important the case of Mn for the reasons better 
emphasized in the next section. 

5. The Transition Elements 

This section concerns the central point of the present paper, i.e. the calculation 
of the ionization energies of the TE. Table 1 and Table 2 and Figure 2 aimed 
essentially to highlight the method of calculation, whereas the six atoms/ions of 
Table 3 and Table 4 are enough to verify the generality of the results achievable 
with the conceptual frame highlighted in the section 2. The previous examples 
have deliberately concerned chemical elements whose electron pile-up follows 
the mere Pauli principle, although it is not so for K, Ca and Mn, whose energy 
level 4s is lower than 3d; in particular, for 25Z =  the electron configuration 
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Table 3. Ionization energies of the elements S, Cl, Ar and their ions. The table reports all available experimental data. 

n 
Z = 16 Z = 17 Z = 18 

1Q  
calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  

1 0.48140 0.7619 0.7619 0.48268 0.9536 0.9536 0.48375 1.1590 1.1590 

2 0.52837 1.7163 1.7163 0.52385 1.7513 1.7513 0.52284 2.0319 2.0319 

3 0.57895 2.5585 2.5585 0.57445 2.9129 2.9129 0.56712 2.9960 2.9960 

4 0.63743 3.4727 3.4727 0.62904 3.9318 3.9318 0.62153 4.3984 4.3984 

5 0.71851 5.3386 5.3386 0.69156 4.9860 4.9860 0.67910 5.5170 5.5170 

6 0.80082 6.4754 6.4754 0.77777 7.1356 7.1356 0.74541 6.6928 6.6928 

7 1.38219 20.6610 20.6610 0.86537 8.3980 8.3980 0.83683 9.1427 9.1427 

8 1.57146 24.1763 24.1763 1.48850 25.6126 25.6126 0.92996 10.5501 10.5501 

9 1.80819 27.9122 27.9122 1.68914 29.4205 29.4205 1.59479 31.0671 31.0671 

10 2.12448 32.9093 32.9093 1.94069 33.5071 33.5071 1.80717 35.2030 35.2030 

11 2.53240 37.1231 37.1231 2.27581 38.9234 38.9234 2.07350 39.6352 39.6352 

12 3.10297 41.5090 41.5090 2.70961 43.5351 43.5351 2.42745 45.4670 45.4670 

13 3.99034 47.9629 47.9629 3.31606 48.2946 48.2946 2.88686 50.4559 50.4559 

14 5.40904 51.9937 51.9937 4.25534 55.1375 55.1375 3.52899 55.5773 55.5773 

15 16.68501 237.0775 237.0775 5.76388 59.5235 59.5235 4.52106 62.8600 62.8600 

16 33.96733 256.9635 256.9635 17.74810 269.0485 269.0485 6.11778 67.5121 67.5121 

17    36.09372 290.2113 290.2115 18.81133 303.0509 303.0509 

18       38.22076 325.5058 325.5059 

 
Table 4. Ionization energies of the elements K, Ca, Mn and their ions. The table reports all available experimental data. 

n 
Z = 19 Z = 20 Z = 25 

1Q  
calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  

1 0.47287 0.3192 0.3192 0.47388 0.4496 0.4496 0.47283 0.5467 0.5467 

2 0.52188 2.3261 2.3261 0.50341 0.8730 0.8730 0.49671 1.1502 1.1502 

3 0.56373 3.3686 3.3686 0.56054 3.7442 3.7442 0.52743 2.4760 2.4760 

4 0.61077 4.4793 4.4793 0.60494 4.9471 4.9471 0.56012 3.7653 3.7653 

5 0.66835 6.0788 6.0788 0.65480 6.2141 6.2141 0.59720 5.3243 5.3243 

6 0.72911 7.3099 7.3099 0.71540 7.9997 7.9997 0.63832 7.0304 7.0304 

7 0.79961 8.6454 8.6454 0.77947 9.3543 9.3543 0.68331 8.7662 8.7662 

8 0.89605 11.3899 11.3899 0.85391 10.8281 10.8281 0.75600 14.3036 14.3036 

9 0.99455 12.9297 12.9297 0.95528 13.8653 13.8653 0.81265 16.3112 16.3112 

10 1.70125 37.0496 37.0496 1.05915 15.5372 15.5372 0.87551 18.2600 18.2600 

11 1.92550 41.5282 41.5282 1.80763 43.5285 43.5285 0.95140 21.0325 21.0325 

12 2.20646 46.2862 46.2862 2.04360 48.3306 48.3306 1.03292 23.1210 23.1210 

13 2.57944 52.5518 52.5518 2.33935 53.4343 53.4343 1.12689 25.2684 25.2684 

14 3.06374 57.8467 57.8467 2.73129 60.1265 60.1265 1.25131 29.6367 29.6367 
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Continued 

15 3.74142 63.3255 63.3255 3.24103 65.7817 65.7817 1.38228 32.0020 32.0020 

16 4.78815 71.1869 71.1869 3.95441 71.6282 71.6282 2.33913 83.4461 83.4461 

17 6.47156 75.9965 75.9965 5.05405 79.9382 79.9382 2.63462 90.0132 90.0132 

8 19.87460 339.0793 339.0793 6.82809 85.1449 85.1449 3.00437 96.8525 96.8525 

19 40.34843 362.8506 362.8509 20.93839 377.1731 377.1731 3.49119 105.6773 105.6773 

20    42.47686 402.2553 402.2550 4.12835 113.1784 113.1784 

21       5.02037 120.9001 120.9001 

22       6.38556 131.4899 131.4899 

23       8.60506 138.2483 138.2483 

24       26.26324 598.6616 598.6616 

25       53.13113 630.3828 630.3824 

 
of the neutral atom is 5 23 4d s , that of a singly ionized state is 53 4d s . As Mn is 
in the first 3d block, three further elements have been checked before examining 
lanthanides and actinides: Sc, which still belongs to the first block, and Y and 
Mo that belong both to the second d block. 

The chance of including successfully even these three elements among the test 
examples stimulates to extend the present analysis of the electron energy levels 
also to the transition elements of the lanthanide and actinide series. For this 
reason Table 5 and Table 6 report respectively examples of results calculated for 

57Z = , 58Z = , 65Z =  and 71Z = , 90Z = , 91Z = . The ground electron 
configurations of the elements in Table 7 are: 1 25 6d s  for La, 1 1 24 5 6f d s  for 
Ce and 8 1 24 5 6f d s  for Tb. The electron configurations of the elements in 
Table 5 are: 2 26 7d s  for Th and 2 1 25 6 7f d s  for Pa. One element only of the 
former series is radioactive; all elements of the latter series are radioactive, some 
of them do not exist in nature. The data available in literature quote some 
ionization energies only, all reported in the tables; in both cases the elements 
have been chosen without any special selection criterion, but mostly on the basis 
of the amount of available experimental data necessary to validate the model as 
convincingly as possible. These values however are enough to show that the 
present scheme of calculations fits adequately even these elements and their 
ions. 

As concerns the outcomes of the present model, apparently nothing 
distinguishes these elements from “regular” elements like Ar with 18Z = ; this 
holds both for neutral atoms and their ion states. The results confirm what has 
been verified in Table 3 and Table 4, i.e. even the transition elements fit the 
general calculation scheme hitherto introduced. The approach systematically 
implements all numerical steps from the Equations ((3.10) to (4.5)) via sQ , 
which depends on Z , en  and n  only: one infers therefore iε  as a function 
of the electron cloud and nuclear charge through the Equation (2.7). 

The fact that this calculation scheme holds regardless of the different 
physico-chemical properties of the atoms/ions has a double explanation. On the  
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Table 5. Ionization energies of the elements Sc, Y, Mo and their ions. The table reports all available experimental data. 

n 
Z = 21 Z = 39 Z = 42 

1Q  
calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  

1 0.47375 0.4825 0.4825 0.35353 0.4572 0.4572 0.35351 0.5216 0.5216 

2 0.50194 0.9413 0.9413 0.36453 0.9001 0.9001 0.36431 1.1884 1.1884 

3 0.53702 1.8206 1.8206 0.37672 1.5090 1.5090 0.37606 1.9951 1.9951 

4 0.59949 5.4044 5.4044 0.39806 4.4563 4.4563 0.39029 3.4123 3.4123 

5 0.64617 6.7400 6.7400 0.41371 5.6626 5.6626 0.40248 4.0072 4.0072 

6 0.69859 8.1394 8.1394 0.43002 6.8392 6.8392 0.41676 5.0616 5.0616 

7 0.76251 10.1486 10.1486 0.44895 8.5307 8.5307 0.44129 9.2414 9.2414 

8 0.82991 11.6267 11.6267 0.46630 9.4867 9.4867 0.45783 10.5604 10.5604 

9 0.90829 13.2394 13.2394 0.48576 10.7516 10.7516 0.47580 12.0694 12.0694 

10 1.01444 16.5598 16.5598 0.51326 14.0462 14.0462 0.49510 13.7079 13.7079 

11 1.12373 18.3702 18.3702 0.53471 15.1493 15.1493 0.51558 15.3920 15.3920 

12 1.91422 50.5486 50.5486 0.73989 27.5040 27.5040 0.53683 16.9348 16.9348 

13 2.16177 55.6479 55.6479    0.56535 20.5251 20.5251 

14 2.47231 61.0972 61.0972    0.58992 22.2533 22.2533 

15 2.88316 68.2086 68.2086    0.81566 40.0059 40.0059 

16 3.41812 74.2021 74.2021    0.85029 41.9179 41.9179 

17 4.16753 80.4530 80.4530    0.89436 46.7716 46.7716 

18 5.32004 89.2043 89.2043    0.94156 51.6252 51.6252 

19 7.18309 94.7176 94.7176    0.99213 56.4054 56.4054 

20 22.00255 417.3261 417.3261    1.04692 61.2590 61.2590 

21 44.60596 443.7206 443.7205    1.10688 66.3333 66.3333 

22       1.17165 71.1869 71.1869 

23       1.23998 75.0110 75.0110 

24       1.31722 79.5705 79.5705 

25       1.42578 92.8813 92.8813 

26       1.52158 97.2937 97.2937 

27       1.62996 102.0003 102.0003 

28       1.75209 106.5598 106.5598 

29       1.89684 112.8842 112.8842 

30       2.05862 117.7379 117.7379 
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Table 6. Ionization energies of La, Ce and Tb and their ions. The table reports all available experimental data.  

n 
 Z = 57   Z = 58   Z = 65  

1Q  
calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  

1 0.35253 0.4101 0.4101 0.35250 0.4073 0.4073 0.28218 0.4312 0.4312 

2 0.35955 0.8134 0.8134 0.35937 0.7979 0.7979 0.28731 0.8472 0.8472 

3 0.36718 1.4103 1.4103 0.36699 1.4854 1.4854 0.29318 1.6113 1.6113 

4 0.37805 3.6733 3.6733 0.37580 2.7032 2.7032 0.30016 2.9262 2.9262 

5 0.38671 4.5301 4.5301 0.38643 4.8206 4.8206    

6    0.39524 5.7067 5.7067    

 
Table 7. Ionization energies of Lu, Th and Pa and their ions. The table reports all available experimental data. 

n 
 Z = 71   Z = 90   Z = 91  

1Q  
calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  1Q  

calc
iε  

exper
iε  

1 0.28201 0.3990 0.3990 0.28186 0.4638 0.4638 0.28176 0.4332 0.4332 

2 0.28694 1.0222 1.0222 0.28537 0.8457 0.8457    

3 0.29185 1.5414 1.5414 0.28918 1.4708 1.4708    

4 0.29871 3.3277 3.3277 0.29309 2.1180 2.1180    

5 0.30541 4.9125 4.9125       

 
one hand, as previously explained, 1Q  and 2Q  govern entirely iε , and thus 
the energy levels i jjE ε=∑ ; as by definition 1i i iE Eε −= − , it is immediate to 
calculate all iE  starting from the first non-relativistic hydrogenlike level 

( )2
1E Z n=  or Dirac relativistic level that appears here as a mere additive term. 

On the other hand, this means that Q of the Equation (2.7) includes and 
somehow summarizes all physical effects underlying not only the mutual 
repulsion between electrons but also relativistic effects like their spin-orbit or 
spin-spin interaction. The next section aims to highlight these crucial points. 

6. Discussion 

The horizon of the present model is the whole periodic table of the elements, not 
some specific electron configuration of selected atoms/ions. Further calculations, 
not reported here for brevity but easily executable because of very short 
computation times, show that the same agreement holds for all ionization 
energies of all atoms. In the present model two constants only are predetermined, 
the universal values of a and b of the Equation (2,7); indeed 1Q  and 2Q , early 
introduced in [17] as best fit constants for each electron configuration, are 
calculated here in agreement with the values determinable via the experimental 
value of the ionization energy through the Equation (3.1). 

The considerations hitherto introduced waive the usual concepts of 
Schrödinger equation and wave function. The fact that the wave mechanics 
regards the transition elements as having an anomalous filling of orbitals 
characterized by progressive quantum numbers is not surprising; the standard 
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quantum mechanical calculations in general implement wave functions that 
imply four quantum numbers including the spin. Hence, when examining the 
ground quantum states of isolated atoms/ions described by n, l, m and s in the 
absence of external fields, the relative energies of the respective orbitals govern 
the occupancy electron states and their correlation. Yet, according to the basic 
ideas hitherto exposed, the TE do not represent any anomaly; reasonably this is 
because the concept of orbital is waived in the present model, which is much 
more agnostic than the wave mechanics itself and just for reason more essential 
and simpler. A few elementary considerations replace the considerable mathe- 
matical difficulty of handling systems of tens of interacting electrons. The 
Equation (2.1) skip even the probabilistic meaning of orbital, while compelling 
to accept total lack of information about all local dynamical variables; never- 
theless, the outcomes of the section 2 are completely analogous to that inferred 
solving the corresponding wave equations of the wave mechanics. Also, the 
approach based on the space time quantum uncertainty actually regards n as a 
number of allowed quantum states; it plays a role analogous to that of the 
principal quantum number, but probably this analogy cannot be further 
extrapolated. 

This point deserves attention. More specifically, let the ground state of a given 
TE be that with preferential filling of the ( )1n s+  orbital instead of the nd  
orbital: the incomplete filling of this latter is in fact the typical case of the first 
and second transition metal series. If the preferential occupancy of the orbitals 

1, 0n l+ =  and , 2n l =  is assessed comparing the energy of the electron in 
either of them, one concludes that the key parameter discriminating either 
chance is the correlation energy. This conclusion however does not contradict 
the fact that, according to the Pauli principle, the number of electrons com- 
patible with a given quantum number n is anyway 22n . Just this is the key point 
of the present model, which conceptually introduces n as a number of allowed 
quantum states and not as a quantum number resulting from the solution of the 
Hamiltonian; in the section 2 there is indeed no reference to any wave equation. 
As l and s do not appear explicitly in this model, rather both simply contribute 
to the values of 1Q  and 2Q  controlling iε , there is no reason to expect that 
the Equation (2.1) give results still affected by the constrains due to the corre- 
lation condition on either orbital energy; in other words, instead of calculating 
explicitly the correlation energy the previous considerations aimed to calculate 
correctly the related values of 1Q  and 2Q . 

To understand why the standard approach based on the wave equation 
conflicts with the regular “Aufbau”, it is enough to emphasize that the Equation 
(2.1) are inherently rooted in the fundamental concept of space time as shown in 
[20]; the wave formalism, inferred from the (2.1) as a corollary [21], represents 
the chance of extracting the probabilistic essence of the wave mechanics from 
the total agnosticism of the quantum uncertainty. The postulates (2.4) and (2.5) 
of the wave mechanics are actually straightforward corollaries of the (2.1); for 
this reason the wave chance implies as a matter of fact a more difficult mathe- 



S. Tosto 
 

112 

matical approach. In effect the Equation (2.7) was obtained in [17] from the 
(2.1) only, as shortly summarized in the section 2 to make this paper as self 
contained as possible. This suggests that the anomalous way of filling the energy 
levels is actually necessary and appropriate to make the quantum mechanical 
wave formalism compatible with that, more general, implementing directly the 
total uncertainty. Accordingly, once having bypassed the wave function from 
which the energy operator extracts the energy eigenvalues, it is rationale that the 
order of progressive orbital filling becomes bypassed as well; the Equations ((3.8) 
and (3.9)) in effect regard every electron identically at infinity or very close each 
other regardless of any probabilistic constrain, i.e. without any orbital occupancy 
sequence. Note that these considerations have been proven valid also for the 
diatomic molecules and, mostly important, are susceptible of relativistic gene- 
ralization. The remainder of the paper aims to explain further just these crucial 
points. Two facts deserve attention: 

1) the principal number n of allowed quantum states only has been here 
implemented; 

2) the systematic coincidence between calculated and experimental ionization 
energies implements the “Aufbau” principle only, see inputs (4.1). 

This is because all calculations concern essentially Q initially introduced in the 
Equation (2.7) and subsequently inferred from the experimental values of iε  in 
the Equation (3.1). On the one hand, the results support the validity of the 
Equations ((2.7) and (3.22)), i.e. the Equation (3.11) behind them; on the other 
hand, the fact that the way of calculating Q in Table 1 and Table 2 reproduces 
just the value preliminarily inferred from iε , suggests how to regard the 
theoretical approach itself. Clearly 1Q  and 2Q  have relevant physical meaning 
as concerns the electron energy levels of atoms and ions; these quantities, having 
statistical meaning, include and summarize all physical effects drastically 
affecting the electron energy levels, Equation (4.4). So it is reasonable, rather 
than paradoxical, the fact that once having implemented n only, which somehow 
surrogates the principal quantum number in the Bohr atom, the present 
outcomes skip any consideration about l and s and the quantum energies of the 
related orbitals. The Pauli “Aufbau” is appropriate and enough. Moreover an 
unavoidable consequence of this reasoning also involves the link between 
non-relativistic and relativistic approach, which is expectedly relevant for high Z 
elements and thus inherently implied itself. 

Regard for the moment Q as an empirical quantity directly inferable from 
experimental measurements, regardless of how the model calculates it and even 
irrespective of the validity of the Equation (2.7) itself; as such it necessarily 
includes all possible effects concurring to the ultimate value of iε , whatever the 
physical nature of these effects might be. From this standpoint, one could think 
that a non-relativistic value nrQ  preliminarily introduced could lead to an 
approximate nrε , after which appropriate considerations could lead to Q taking 
into account all necessary relativistic corrections. However, the reasoning 
carried out in this paper does not attempt, even preliminarily, such a legitimate 
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strategy; rather the approach has introduced first the actual values of Q via the 
experimental iε , and then has described the theoretical path to infer it simply 
fulfilling the boundary conditions (3.16) and (3.17). The way to calculate Q does 
not imply special hypotheses valid for particular elements, it includes light and 
heavy nuclei. Actually, the Equation (3.22) exploits the mere fact that two values 
of Q are compliant with a unique value of iε  because the Equation (2.7) is an 
elementary second degree equation; the Equation (3.22) simply equates two 
different ways, see Equation (3.19), to express 1Q  and 2Q . For this reason the 
model skips any hypothetical nrQ  and bypasses the peculiar wave functions of 
the TE as concerns the standard principle of the Pauli “Aufbau”: once having 
implemented the number n of allowed quantum states only, the TE appear as 
“regular” atoms/ions i.e. no reason compels regarding them differently from 
other “standard” elements. Strictly speaking, the initial Equation (2.7) is 
legitimated not only by the fact of being direct consequence of the Equation 
(2.1), which imply the correct consequences shortly concerned in the section 2, 
but also on the fact of having introduced a general physical criterion to calculate 

1Q  and 2Q  without “ad hoc” hypotheses: in a certain sense, just the simplicity 
of the reasoning in the section 4 supports the Equation (2.7), rather than vice 
versa. In other words: any alternative function ( )2 , iX X Q ε= , true or wrong, 
could anyway imply in principle two values of Q related to iε ; however, this 
hypothetical function should be legitimated by a valid and general reasoning to 
infer Q, without which it is a mere mathematical function unphysical and thus 
worthless. In this respect, apart from the ability of finding sensible results of iε , 
the present model also implies in a natural way quantized correlation energy: in 
effect it is physically inappropriate to think that continuous values of the related 
correlation terms, whatever they might be, are compatible with the discrete 
electron energy levels experimentally revealed by the spectral lines of atoms and 
ions. Also this point has been checked considering of course the Equation (3.15) 
that fulfills the minimum condition (3.13), and not the preliminary eq (3,6). 
Calculate thus the Equation (3.15) putting n equal to the “regular Aufbau” 
quantum number and 1u Q=  owing to the Equations ((3.17) and (3.16)) 
expressing the average condition of minimum repulsion energy. Expectedly the 
values of rε  should exhibit some form of regularity appearing when 
expressed for any iε  as a function of Z. Figure 3 reports Iε  and IIε  as a 
function of the atomic number for all elements from 2Z =  in the former case 
and 3Z =  in the latter case to 90Z = . The plot has been determined using 
deliberately either Q calculated from the experimental values of iε  to show that 
the resulting plot has the expected regularity even for elements not appearing in 
Tables 1-6; in this case the plot represents actual experimental data and thus 
verifies the validity of the Equation (3.15). The discontinuities are found in 
correspondence to the change of n for Z consistent with the corresponding 
electron shell of neutral atoms and the required “Aufbau” n. For this reason the 
experimental Iε  is particularly significant: it shows that the discontinuities 
occur for Z to which correspond jumps of n of the electron shell. 
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Figure 3. Plot of the average repulsive energies rε  vs Z . Box and dot symbols cor-

respond respectively to the first and second average ionization energies iε . 

 
The quantization of repulsion energy has an interesting consequence as 

concerns the space arrangement of the electrons in a shell: the energy of this 
arrangement should be regarded not as that of a mere “gas” of electrons 
randomly distributed around the nucleus, in which case the electron correlation 
energy could statistically take any value, but rather as a sort of regular local 
structure characterized by well-defined average energies of its ground and 
excited states. Indeed, owing to the Equations ((3.14) and (3.15)), the plot of fig 
3 has been calculated with Aufbaun n=  to describe the ground state of the 
atoms/ions; yet, in principle, it could be also calculated with any Aufbaun n>  
thus describing excited states of repulsion energy and ionization energy. In effect 
such conclusion agrees with the results of an empirical model based on a 
significant number of experimental ionization energies [22]. 

At this point an interesting question arises: apart from the merit of bypassing 
hard mathematical difficulties, do really the Equation (2.1) have inherent 
relativistic valence? The allusion to the relativity is unavoidable even in the 
present context: the spin is a relativistic property, introduced by Dirac in his 
seminal model of relativistic atom via new specific operators called “spinors”. It 
seems doubtful to obtain correct values of energy levels for heavy elements 
without considering topics like spin-orbit or spin-spin interactions, which imply 
the Lamb shift too, in the frame of a simple theoretical approach like that 
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hitherto exposed. Also: why in the Equation (2.6) the hydrogenlike energy levels 
are expressed as a function of quantities like pc n  and 2 2mc n  that are 
typically relativistic and merge relativity and quantization via n without having 
introduced purposely relativistic concepts? Since the present model is based on 
the Equation (2.1) and their implications, the starting Equation (2.7) is in fact a 
direct corollary, it is necessary to highlight what the Equation (2.6) and the 
Equation (2.1) themselves have to do with the relativity. 

In short, these questions are all summarized in the following one: why should 
be the Equation (2.1) really far reaching? 

Despite an exhaustive answer to these questions is outside the purposes of the 
present paper, it is necessary to remind that the so called “relativistic effects” 
actually are themselves nothing else but quantum effects; the paper [21] has 
shown indeed that even the general relativity is rooted into the Equation (2.1) 
and that the wave operator formalism is a corollary itself of the Equation (2.1). 
Moreover even the quantum fluctuations of the black body imply by conse- 
quence relativistic corollaries [23] as well. These points, crucial to complete and 
justify the previous considerations of the section 2, deserve being very shortly 
sketched below although more specifically concerned in several dedicated papers. 
Mostly important, no additional hypothesis is necessary to this purpose: 
considering for simplicity and brevity the moduli of the momentum and velocity 
vectors, are evident some straightforward consequences implied by the 
considerations of the section 2. 

i) First of all, the Equation (2.1) merge in a natural way space and time 
coordinates. Moreover note that the Bohr radius is inversely proportional to m. 
Reasoning in terms of local coordinates, this statement is self aimed: it concerns 
two particles more or less apart each other. The implication is different 
considering the Equation (2.2) that concerns instead the space time range size 

r∆ ; the same formula expressed as a function of r∆  instead of the local 
distance r means that the space time is affected itself by m, i.e. the higher the 
mass the stronger its shrinking effect on the space time size. It is reasonable to 
guess that this effect has to do with the local space time curvature induced by the 
presence of a mass, one of the most relevant ideas of the general relativity 
together with the constancy of light speed. 

ii) As concerns just this second statement, let us show how it explains the 
Equation (2.6). Consider that the Equation (2.1) read identically  

,v p v x tε∆ = ∆ = ∆ ∆                     (6.1) 

and also imply vpε =  for any random and unknown local values ε  and p  
within the respective uncertainty ranges ε∆  and p∆ . In other words: in the 
section 2 the positions x x→∆  and p p→∆  aimed to replace the local 
dynamical variables with uncertainty ranges fulfilling the Heisenberg principle, 
here we say that ε∆  and p∆  imply by definition the random local variables 
ε  and p . Multiplying side by side vp ε=  and the first (6.1) one finds 

2v p pε ε∆ = ∆ , i.e. ( ) ( )2 2 2v pε∆ = ∆  and therefore 2 2 2const v pε + =  for the 
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random local dynamical variables ε  and p . Note that this last result is 
consistent with the definition p v qε= , being q an appropriate parameter; 
indeed eliminating v from this position and (6.1) one finds pq pε ε∆ = ∆  i.e. 

qp pε ε∆ = ∆  and thus again ( ) ( )2 2q pε∆ = ∆ . While 2q v=  is in principle any 
square velocity by dimensional reasons, has particular interest the case where v 
takes a peculiar physical property: calling c this special value of constant velocity, 
necessarily finite and invariant by definition, the position 2q c= , in principle 
possible because no preliminary hypothesis has been made on v and q, implies 
further physical information: expressing in explicit form without loss of 
generality ( )2 2 2ε ε ε ′∆ = −  and ( )2 2 2p p p′∆ = −  one finds  

2 2 2 2 2 2c p c pε ε ′ ′− = −  and eventually 2 2 2 2 2 2c p c pε ε ′ ′− = − . Despite all local 
dynamical variables are random and unknown according to the quantum 
uncertainty, these results read in general  

( ) ( )2 22 2 2, ;p v c cp inv cpε ε ε ′ ′= − = = −             (6.2) 

the constant is determined defining a new quantity m as  

0
20

lim ,
v

p m
v c

ε
→

= =  

i.e. ( )22inv mc=  by dimensional reasons; 0ε  is the limit value of ε  of a 
particle at rest in a given reference system. Hence the peculiar property of c 
allowing all of this is its constancy and thus its invariance by definition. The 
former two equations, well known, imply the Lorentz factor ( ) 1 22 21 v c

−
−  and 

the concept of rest mass m; moreover, if the aforementioned peculiar property of 
2q c=  is the invariance of c, the related concepts of relativistic invariance in 

two inertial reference systems of the Equation (6.2) are so evident that three 
comments are straightforward: 

-These results clarify why the Equations ((2.3) and (2.6)) show that all of this 
has to do with the quantum energy 0E  and its link with 2mc  and pc  via 
m . 

-Note that p∆  and ε∆  of the standard special relativity are ranges exactly 
known; here instead they are uncertainty ranges, whereas p  and ε  are local 
dynamical variables random, unknown and unknowable and thus of no interest. 
However, the formulas and the concept of invariance are the same. 

-The standard relativistic metric unavoidably leads to the existence of three 
components of angular momentum [24], whereas the dynamical variables p  
and ε  calculated with the tensor formalism are clearly incompatible with the 
Heisenberg principle. Starting from the Equation (2.1), instead, everything fits 
both quantum and relativistic principles; indeed it is easy to show that even the 
equivalence principle of the general relativity and its consequences are found as 
straightforward corollaries. It is immediate to show that the metric follows itself 
from the uncertainty implementing the Equation (6.2) exactly as done in the 
section 2. Regarding p  and ε  as local values included in the respective 
uncertainty ranges (2.1) and replacing them with these ranges, the Equation (6.2) 
reads ( ) ( )222 2c p mcε∆ = ∆ + . Hence the Equation (6.2) turn into  
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( )
2 2

22 ,n n c mc
t x

   = +   ∆ ∆   

� �
 

which reads ( )22 2 2 2x c t mc t x n∆ = ∆ + ∆ ∆ �  i.e.  
22

2 2 2 , ;mc px c t F
F t

  ∆
∆ = ∆ + =  ∆ 

               (6.3) 

clearly F represents force. There are at this point two chances, i.e. F could be in 
principle constant or not. In the former case with F const′=  the right hand 
side of the first Eq. (6.3) reads 2 2 2x c t inv∆ − ∆ = ; i.e. the Equation (6.3) reduces 
to the well known invariant interval of the special relativity, being m by 
definition an invariant free parameter. As shown in section 2, however, this 
metric is clearly consistent with the Heisenberg principle and one component of 
M  only, as it must be. 

If F is not constant, it is easy to infer from the (6.3) the space time metric of 
the general relativity; the reasoning closely follows that exposed in [23]. 

This shows that the positions p p→∆  and ε ε→ ∆  replacing the usual 
p i x→− ∂ ∂�  and i tε → ∂ ∂�  and implemented in the section 2 to convert 

the classical angular momentum and energy into the respective quantized 
equations are also valuable to infer relativistic information from the random 
local variables. 

iii) The following considerations show how to infer the concept of spin 
directly from the Equation (2.1), simply implementing the fact that uncertainty 
regards the quantum numbers as numbers of allowed quantum states. Start from 
the non-relativistic square quantum momentum inferred in the section 2  

( )2 21 , .zM l l l M= + =� �                  (6.4) 

Rewrite identically the first equation as ( ) ( )2 22 21 2 2M l= + −� � , whence  

( )22 2 2 21 1 12 1
2 2 2

M l l l      + + + = = + + +            
� � �        (6.5) 

after having added ( ) 21 2l + �  at both sides of (6.4). Trough this trivial 
manipulation the initial M  turns into a new angular momentum  , whose 
square modulus 2  defined at the left hand side is equivalently rewritten at 
the right hand side. Note now that, being l  an arbitrary integer including 0, it 
is possible to write orl l l′= + ; clearly it must be 0orl ≥  too. Then put 

1 2 J orl l l s′ + = = +  being 1 2s l′= + . Also note that l′  includes itself the 
possible value 0 and that orl  and l′  are by definition independent addends of 
the arbitrary l ; therefore they can take in general independent values, so that it 
is possible to write  

( )2 2 11 , , .
2or s sJ J J l l l l′= + = + = +�             (6.6) 

It is clear now the notation: orl  refers to the unique component knowable of 
the orbital angular momentum, 1 2l′ +  is a new kind of angular momentum. 
Moreover, being l  arbitrary, it is possible that 0l′ ≠  although 0orl = . Hence 
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l′  cannot have kinetic meaning, i.e. it must intrinsically belong to the particle 
regardless of its state of motion. 

In conclusion, one could say elementarily that the component of a half-integer 
angular momentum component must exist: not because the micro-magnet 
behavior of the electron is necessary to explain the Stark and Zeeman splittings, 
but because it is straightforward implication of the mere quantization itself. 

The fact that coexist both Equations ((6.4) and (6.6)) suggests that integer and 
half-integer forms of angular momentum exist in the nature with s both integer 
or half integer, being the former a particular case of the latter for 0sl = . 

On the one hand, this conclusion agrees with (6.5), i.e. J has a more general 
physical meaning than l  and orl ; on the other hand, the chance that 0sl ≠  
even though 0orl =  suggests that sl  must be an intrinsic property of particles 
regardless of their state of motion, i.e. all particles are characterized by their own 
integer or half integer sl . In many electron atoms it is possible to write 

tot jjl l=∑  i.e. or orjjl l=∑  and tot jjs s=∑ , where j  counts the number of 
electrons contributing to the total angular momentum, so that 

( )tot tot orj j orj jj j jl s l s l s+ = + = +∑ ∑ ∑  are both acceptable forms. These ways 
of rewriting l s+  are not merely formal: the sum could regard an arbitrary 
number l  as sum of arbitrary orjl  and js  or as a sum of orj jl s+  addends. 
These remarks are the key to infer the Pauli principle about the occupancy of 
quantum states: it is also immediate to realize why the spin implies two different 
ways to fill the quantum states, simply considering that both orl  and sl′  
defining 1 2s l′= +  are arbitrary. Also this point, concerned in detail in [20], is 
shortly summarized here for completeness. 

Let 1l  and 2l  refer to any integer spin particles 1 and 2; then 1 2l l l= +  
does not allow counting how many particles 1 and 2 contribute to l . Since 1n  
and 2n  particles of this kind yield 1 1 2 2totl n l n l= + , it is impossible to 
discriminate whether totl  is the value of l  of one particle only, or it is due to 

1 1 2 2n l n l+  of 1 2n n+  quantum particles. As concerns l , the total quantum 
states of systems of one particle or 1 2n n+  particles are indistinguishable 
because actually l  and 1 1n l  and 2 2n l  are indistinguishable integers 
themselves. Repeating this reasoning for half integer spin particles is impossible, 
because adding one new particle to a given system of particles means jumping 
from integer to half integer to integer total angular momentum of spin. The total 
quantum state is no longer indistinguishable with respect to the number of 
particles, i.e. it is sensitive of the addition of new particles, i.e. each new particle 
determines a requires its own quantum state distinguishable from the previous 
one. This is nothing else but a different formulation of the Pauli principle. 

iv) Consider now the Equation (2.3) and note that 0E  is defined by two 
factors, m and fundamental constants. It has been written in the chain of 
Equation (2.6) as a function of α  or 2α  through the energies pc  or 2mc : 
the former does not necessarily depend explicitly on m, as p can describe even a 
wave of wavelength λ , the latter does. This suggests the chance of examining 
more systematically how 0E  can be related to various forms of energy 
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according to various powers of α . The results of this elementary analysis is 
summarized as follows  

20
2

1 ,
2

E mc
α

=  

2
20 1 1 ,

2 2 C

E emcα
α λ

= =  

4
2 2

0 2

1 ,
2 2

e mE mcα= =
�

 

5 2
3 2

0 4

1 .
2 2 B

e m eE mc H
mc

α α µ= = =
�

�
 

All of these formulas, written for simplicity and brevity in scalar form, are well 
known; what is interesting is that are all obtained from the energy 2 2mc  
characterizing 0E  via different powers of the fine structure. The rest energy 

2mc  has been introduced in the point (ii). A few and elementary considerations 
merge quantum and relativistic physics. 

With the help of α  and Compton length Cλ  one finds the basic definitions 
of electric and magnetic fields; even the Bohr magneton is definable as 2 Ce λ  
via the coefficient 1/2 present in all formulas. 

In summary the first formula shows the particle nature of the electron besides 
its wave behavior evidenced by the Equations ((2.4) and (2.5)) in a unique 
conceptual frame rooted on the Equation (2,1) only. The second and third 
formulas show its electric and magnetic properties of the electrons, which 
suggest the well known Stark and Zeeman effects. 

It is remarkable that all energies at right hand sides of these equations, 
including the relativistic 2mc  and related pc , are actually linked to 0E  via 
Z  and number n  of allowed quantum states: the relativistic forms inferred 
from the metrics consider instead 1n =  only. 

As a final remark, note that in principle nothing hinders to extend the present 
approach to calculate also ionization energies and energy levels of atoms/ions in 
condensed phases. Whatever the pertinent iε  might be, indeed, the fact that 
the Equation (2.7) is direct corollary of the uncertainty Equation (2.1) suggests 
that a generalized function of the Equation (2.7) having the form 

( )1 2, ,i i intQ Qε ε ε=  can be reasonably defined; this form simply introduces the 
idea that iε  includes now also the interaction energy intε  of the electron shells 
of any atom/ion with that of the surroundings, e.g. in a crystal lattice. Clearly the 
idea of minimizing the perturbation induced by first neighbors on the electron 
system of a given atom/ion still holds, provided that it includes intε  too; in 
principle the key steps of this generalization should be therefore still similar to 
that of the Equations ((3.10) to (3.18)), but including an additive average term 

dint Qε∫ . Once having acknowledged that the number of electrons in a shell does 
not imply computational problems, why to exclude the chance of describing 
even the interaction between contiguous shells? Work is in progress on this 
point. 
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7. Conclusions 

The present model, purposely aimed to calculate ionization energies, has also 
shown straightforward implications involving in a natural way even the relativity, 
inferred contextually to the concept of quantization of the energy levels. These 
short notes, fully discussed elsewhere, have been summarized simply to elucidate 
the elementary, straightforward and tight link between quantum uncertainty and 
special relativity. An elementary extension of these considerations leads to 
relevant results of general relativity [21]. This helps to understand why the 
approach implementing uniquely the Equation (2.1) is in principle more 
complete and profoundly rooted on the most fundamental principles of nature 
than the wave operator formalism. 

On the one hand, the simplicity of the approach evidences itself the direct 
connection between quantum uncertainty and “Aufbau” principle; on the other 
hand, the fact that the average repulsion energy is quantized itself, as shown in 
Figure 3, helps to better understand the concept of correlation. It seems 
oversimplified the idea of electrons merely repelling each other in a shell, 
without considering also that the energies of a given configuration can take 
allowed values only. 

The quantization of energy levels results from that of the hydrogenlike term 
and that of the mutual interaction. Strictly speaking, there is no reason to expect 
that the attractive electric interaction with the nucleus only leads to discrete 
energy levels, whereas instead the repulsive electric interaction between electrons 
should not. Rather it seems more rationale to think that the orbitals are modified 
by the electron correlation in order to fulfill two quantized effects, and thus that 
the standard way of implementing the “Aufbau” for the Bohr quantization alone 
is incomplete; as such, in principle it fails like any partially valid assumption. 
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