
Open Journal of Optimization, 2015, 4, 156-167 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/ojop 
http://dx.doi.org/10.4236/ojop.2015.44015     

How to cite this paper: Uddin, M.S. (2015) Hybrid Genetic Algorithm and Variable Neighborhood Search for Dynamic Facil-
ity Layout Problem. Open Journal of Optimization, 4, 156-167. http://dx.doi.org/10.4236/ojop.2015.44015   

 
 

Hybrid Genetic Algorithm and Variable 
Neighborhood Search for Dynamic  
Facility Layout Problem 
Md Sanuwar Uddin 
Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, 
Bangladesh 

    
 
Received 6 November 2015; accepted 22 December 2015; published 25 December 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper presents a novel hybrid metaheuristic GA-VNS matching genetic algorithm (GA) and 
variable neighborhood search (VNS) to the dynamic facility layout problem (DFLP). The DFLP is a 
well-known NP hard problem which aims at assigning a set of facilities to a set of locations over a 
time planning horizon so that the total cost including material handling cost and re-arrangement 
cost is minimized. The proposed hybrid approach in this paper elegantly integrates the exploita-
tion ability of VNS and exploration ability of GA. To examine the performance of the proposed hy-
brid approach, a set of instance problems have been used from the literature. As demonstrated in 
the results, the GA-VNS is mighty of attaining high quality solution. Compared with some state-of- 
the-art algorithms, our proposed hybrid approach is competitive. 

 
Keywords 
Dynamic Facility Layout, Genetic Algorithm, Material Handling 

 
 

1. Introduction 
The DFLP is the determination of the most efficient arrangement of a number of facilities on the plant floor over 
multiple periods so that the sum of material handling cost and re-arrangement cost is minimized. The DFLP is 
an extension of static facility layout problem (SFLP) by considering changes in material flow between facilities 
over time planning periods. The main issue with DFLP is the existence of time period that makes it more com-
plex than SFLP. Historically, most of the research conducted on facility layout problem has been focused on 
SFLP type; however nowadays there is a necessity of considering dynamic condition due to demand of flexibility 

http://www.scirp.org/journal/ojop
http://dx.doi.org/10.4236/ojop.2015.44015
http://dx.doi.org/10.4236/ojop.2015.44015
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


M. S. Uddin 
 

 
157 

and rapid changes on manufacturing systems. For instance, high tech industries such as electronics and software 
developments need to be designed under a dynamic environment rather than static due to changes on their prod-
uct design and functionalities. Therefore the static layout is unreliable and economically inefficient for such in-
dustries.  

In the DFLP, time period can be expressed in terms of week, month or even year. Solution of SFLP consists 
of a single layout while it is a series of layout (layout map) with each layout is associated with a particular pe-
riod for the DFLP [1]. It is important to notice that the DFLP can be converted to SFLP if and only if one of 
circumstances given below occurs: 
• If material handling costs are extremely larger than re-arrangement costs, then DFLP can be solved as a se-

ries of SFLP. In fact, the optimum layout associated with first period can be attained by solving the SFLP 
using data for the first period and the optimum solution for the second period can be similarly attained by 
solving the SFLP using data for the second time period and so on.  

• If re-arrangement cost is extremely larger than handling costs, so the handling cost can be simply ignored 
and the problem can be solved as a series of SFLP.  

So the DFLP deals with selecting a set of layout for each period and then deciding whether a facility needs to 
be re-arranged in the next period or remains fixed. It is clear that the layout configuration tends to be fixed if the 
re-arrangement cost is high while there are more tendencies toward changing layout plan over the time horizon 
if the re-arrangement cost is low. The assumptions of DFLP are defined as follows: the flow between facilities is 
dynamic and deterministic; facilities and locations are all equal size; the distances between facilities are prede-
termined [1].  

2. Literature Review 
The DFLP was initially addressed by Rosenblatt [2] in 1986. He applied dynamic programing (DP) as an exact 
approach to solve the DFLP. As pointed out previously, DFLP is an extension of SFLP. SFLP with n facilities 
has (n!) possible layouts (solutions) while the DFLP with n facilities and T time period has (n!)T possible layout 
maps. It is easy to see that the complexity of DFLP is much larger than SFLP and hence, is computationally in-
tractable. Therefore the results achieved by decent exact methods such as branch and bound are modest. This is 
the reason there is intense motivation to implement heuristics to solve DFLP. Thereby the major portion of the 
literature is dedicated to review heuristics approaches.  

Lacksonen and Enscore [3] developed a heuristic based on a dynamic programming (DP) approach presented 
by Rosenblatt [2]. Baykasoglu and Gindy [4] proposed a simulated annealing (SA) for solving the DFLP. Bala-
krishnan et al. [5] applied a hybrid genetic algorithm. The role of crossover operator is taken by DP and CRAFT 
is used for the mutation purpose. Dunker et al. [6] extended the GA proposed by Dunker et al. [7] for solving 
the DFLP with unequal area facilities. The approach is based on integrating dynamic programming and genetic 
algorithm. Dynamic programming is used for the purpose of evaluating the fitness of layouts. McKendall et al. 
[1] proposed two simulated annealing SAI, and SAII. SA I is an adaption of SA to the DFLP while the SA II is 
the same as SAI with extra feature of look-ahead/look-back strategy. McKendall and Shang [8] presented hybrid 
ant systems (HAS) for the DFLP. Their hybrid consists of two heuristics HAS I and HAS II. HAS I is a simple 
ant colony algorithm with random decent exchange heuristic while the concept of local search using SA is in-
corporated with HAS II. McKendall and Hakobyan [9] developed a boundary search technique to place unequal 
size facilities. The Tabu search (TS) is used to improve the solution. Chen [10] proposed a new data structure to 
code solution representation. The new data structure improves the solution swapping and sorting activities and 
also remarkably reduces the computational cost. Guan and Lin. [11] presented a hybrid variable neighborhood 
search with ant colony optimization for solving the single row facility layout problem. Baykasoglu et al. [12] 
applied ant colony optimization (ACO) to solve DFLP with budget constraints consideration. Their work con-
siders budget constraint limitation for re-arrangements over planning horizon. Sahin et al. [13] implemented SA 
for solving the DFLP with budget constraint. Ulutas and Kulturel-Konak [14] presented an artificial immune 
system (AIS) to solve unequal area facility layout with flexible bay structure. In order to fill the empty space 
between facilities, the used a new encoding scheme. Komarudin and Wong [15] applied ACO to tackle with 
DFLP with unequal area facility. The authors used slicing tree representation which prevents restricting too 
much solution space. Ripon et al. [16] applied an adaptive variable neighborhood search for solving multi-ob- 
jective facility layout problems with unequal area facilities. Their proposed approach is based on extending 



M. S. Uddin 
 

 
158 

conventional local search which determines whether the VNS is used in a GA loop or not. Kulturel-Konak [17] 
presented a probabilistic TS approach for solving facility layout problem with unequal departments with flexible 
bay structures. A brief review of developed approach in the related literature is presented in Table 1. Hosseini et 
al. [18] developed a hybrid imperialist competitive algorithm (ICA), variable neighborhood search (VNS), and 
simulated annealing (SA) to deal with complexity of DFLP. More applications of meta-heuristic algorithm for 
facility layout design can be found in [19]-[29].  

The mathematical model of DFLP presented by McKendall et al. [1] is given below: 

1 1 1 1 1 2 1 1 1
min

T N N N N T N N N
t t t t t
ijkl ij kl ijl ijl

t i j k l t i j l
Z C X X R Y

= = = = = = = = =

= +∑∑∑∑∑ ∑∑∑∑                         (1) 

s.t. 
1

1, 1, , , 1, ,
N

t
ij

j
X i N t T

=

= = =∑                                (2) 

1
1, 1, , , 1, ,

N
t
ij

i
X j N t T

=

= = =∑                                 (3) 

1 , , , 1, , , 1, ,t t t
ijl ij ilY X X i j l N t T−= = =                             (4) 

{ }0,1 , , 1, , , 1, ,t
ijX i j N t T= = =                              (5) 

{ }0,1 , , , 1, , , 2, ,t
ijlY i j l N t T= = =                             (6) 

Notations which are used to describe the DFLP model are defined below: 
 

Table 1. A brief review of the research papers in the related literature.                                                       

No. Article/author Solution approach Problem type 

1 Proposed hybrid Hybrid Genetic Algorithm and Variable  
Neighborhood Search DFLP 

2 Rosenblatt [2] Dynamic Programming DFLP 

3 McKendall et al. [1] Simulated Annealing Heuristics DFLP 

4 McKendall and Shang [8] Hybrid Ant Systems DFLP 

5 Lacksonen and Enscore [3] Dynamic Programming DFLP 

6 Balakrishnan et al. [5] Hybrid Genetic Algorithm DFLP 

7 Baykasoglu and Gindy [4] Simulated Annealing DFLP 

8Chen [10] Ant Colony Optimization DFLP 

9 McKendall and Hakobyan [9] Boundary Search Heuristic and Tabu Search DFLP with unequalsize 

10 Dunker et al. [6] Hybrid Genetic Algorithm and  
Dynamic programming DFLP with unequal size 

11 Dunker et al. [7] Genetic Algorithm SFLP with unequal size 

12 Guan and Lin. [11] Hybrid Shortest Path and Simulated Annealing DFLP with dynamic environment 

13 Ulutas and Kulturel-Konak [14] Artificial Immune System DFLP with unequal size 

14 Komarudin and Wong [15] Ant Colony Optimization DFLP with unequal size 

15 Ripon et al. [16] Adaptive Variable Neighborhood Search Multiple objective SFLP  
with unequal size 

16 Kulturel-Konak [17] Probabilistic Tabu Search SFLP with unequal size 

17 Baykasoglu et al. [12] Ant Colony Optimization DFLP with budget constraint 

18 Hosseini et al. [18] Hybrid imperialist competitive algorithm DFLP 



M. S. Uddin 
 

 
159 

2.1. Indexes  
1,2, ,t T=   where T is the number of periods 
, , , 1, 2, ,i j k l N=   where N is the number of facilities  

2.2. Parameters 
t
ijklC  cost of material flow between facility i from location j to l in period t 

t
ijlR  cost of re-arranging facility i from location j to location l at time period t 

2.3. Decision Variables 

1 if department  is assigned to location  in time period 
0 otherwise

t
ij

i j t
X 

= 


 

1 if department  is shiftted from location  in time period 
0 otherwise

t
ijl

i j t
Y 

= 


 

The first term in objective function (1) represents the material handling costs, and the second term is used to 
obtain the re-arrangement costs. Constraint set (2) guarantees that each location is assigned to only one facility 
at each time period. Constraint set (3) guarantees that exactly one facility is selected and assigned to each loca-
tion at each time period. Constraint set (4) adds the re-arrangement cost if a facility re-arranges from its location 
to a new location within two consecutive time periods. Finally, binary restrictions on the decision variables are 
presented in (5) and (6). 

3. Encoding Scheme  
Let’s consider a DFLP instance with 6 facilities and 3 time periods (T = 1, 2, 3) as depicted in Figure 1. Those 
numbers highlighted with bold fonts represent the facilities, and the numbers with red fonts denote the locations. 
For instance, in first time period, facilities 3, 4, 6, 5, 2, 1 are assigned to locations 1, 2, 3, 4, 5, and 6 respectively. 
By considering two consecutive time periods 1 and 2, we can see that the locations of facilities 4 and 6 are 
changed. In fact, the facility 4 from location 2 at time period 1 is moved to location 3 at time period 2, and facil-
ity 6 from location 3 at time period 1 is moved to location 2 at time period 2. So the re-arrangement cost needs 
to be considered due to those re-arrangements. 

The solution to this specific instance can be represented by a vector with size of (1 × 18) as represented in 
Figure 2. 

In general, the solution of DFLP problem with N facilities and T time periods can be represented as in Figure 3. 
 

 
Figure 1. A DFLP instance with six facilities and three time periods.                                                          

 

 
Figure 2. A solution representation of a DFLP instance with six facilities and three time periods.                                                          



M. S. Uddin 
 

 
160 

 
Figure 3. Solution representation for DFLP problem with N departments and maxT  time periods.                                                          

4. Principles of GA 
GA is a stochastic optimization technique which is inspired from the biology and evolution process. GA starts 
with a set of solutions, generated either randomly or using a given heuristicis referred to as the population, and 
each individual in the population is called a chromosome. The size of the initial population depends on the com-
plexity of problem. A GA with a smaller population is faster but the same time the risk of premature conver-
gence increases. Once the initial population has been generated, the chromosomes are then evaluated by means 
of fitness function. Parent chromosomes are then selected based on their fitness values to generate new chromo-
some (child). There are different techniques for selecting parent chromosomes such as roulette wheel selection, 
tournament selection, and reward-based selection; however the roulette wheel selection is the most commonly 
used technique. In roulette wheel selection technique [30], a proportion of the wheel is assigned to each chro-
mosome based on its fitness value. The chromosomes with larger proportion are more likely to be selected. The 
parent chromosomes are combined using crossover operator to create new chromosomes. New chromosomes are 
then subjected to random mutation. The purpose of mutation operation is to expand the search directions and 
prevent the premature convergence. After completing the mutation process, the fitness of new chromosomes is 
evaluated and crossover and mutation operations start all over. Elitist selection is used to carry better chromo-
somes from the current generation over to the next generation. Elitist selection may improve the performance of 
GA but at the same time may results in premature convergence. The evaluation process is repeated until a pre-
determined condition has been satisfied. The genetic operators used in this context are described as follows: 
• Single point crossover 

The proposed single point crossover shame applied in this paper works with single parent instead of two par-
ents. This way of crossover produces feasible offspring and there is no need of checking for solution feasibility. 
It is also easier to implement. Following are the steps of the proposed single crossover point. 
1) Select a parent iP  from the population size. 
2) Select a time period randomly t, such that 1 t T≤ ≤ . 
3) Select a random number n, such that 1 n N< ≤ .  
4) If 1 n N< <  then nth facility will be located at first location in the offspring iO .  
5) Facilities from n to N in parent iP  will be the facilities for offspring iO  located at locations from 1 to 

( )1N n− − . 
6) Similarly, facilities from 1 to ( 1n − ) of parent iP  will be the facilities for offspring iO  from locations 

( N n− ) to N.  
An illustrative example of single point crossover is depicted in Figure 4.  

• Two exchange (swap) mutation 
A cyclic order mutation scheme applied in this paper to modify the locations of facilities in a cyclic order as 

represented in Figure 5. The following steps are given below: 
1) Generate a random time period T such that 1 t T≤ ≤ , for a given chromosome.  
2) Choose two facilities 1 2,n n  within time period T.  
3) Swap facilities 1n  and 2n .  

5. Variable Neighborhood Search 
Variable neighborhood search (VNS) is a recent stochastic local search algorithm proposed by Mladenovic and 
Hansen [31]. Then main idea behind the VNS is to sequentially explore a set of pre-defined neighborhoods to 
promote a better solution. The VNS benefits from two important aspects; 1) a local optimal of a neighborhood is 
not essentially the same as a local optimal of another neighborhood structure, 2) A global optimal is the local 
optimal of all neighborhood structures. The VNS consists of three major steps; shaking, local search and move.  



M. S. Uddin 
 

 
161 

1 4 3 2 5 6 3 6 4 1 5 2

T=1 T=2

5 6 1 4 3 2 3 6 4 1 5 2

T=1 T=2

Parent 

Offspring

Crossover point

 
Figure 4. Illustration of single point crossover operator.                                                          

 
1 4 3 2 5 6 5 6 4 1 3 2

T=1 T=2

1 5 3 2 4 6 5 6 4 1 3 2

T=1 T=2  
Figure 5. Two exchanges operator.                                                          

 
To begin with the VNS, we need to define a set of neighborhood structure kN  ( 1, 2, ,k n=  ). At each itera-
tion, a random solution is generated by the current neighborhood structure kN . Let x′  be a random solution 
generated by first neighborhood of x. Then, a local search is applied to x′  to generate a new solution called 
x′′ . The solution x′  is replaced by x′′  if ( ) ( )f x f x′ ′′< . The same search procedure is repeated for x′′  in 
the first neighborhood search to improve the solution. If there is no improvement found, then algorithm moves 
to the next neighborhoods. The template of VNS is illustrated in Figure 6.  

Local Searches 
Different types of neighborhood structure can be used for the VNS. However, we used three neighborhoods; two 
exchanges ( )1lN , three exchanges ( )2lN , and insertion, ( )3lN  to avoid increasing computational cost. 
Therefore, these three neighborhoods are defined as below: 
• Two exchanges ( )1lN  

The two exchange neighborhood structure used in the VNS is functionally same as two exchange (swap) mu-
tation addressed in Section 4.  
• Insertion ( )2lN  

Step 1: Generate a random time period t such that 1 t T≤ ≤ . 
Step 2: For the selected time period t, choose two facilities ( )1 2,n n  randomly. Let’s denote a and b to be the 

position of facilities n1 and 2n  respectively.  
Step 3: If a < b, then insert facility 1n  right after facility 2n , otherwise insert facility 2n  right after 1n .  
Example 3: Considering the same instance, the first time period is randomly selected. According to Figure 

7(a), the first randomly selected facility is 4 and its corresponding position is 2 (a = 2), and the second randomly 
selected facility is 5 and its corresponding position is 5 (b = 5). Since a b<  the facility 4 is inserted right after 
facility 5.  

Insertion operation is depicted in Figure 7(b) when a b> .  
• Three exchanges ( )3lN  

Step 1: Generate a random time period t such that 1 t T≤ ≤ . 
Step 2: For the selected time period t, choose three facilities 1 2 3, ,n n n  randomly. 
Step 3: Exchange facility 1n  with facility 2n , facility 2n  with facility 3n  and finally facility 3n  with 

facility 1n .  
Example 2: Consider example above, three facilities 4, 2 and 6 are randomly selected, then exchange facility  



M. S. Uddin 
 

 
162 

 
Figure 6. Template pseudo code of VNS algorithm.                                                                                                                   
 

1 4 3 2 5 6 5 6 4 1 3 2

T=1 T=2

6 1 3 2 5 4 5 6 4 1 3 2

T=1 T=2

First randomly 
selected facility Second randomly 

selected facility

  

1 4 3 2 5 6 5 6 4 1 3 2

T=1 T=2

1 4 5 3 2 6 5 6 4 1 3 2

T=1 T=2

Second randomly 
selected facility First randomly 

selected facility

 
(a)                                                       (b) 

Figure 7. (a) Insertion operation when a b< ; (b) Insertion operation when a b> .                                                          
 
4 with facility 2, facility 2 with facility 6 and finally facility 6 with facility 2, as shown in Figure 8.  

Note that the size of neighborhood ( )1N x  is ( )( ) ( )21 2O T n n O T n∗ − = ∗ , neighborhood ( )2N x  is 
( )( )( ) ( )31 2 3O T n n n O T n∗ − − = ⋅  and for neighborhood ( )3N x  is ( )( ) ( )21 2O T n n O T n∗ − = ⋅ .  

A variety of stopping criteria can be used to terminate the running of VNS, such as maximum allowed elapsed 
time, maximum number of iterations, etc. In this paper, the VNS continues for the number of iterations since the 
last improvement reaches at the given maximum of max 3N = . Notice that the order of implementing neighbor-
hoods is determined based on their complexity sizes, i.e., the two exchanges and insertion neighborhoods with 
same size of complexity are considered to be the first and second neighborhoods and three exchanges is consi-
dered to be the third neighborhood, because of its larger neighborhood size.  

6. Proposed Hybrid Approach 
With study of recent works on hybrid metaheurisitcs, it has found that hybrid VNS has dramatically effect on 
balancing between exploitation and exploration in combinatorial optimization problems [32]-[34]. The proposed 
hybrid GA-VNS consists in strong cooperation of GA and VNS for the entire course of the algorithm. In each 
iteration, we split the population into two parts. The splitted parts are evolved using GA and VNS and are then 
merged together in the updated population and form a new population. Finally, elitism is applied to keep the 
highest scoring of strings for the next iteration. Similarly, this procedure continues for the next iterations until a 
stopping criterion is met. The developed flowchart of proposed GA-VNS is exhibited in Figure 9.  

The main properties of the hybrid GA-VNS are as follows: 
Property 1: Generating the random initial solution.  
The hybrid approach begins with a population produced randomly.  
Property 2: Diversification using GA 



M. S. Uddin 
 

 
163 

1 4 3 2 5 6 5 6 4 1 3 2

T=1 T=2

1 6 3 4 5 2 5 6 4 1 3 2

T=1 T=2  
Figure 8. Three exchanges operation.                                                          

 

Start

Encode Problem

Generate Random 
Population

Stopping Criterion ?

Final Solution

Decode problem

End

Splitting of population

Apply VNS

Crossover

Mutation

Selective 
reproduction

Resulting New 
Population

Elitism

GA VNS

YesNo

 
Figure 9. The developed flowchart of proposed GA-VNS.                                                                                                                   

 
It is proven that GA is high capable of shuffling the solution space to prevent search stagnation, but the same 

time fails to intensify the search toward promising regions of the search space. Nevertheless, hybridization of 
GA with some suitable local search techniques may overcome the shortcoming feature of each individual algo-
rithm.  

Property 3: Intensification using VNS local search. 
The concept borrowed by the GA-VNS is that utilizing different neighborhood structures could prevent of 

getting trapped into local optimal and could also promotes expanding the search scope. 



M. S. Uddin 
 

 
164 

7. Parameters Setting 
The driving parameter of proposed hybrid GA-VNS is hybridizing coefficient (HC). HC parameter addresses the 
percentage of population that is assigned to GA. The proposed hybrid with HC = 1 will be converted to pure GA. 
It means that the whole population will be evolved with GA, while HC = 0 will be resulted in pure VNS. To take 
the advantages of features of both GA-VNS, it is clear that HC must be set to some value between 0 and 1 
( 0 1HC< < ). A large value of HC encourages the utilization of GA, resulting in exploration while a small value 
of HC facilitates the utilization of VNS, resulting exploitation through the course of run. To do balancing be-
tween exploration and exploitation strategies, we employed a decreasing linear model to adjust the HC parame-
ter as shown in the following equation: 

max min
max

max
k

HC HC
HC HC k

HC
−

= − ×                                (7) 

where kHC  is the hybridizing coefficient at kth iteration, maxHC  and minHC  are the maximum and mini-
mum values of hybridizing coefficient respectively. Through extensive experiments over different settings, the 
following set of parameters was found to be effective in terms of goodness of solution. maxHC , minHC , maxi-
mum number of iterations, population size, crossover rate, and mutation rate were set to be 0.8, 0.2, 600, 300, 
0.5, and 0.3 respectively.  

8. Experimental Results 
To compare the efficiency of the proposed algorithm against some existing algorithms; SAI, SAII [1], and hybr-
id ACO [8], we implemented it in MATLAB 7.8.0.347 (R2009a) and run on a PC with six-core processor 3.30 
GHz and 6 GB of RAM. Due to stochastic characteristics of hybrid GA-VNS, five independent replications 
were run over each problem.  

As it can be seen from Table 2, the GA-VNS algorithm obtained the same solution as SAI, SAII, and hybrid 
ACO for ( )6, 5N T= = . It also can be seen that GA-VNS can reaches to a better solution for problems P20 and 
P23. The relative percentage deviation (RPD) as shown by Equation (8) is used to measure the extent of devia-
tion of each individual algorithm from the best solution found among them.  

( )algorithm100 bfs bfsRPD F F F= × −                                (8) 

where algorithmF  is the best solution found by an algorithm and bfsF  is the best solution found among those 
three algorithms. The mean plot and the least significant difference (LSD) intervals with 95% confidence inter-
val for the RPD is worked out and presented in Figure 10.  

It is necessary to analyze the computational costs of GA-VNS against the other algorithms but it is hard to 
have a fair comparison due to utilizing different operating systems, programming procedure, and etc. However, 
the average CPU time for problem P02 with six facilities, 5 time periods and problem P17 with 15 facilities and 
5 time periods were 876 s and 1795 s respectively. 
 
Table 2. Comparison of computational results.                                                                             

Problem 
Problem No. 

SAI [1] SAII [1] Hybrid ACO [8] GA-VNS 

N T Best Solution Best Solution Best Solution Best Solution 

6 5 P02 104,834 104,834 104,834 104,834 

6 5 P04 106,399 106,399 106,399 106,399 

6 5 P06 103,985 103,985 103,985 103,985 

6 5 P08 103,771 103,771 103,771 103,771 

15 5 P17 480,453 480,496 480,453 480,637 

15 5 P20 484,405 484,414 484,446 483,312 

15 5 P23 487,232 486,779 486,853 485,729 

15 5 P24 491,034 490,812 491,016 490,952 



M. S. Uddin 
 

 
165 

GA-VNSHybrid ACOSAIISAI

0.0020

0.0015

0.0010

0.0005

0.0000

R
PD

Interval Plot of SAI, SAII, Hybrid ACO, GA-VNS
95% CI for the Mean

  
Figure 10. Means plot and 95% LSD for RPD.                                                      

9. Conclusion 
In this paper, a new hybrid GA-VNS was introduced to deal with the DFLP. In the proposed hybrid algorithm, 
the population was splitted into two parts; one part was assigned into the GA and the other part was assigned to 
the VNS. The percentage of splitting population was adjusted by a parameter called hybridizing coefficient (HC) 
through the course of run. Extensive computational experiments were performed to identify the most suitable 
parameters setting. The performance of the GA-VNS was compared against SAI, SAII, and hybrid ACO in 
terms of the quality of solutions. The results reveal that the hybrid GA-VNS gives good or even better solutions 
in most of the cases.  

References 
[1] McKendall Jr., A.R., Shang, J. and Kuppusamy, S. (2006) Simulated Annealing Heuristics for the Dynamic Facility 

Layout Problem. Computer and Operations Research, 33, 2431-2444. http://dx.doi.org/10.1016/j.cor.2005.02.021 
[2] Rosenblatt, M.J. (1986) The Dynamic of Plant Layout. Management Science, 32, 76-86.  

http://dx.doi.org/10.1287/mnsc.32.1.76 
[3] Lacksonen, T.A. and Enscore, E.E. (1993) Quadratic Assignment Algorithms for the Dynamic Layout Problem. Inter-

national Journal of Production Research, 31, 503-517. http://dx.doi.org/10.1080/00207549308956741 
[4] Baykasoglu, A. and Gindy, N.N.Z. (2001) A Simulated Annealing Algorithm for Dynamic Facility Layout Problem. 

Computers & Operations Research, 28, 1403-1426. http://dx.doi.org/10.1016/S0305-0548(00)00049-6 
[5] Balakrishnan, J., Cheng, C.H., Conway, D.G. and Lau, C.M. (2003) A Hybrid Genetic Algorithm for the Dynamic 

Plant Layout Problem. International Journal of Production Economics, 86, 107-120.  
http://dx.doi.org/10.1016/S0925-5273(03)00027-6 

[6] Dunker, T., Radons, G. and Westkamper, E. (2005) Combining Evolutionary and Dynamic Programming for Solving a 
Dynamic Facility Layout Problem. European Journal of Operational Research, 165, 55-69.  
http://dx.doi.org/10.1016/j.ejor.2003.01.002 

[7] Dunker, T., Radons, G. and Westkamper, E. (2003) A Coevolutionary Algorithm for a Facility Layout Problem. Inter-
national Journal of Production Research, 41, 3479-5300. http://dx.doi.org/10.1080/0020754031000118125 

[8] McKendall Jr., A.R. and Shang, J. (2006) Hybrid Ant Systems for the Dynamic Facility Layout Problem. Computers 
and Operations Research, 33, 790-803. http://dx.doi.org/10.1016/j.cor.2004.08.008 

[9] McKendall Jr., A.R. and Hakobyan, A. (2010) Heuristics for the Dynamic Facility Layout Problem with Unequal-Area 
Departments. European Journal of Operational Research, 201, 171-182. http://dx.doi.org/10.1016/j.ejor.2009.02.028 

[10] Chen, G.Y.-H. (2013) A New Data Structure of Solution Representation in Hybrid Ant Colony Optimization for Large 

http://dx.doi.org/10.1016/j.cor.2005.02.021
http://dx.doi.org/10.1287/mnsc.32.1.76
http://dx.doi.org/10.1080/00207549308956741
http://dx.doi.org/10.1016/S0305-0548(00)00049-6
http://dx.doi.org/10.1016/S0925-5273(03)00027-6
http://dx.doi.org/10.1016/j.ejor.2003.01.002
http://dx.doi.org/10.1080/0020754031000118125
http://dx.doi.org/10.1016/j.cor.2004.08.008
http://dx.doi.org/10.1016/j.ejor.2009.02.028


M. S. Uddin 
 

 
166 

Dynamic Facility Layout Problems. International Journal of Production Economics, 142, 362-371.  
http://dx.doi.org/10.1016/j.ijpe.2012.12.012 

[11] Guan, J. and Lin, G. (2016) Hybridizing Variable Neighborhood Search with Ant Colony Optimization for Solving the 
Single Row Facility Layout Problem. European Journal of Operational Research, 248, 899-909.  
http://dx.doi.org/10.1016/j.ejor.2015.08.014 

[12] Baykasoglu, A., Dereli, T. and Sabuncu, I. (2006) An Ant Colony Algorithm for Solving Budget Constrained and Un-
constrained Dynamic Facility Layout Problems. Omega, 34, 385-396. http://dx.doi.org/10.1016/j.omega.2004.12.001 

[13] Sahin, R., Ertogral, K. and Turkbey, O. (2010) A Simulated Annealing for the Dynamic Layout Problem with Budget 
Constraint. Computers and Industrial Engineering, 59, 308-313. http://dx.doi.org/10.1016/j.cie.2010.04.013 

[14] Ulutas, B.H. and Kulturel-Konak, S. (2012) An Artificial Immune System Based Algorithm to Solve Unequal Area 
Facility Layout Problem. Expert Systems with Applications, 39, 5384-5395.  
http://dx.doi.org/10.1016/j.eswa.2011.11.046 

[15] Komarudin and Wong, K.W. (2010) Applying Ant System for Solving Unequal Area Facility Layout Problems. Euro-
pean Journal of Operational Research, 202, 730-746. http://dx.doi.org/10.1016/j.ejor.2009.06.016 

[16] Ripon, K.S.N., Glette, K., Khan, K.N., Hovin, M. and Torresen, J. (2013) Adaptive Variable Neighborhood Search for 
Solving Multi-Objective Facility Layout Problems with Unequal Area Facilities. Swarm and Evolutionary Computa-
tion, 8, 1-12. http://dx.doi.org/10.1016/j.swevo.2012.07.003 

[17] Kulturel-Konak, S. (2012) A Linear Programming Embedded Probabilistic Tabu Search for the Unequal-Area Facility 
Problem with Flexible Bays. European Journal of Operational Research, 223, 614-625.  
http://dx.doi.org/10.1016/j.ejor.2012.07.019 

[18] Hosseini, S., Al Khaled, A. and Vadlamani, S. (2014) Hybrid Imperialist Competitive Algorithm, Variables Neighbor-
hood Search, and Simulated Annealing for Dynamic Facility Layout Problem. Neural Computing and Applications, 25, 
1871-1885. http://dx.doi.org/10.1007/s00521-014-1678-x 

[19] Hosseini, S. and Al Khaled, A. (2014) A Survey on the Imperialist Competitive Algorithm Metaheuristic: Implementa-
tion in Engineering Domain and Directions for Future Research. Applied Soft Computing, 24, 1078-1094.  
http://dx.doi.org/10.1016/j.asoc.2014.08.024 

[20] Vadlamani, S. and Hosseini, S. (2014) A Novel Heuristic Approach for Solving Aircraft Landing Problem with Single 
Runway. Journal of Air Transport Management, 40, 144-148. http://dx.doi.org/10.1016/j.jairtraman.2014.06.009 

[21] Al Khaled, A. and Hosseini, S. (2015) Fuzzy Adaptive Imperialist Competitive Algorithm for Global Optimization. 
Neural Computing and Applications, 26, 813-825. http://dx.doi.org/10.1007/s00521-014-1752-4 

[22] Hosseini, S., Barker, K. and Ramirez-Marquez, J.E. (2016) A Review of Definitions and Measures of System Resi-
lience. Reliability Engineering and System Safety, 145, 47-61. http://dx.doi.org/10.1016/j.ress.2015.08.006 

[23] Hosseini, S., Khaled, A. and Jin, M. (2012) Solving Euclidean Minimal Spanning Tree Problem Using a New Me-
ta-Heuristic Competitive Algorithm (ICA). 2012 IEEE International Conference on Industrial Engineering and Engi-
neering Management (IEEM), Hong Kong, 10-13 December 2012, 176-181.  
http://dx.doi.org/10.1109/ieem.2012.6837725 

[24] Khaled, A., Jin, M., Clarke, D.B. and Hoque, M.A. (2015) Train Design and Routing Optimization for Evaluating 
Criticality of Freight Railroad Infrastructures. Transportation Research Part B: Methodological, 71, 71-84.  
http://dx.doi.org/10.1016/j.trb.2014.10.002 

[25] Mamun, A.A., Khaled, A.A., Ali, S.M. and Chowdhury, M.M. (2012) A Heuristic Approach for Balancing Mixed- 
Model Assembly Line of Type I Using Genetic Algorithm. International Journal of Production Research, 50, 5106- 
5116. http://dx.doi.org/10.1080/00207543.2011.643830 

[26] Khaled, A.A., Kumar Paul, S., Kumar Chakraborty, R.K. and Ayuby, S. (2011) Selection of Supplier through Different 
Multi-Criteria Decision Making Techniques. Global Journal of Management and Business Research, 11, 1-13.  

[27] Masud, A.K.M., Khaled, A.A., Jannat, S., Khan, A.K.M.S.A. and Islam, K.J. (2007) Total Productive Maintenance in 
RMG Sector A Case Study: Burlington Limited, Bangladesh. Journal of Mechanical Engineering, 37, 62-65. 

[28] Khaled, A.A., Jin, M., Clarke, D.B. and Hoque, M.A. (2013) Determination of Criticality of Freight Railroad Infra-
structure Based on Flow Optimization under Heavy Congestion. Transportation Research Board 92nd Annual Meeting, 
Washington DC, 13-17 January 2013, Paper No. 13-1679. 

[29] Khaled, A.A., Masud, A.K.M., Chowdhury, S.C., Jannat, S. and Obayedullah, M. (2010) Effect of Fiber Diameter Wa-
viness and Wavelength Ratio on the Effective Tensile Elastic Modulus of Carbon Nanotube-Based Polymer Compo-
sites. Advanced Material Research, 83, 473-480. 

[30] Burun, E., Erfidan, T. and Ugrum, S. (2006) Improved Power Factor in a Low-Cost PWM Single Phase Inverter Using 
Genetic Algorithms. Energy Conversion and Management, 47, 1597-1609.  

http://dx.doi.org/10.1016/j.ijpe.2012.12.012
http://dx.doi.org/10.1016/j.ejor.2015.08.014
http://dx.doi.org/10.1016/j.omega.2004.12.001
http://dx.doi.org/10.1016/j.cie.2010.04.013
http://dx.doi.org/10.1016/j.eswa.2011.11.046
http://dx.doi.org/10.1016/j.ejor.2009.06.016
http://dx.doi.org/10.1016/j.swevo.2012.07.003
http://dx.doi.org/10.1016/j.ejor.2012.07.019
http://dx.doi.org/10.1007/s00521-014-1678-x
http://dx.doi.org/10.1016/j.asoc.2014.08.024
http://dx.doi.org/10.1016/j.jairtraman.2014.06.009
http://dx.doi.org/10.1007/s00521-014-1752-4
http://dx.doi.org/10.1016/j.ress.2015.08.006
http://dx.doi.org/10.1109/ieem.2012.6837725
http://dx.doi.org/10.1016/j.trb.2014.10.002
http://dx.doi.org/10.1080/00207543.2011.643830


M. S. Uddin 
 

 
167 

http://dx.doi.org/10.1016/j.enconman.2005.08.010 
[31] Mladenovic, M. and Hansen, P. (1997) Variable Neighborhood Search. Computers and Operations Research, 24, 

1097-1100. http://dx.doi.org/10.1016/S0305-0548(97)00031-2 
[32] Coelho, I.M., Munhoz, P.L.A., haddad, M.N., Souza, M.J.F. and Ochi, L.S. (2012) A Hybrid Heuristic Based on Gen-

eral Variable Neighborhood Search for the Single Vehicle Routing Problem with Deliveries and Selective Pickups. 
Electronic Notes in Discrete Mathematics, 39, 99-106. http://dx.doi.org/10.1016/j.endm.2012.10.014 

[33] Ultas, B. and Islier, A.A. (2015) Dynamic Facility Layout Problem in Footwear Industry. Journal of Manufacturing 
Systems, 36, 55-61. http://dx.doi.org/10.1016/j.jmsy.2015.03.004 

[34] Selvi, S. and Manimegalai, D. (2015) Multiobjective Variable Neighborhood Search Algorithm for Scheduling Inde-
pendent Jobs on Computational Grid. Egyptian Informatics Journal, 16, 199-212.  
http://dx.doi.org/10.1016/j.eij.2015.06.001 

http://dx.doi.org/10.1016/j.enconman.2005.08.010
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.endm.2012.10.014
http://dx.doi.org/10.1016/j.jmsy.2015.03.004
http://dx.doi.org/10.1016/j.eij.2015.06.001

	Hybrid Genetic Algorithm and Variable Neighborhood Search for Dynamic Facility Layout Problem
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	2.1. Indexes 
	2.2. Parameters
	2.3. Decision Variables

	3. Encoding Scheme 
	4. Principles of GA
	5. Variable Neighborhood Search
	Local Searches

	6. Proposed Hybrid Approach
	7. Parameters Setting
	8. Experimental Results
	9. Conclusion
	References

