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ABSTRACT 

In this paper, we shall be interested in characterization of efficient solutions for special classes of problems. These 
classes consider roughly B-invexity of involved functions. Sufficient and necessary conditions for a feasible solution to 
be an efficient or properly efficient solution are obtained. 
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1. Introduction 

The study of multi-objective programming problems was 
very active in recent years. The minimum (efficient, 
Pareto) solution is an important concept in mathematical 
models, economics, decision theory, optimal control and 
game theory (see, for example, [1]). In most works, an 
assumption of convexity was made for the objective 
functions. Very recently, some generalized convexity has 
received more attention (see, for example, [2-6]). A sig-
nificant generalization of convex functions is invex func-
tion introduced first by Hanson [7], which has greatly 
been applied in nonlinear optimization and other bran- 
ches of pure and applied sciences. 

The concept of B-invex functions was proposed by [8] 
as generalization of convex functions; these functions 
were extended to quasi B-invex, and pseudo B-invex 
functions. Many functions seem to be B-invex, but they 
are not, and many non B-invex functions are able to get 
B-invex by choosing a suitable condition. Based on the 
previous discussion, Tarek [9] introduced a new class of 
B-invex functions, this class called roughly B-invex func- 
tions. 

Inspired and motivated by above works, the purpose of 
this paper is to formulate a multi-objective programming 
problem which it involves roughly B-invex functions. An 
efficient solution for considered problem is characterized 
by weighting and ε-constraint approaches. In the end of 
the paper, we obtain sufficient and necessary conditions 
for a feasible solution to be an efficient or properly effi-
cient solution for this kind of problems. Let us survey, 
briefly, the definitions and some results of roughly B-in- 
vexity. 

Definition 1 [10] 
Let ny M R  . The set M is said to be B-invex with 

respect to : nM M R    at y M  if there exists 

   , , :b x y M 0,1M R   , 

such that  ,y b x y  M , for each x M , and 
0 1  . 

M is said to be B-invex set with respect to η if M is 
B-invex at each y M  with respect to the same η. 

Note that, as in convex set, the intersection of finite (or 
infinite) family of B-invex sets is B-invex but the union 
is not necessarily B-invex set. Also, the sum of B-invex 
sets and the multiplying a B-invex set by a real number 
are again B-invex sets. Every B-invex set with respect to 

: nM M R 

n

  is an invex set when b = 1; but the 
con- verse is not necessarily true. 

Definition 2 [9] 
A numerical function f , defined on a B-invex subset M 

of Rn, is said to be roughly B-invex with respect to 
: M M R  with roughness degree r at y M  if 

there exists    , , :b x y M 0,1M R   , such that 

        , 1f y b x y    b b f y f x , 

for each x M , and 0 1   such that x y r  . 
f is said to be roughly B-invex on M with respect to 
 ,x y  if it is roughly B-invex at each y M  with re- 

spect to the same  ,x y

n

. 
Every invex function, with respect to η is roughly 

B-invex function with respect to same η, where b (x, y) = 
1; but the converse is not necessarily true. If the func-
tions :if R R

n
 are all roughly B-invex with respect 

to : M M R   with roughness degree ir i  on a 
B-invex set nM R

 
k

i

h x


 

, then the function 

 i if x
1

a  

is roughly B-invex with respect to same η with roughness 
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degree 

1
min i

i k
r r

 
  

on M for ai ≥ 0. If : nf R 
n

R  is roughly B-invex with 
respect to : M M R 

n
 with roughness degree r, on 

B-invex set M R , then for any real number R   
the level set   f x: ,K x x M     is B-invex set. 
A numerical function f defined on a B-invex set 

nM R
:

 is roughly B-invex function with respect to 
nM M R   with roughness degree r if and only if 

epi(f) is a B-invex set. If 
i I

 if 
 is a family of numerical 

func- tions, which are roughly B-invex with respect to 
: nM M R   with roughness degree r and bounded 

from above on a B-invex set nM R , then the numeri-
cal function 

   i
i I

f x Sup f x


  

is a roughly B-invex with respect to same η with rough-
ness degree r on M. If : nf R  R  is a differentiable 
roughly B-invex function with respect to : nM M R    
with roughness degree r, at y M , then there exists a 
function  ,b x y , such that 

           , , , [ ]
T

xb x y x y f y b x y f x f y    , 

for each x M  such that x y r  . 
Definition 3 [9] 
A numerical function f, defined on a B-invex subset M 

of Rn, is said to be quasi roughly B-invex with respect to 
: nM M R    with roughness degree r at y M , if 

there exists    , , : 0,1y M M R   b x , such that 

        ,f x f y f y b x y f y     , 

for each x M , and 0 1   such that x y r  . 
f is said to be quasi roughly B-invex on M with respect 

to  , x y  if it is roughly B-invex at each y M  with 
respect to the same  ,x y . 

A : nf R  R  is quasi roughly B-invex with respect to 
η: M × M → Rn with roughness degree r, on nM R , if 
and only if the level set 

  : ,K x x M f x     

is B-invex set. A roughly B-invex function, with respect 
to : nM M R    with roughness degree r is quasi 
roughly B-invex function with respect to same η with 
roughness degree r. Let nM R  be B-invex set, if 

: nf R R
:

 is differentiable quasi roughly B-invex with 
respect to nM M  R  with roughness degree r, at 
y M , then there exists a function  ,b x y , such that 

     , , xb x y x y f y 0
T   , 

for each x M  such that x y r  . 
Definition 4 [9] 
A numerical function f, defined on a B-invex subset M 

of Rn, is said to be pseudo roughly B-invex with respect 
to : nM M R   with roughness degree r at y M , 
if there exists    , , : 0,1y M M R   b x , and, there 
exists a strictly positive function a: Rn × Rn → R such that 

            , 1 ,f x f y f y b x y f y a x y          

for each x M  such that x y r  . 
If : nf R  R  is roughly B-invex function with re-

spect to : nM M R 
n

  with roughness degree r on 
B-invex set M R

n

 , then f is pseudo roughly B-invex 
function with respect to same η with roughness degree r 
on M. Let M R  be B-invex set and : nf R  R  be 
a differentiable pseudo roughly B-invex with respect 
to : nM M  R with roughness degree r, at y M , 
then there exists a function  ,b x y , such that 

         , , 0xb x y x y f y f x f y    T
, 

for each x M  such that x y r  . 

2. Problem Formulation 

Let : , 1, 2,n
j ,f R R j   k ,, and : n

ig R R  i = 1, 
2, ···, m are real valued roughly B-invex functions on Rn. 
A roughly B-invex multi-objective programming prob-
lem is formulated as follows: 

(P)      

 

  

,

subject to

: 0, 1, 2,

j

n
i

Min f x

.x M x R g x i m     

 

Definition 5 [11] 
A feasible solution x for (P) is said to be an efficient 

solution for (P) if and only if there is no other feasible x 
for (P) such that, for some ,  1, 2, ,i k 

       * *, , for ai i j j llf x f x f x f x j i   . 

Definition 6 [11] 
An efficient solution x M  for (P) is a properly ef- 

ficient solution for (P) if there exists a scalar 0   
such that for each , 1,2i i , ,k  , and each x M  
satisfying    *

iif x f x , there exists at least one j i  
with     ,*

j jf x f x  and 

       * *
i i j jf x f x f x f x          . 

Lemma 1 [9] 
If : n

ig R 
n
R  is roughly B-invex with respect to 

: M M R   with roughness degree r, on Rn, i = 1, 
2, ···, m, then the set 

  : 0, 1,2, ,n
iM x R g x i m      

is B-invex set. 
Lemma 2 [9] 
If : n

ig R  R  is quasi roughly B-invex with respect 
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to : nM M R   with roughness degree r, on Rn, i = 1, 
2, ···, m, then the set 

  : 0, 1,2, ,n
iM x R  g x i m    

is B-invex set. 
Lemma 3 
Let      , , : 0,1 0,1b x y M M    . If : nf R R  

is a roughly B-invex function with respect to  
: nM M R 

n
  with roughness degree r on a B-invex 
set M R , then the set 

 
x M

A A x


   is convex, 

where       *: , ,kA x z z R z f x f x x M    

1 2 1 2

. 

Proof. Let then for ,z z A , ,x x M  and 
0 1,   we have 

 
         
     
       

    

1 2

1 * 2 *

1 2 *

1 2 *

2 1 2 *

1

1

(1 )

1

, .

z z

f x f x f x f x

f x f x f x

bf x b f x f x

f x b x x f x

 

 

 

 

 

 

        

   

   

  




A

 

Since f is a roughly B-invex function on a B-invex set 
M. Then , and hence A is convex set.  1 21z z   

*For a feasible point x M , we denote  *I x  as 
the index set for binding constraints at x*, i.e., 

.     * *: 0iI x i g x 

3. Characterizing Efficient Solutions by 
Weighting Approach 

To characterizing an efficient solution for problem (P) by 
weighting approach [11] let us scalarize problem (P) to 
become in the form. 

(Pw)     
1

k

j j
j

Min w f x

 , s.t. x M

j

, 

where       
1

0, 1,2, , , 1
k

j j
w j k w


  

and jf , j = 1, 2, ···, k are roughly B-invex with respect 
to : nM M R   with roughness degree rj on 
B-invex set M. 

Theorem 1 
If x M  is an efficient solution for problem (P), 

then there exist 

1
0, 1,2, , , 1

k

j j
w j k w


   j  

such that x  is an optimal solution for problem (Pw). 
Proof. Let x M  be an efficient solution for prob-

lem (P), then the system     0,j jf x f x   j = 1, 2, ···, 

k has no solution x M . Upon Lemma 3 and by apply-
ing the generalized Gordan theorem [12], there exist 

 such that 0, 1,2,jp j  , k

    0, 1,2, ,x j k     j jp f jx f , 

and          
1 1

j j
j jk k

j jj j

p p
f x f x

p p
 


 

. 

Denote           
1

j
j k

j

p

p





w

0, 1w j 

, 
j

then       , 
1

, 2, , , 1
k

j jj
k w




and             1 1

k k

j jw f j jj j
x w f x

 
  . 

Hence x  is an optimal solution for problem (Pw). 
Theorem 2 
If x M  is an optimal solution for  Pw  corre-

sponding to jw , then x  is an efficient solution for 
problem (P) if either one of the following two conditions 
holds: 

(i) 0,jw  for all 1,2, ,j k  ; or (ii) x  is the 
unique solution of  Pw . 

Proof. To proof see V. Chankong, Y. Y. Haimes [11]. 

4. Characterizing Efficient Solutions by 
ε-Constraint Approach 

An ε-constraint approach is one of the common ap- 
proaches for characterizing efficient solutions of mul- 
tiobjective programming problems [11]. In the following 
we shall characterizing an efficient solution for multiob- 
jective roughly B-invex programming problem (P) in 
term of an optimal solution of the following scalar prob-
lem. 

P ( )q       

 

 

,

subiect to ,

, 1, 2, , ,

q

j j

Min f x

x M
.f x j k j



q  

 

where , 1,2, ,jf j k 
:

 are roughly B-invex with re-
spect to nM M   R  with roughness degree rj on 
B-invex set M. 

Theorem 3 
If x M  is an efficient solution for problem (P), 

then x  is an optimal solution for problem P ( )q   cor-
responding to  j jf x  . 

Proof. 
Let x  be not optimal solution for P ( )q   where 

  , 1,2, , ,j j .f x j k j q      So there exists x M   

such that           q qf x f x , 

    , 1, 2, , ,j j jf x f x j k j q     . 

Thus, x  is inefficient solution for problem (P) which 
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is a contradiction. Hence x  is an optimal solution for 
problem P ( )q  . 

Theorem 4 
Let x M  is an optimal solution of P ( )q   for all  

q = 1, 2, ···, k, where  j jf x  , j = 1, 2, ···, k . Then 
x  is an efficient solution for problem (P). 

Proof. 
Since x M  is an optimal solution for P ( )q  , for 

all q = 1, 2, ···, k. So, for each x M , we get 
    ,q qf x f x  q = 1, 2, ···, k. 
This implies that the system     0,j jf x f x   j = 1, 

2, ···, k has no solution x M , i.e. x  is an efficient 
solution for problem (P). 

5. Sufficient and Necessary Conditions for 
Efficiency 

In this section, we discuss the sufficient and necessary 
conditions for a feasible solution x* to be efficient or 
properly efficient for problem (P) in the form of the fol-
lowing theorems. 

Theorem 5 
Suppose there exists a feasible solution x* for (P), and 

scalars , such that  *0, 1, 2, , , 0,j iw j k u i I x   

k

   
 *

*

1

0j j i i
j i I x

w f x u g x
 

     * .        (1) 

If jf , j = 1, 2, ···, k are roughly B-invex with respect 
to : nM M R  

i I
 with roughness degree r at x* and gi, 

 is roughly B-invex with respect to same η with 
roughness degree ri at x*. Then x* is a properly efficient 
solution for problem (P). 

 *x

Proof. 
Since jf , j = 1, 2, ···, k and  *,ig i I x  are 

roughly B-invex with respect to same η, then there exists 
a function  such that * *,b x x

k






     

     

     

   
 

 

   
 

*

**

*

* * *

1

* * * *

1

* * * *

( )

* * *

( )

* *

,

, ,

, ,

,

, 0.

j j j
j

tk

j j
j

t

i i
i I x

i i i i
i I xi I x

i i

i I x

b x x w f x f x

x x b x x w f x

x x b x x u g x

b x x u g x u g x

b x x u g x















  

   

    


 

 

  







 





 

by (1) for each x M such that 

 
 

*

*

1 ,
max ,j i

j k i I x
x x r

  
  r



. 

Thus, ,       * * * * *

1 1

, ,
k k

j j j j
j j

b x x w f x b x x w f x
 

 

for all x M , which implies that x* is the minimizer of 

 
1

k

j j
j

f x

  

such that        

 * *

1

,

j
j k

j
j

w

b x x w







 

under the constraint   0g x   where *x x r  . 
Hence, from Theorem (4.11) of [11], x* is a properly ef-
ficient solution for problem (P). 

Theorem 6 Let x* be a feasible solution for (P). If 
there exist scalars , 0, 1,2, ,jw j   k

 *

1

1, 0,
k

j i
j

w u i I x


   , 

such that the triplet (x*, wi, ui) satisfies (1) of Theorem (5), 

1

k

j j
j

w f

  

is strictly roughly B-invex with respect to η: M × M → Rn 
with roughness degree r at x* and gi,  *i I x  is 
roughly B-invex with respect to same η with roughness 
degree ri at x*. Then x* is an efficient solution for prob-
lem (P). 

Proof. 
Suppose that x* is not an efficient solution for (P). 

Then, there exists a feasible x M , and index v such 
that    * ,v vf x f x   , for all .f x j v 

k

 *
j jf x  

Since              
1

j j
j

w f

  

is strictly roughly B-invex with respect to η with rough-
ness degree r at x*, then there exists a function  * *,b x x  
such that 

     

     

* * *

1 1

* * * *

1

0 ,

0 , ,

k k

j j j j
j j

tk

j j
j

b x x w f x w f x

x x b x x w f x

 



 
  

 

    

 


.     (2) 

Also, roughly B-invexity of gi,  with respect 
to same η at x* with roughness degree ri implies 

 *i I x

           * * * * * * *, , ,i ix x b x x g x b x x g x g x     i , 

i.e.          * * * * *, , 0,i x x b x x g x i I x    ,     (3) 

such that  max ,*x ix r r  . Adding (2) and (3), con-
tradicts (1). Hence, x* is an efficient solution for problem 
(P). 

Copyright © 2012 SciRes.                                                                                 OJOp 



T. EMAM 5

Remark 1 
Similarly as in Theorem (5), it can be easily seen that 

x* becomes properly efficient solution for (P), in the 
above theorem, if wj > 0, for all j = 1, 2, ···, k. 

Theorem 7 
Suppose there exists a feasible solution x* for (P), and 

scalars wi > 0, j = 1, 2, ···, k,  such that 
(1) of Theorem (5) holds. If 

 *0,iu i I x 

1

k

j j
j

w f

  

is pseudo roughly B-invex with respect to : nM M R    
with roughness degree r at x* and gI is quasi roughly 
B-invex with respect to same η with roughness degree rI at 
x*. Then x* is a properly efficient solution for problem 
(P). 

Proof.  
Since , and gI are quasi 

roughly B-invex with respect to η with roughness degree 
rI at 

   * 0, 0I I ig x g x u  

*x , then there exists a function  such that * *,b x x
t


0     

 *

* * * *, , i i

i I x

x x b x x u g x


    , 

for all x M  such that * max i
i

x x  r

0



. By using (1),  

we have         * * * *

1

, ,
tk

j j
j

x x b x x w f x


   

which implies 

      * * * * *

1 1

, ,
k k

j j j j
i j

b x x w f x b x x w f x
 

  , 

since                 
1

k

j j
j

w f

  

is pseudo roughly B-invex with respect to same η with 
roughness degree r at x* which implies that x* is the 
minimizer of 

 
1

k

j j
j

f x

  

such that        

 * *

1

,

j
j k

j
j

w

b x x w







 

under the constraint  where   0g x  *x x  ≥ max(r, 
ri). Therefore, x* is a properly efficient solution for prob-
lem (P). 

Theorem 8 
Suppose that there exist a feasible solution x* for (P) 

and scalars , 0, 1,2, ,jw j   k

such that (1) of Theorem (5) holds. Let 

1

1
k

j
j

w


 , ,  *0,iu i I x 

1

k

j j
j

w f

  

be strictly pseudo roughly B-invex with respect to  
: nM M R    with roughness degree r at *x a

b ly B-invex with respect to sam η with 
roughness degree rI at x*. Then x* is an efficient solution 
for problem (P). 

Proof. Suppose that x* is not an efficient solution for 
(P

nd gI 
e quasi  rough e 

).Then, there exists a feasible x for (P), and index v 
such that        * *, , for all .v v i if x f x f x f x i r    
then there ex

     * * *,
k k

b x x w f x w f x 

ists a function  * *,b x x  such that, 

 * *

1 1

,j j j j
j j

b x x
 

 , 

1

k

j j
j

w f

  Strictly pseudo roughly B-invexity of 

implies that 0

for all 

     * * * *

1

, ,
tk

j j
j

x x b x x w f x


     

 such that x M *x x r  . Since gI is quasi 
-invex with respect to samroughly e η with roughness 

degree rI at *
B

x  and    * 0I Ig x g x  , 

then             * * * * ,x x , Ib x x g x , 0

for all x M  such that  

* max i
i

x x r . 

The proof now similar to the proof o heorem (6). 

t 
x*

ble solution x* f ), and 
sc

f T
Remark 2 

 in Theorem (7), it can be easily seen thaSimilarly as
 becomes properly efficient solution for (P), in the 

above theorem, if 0, for all 1, 2, ,jw j k   . 
Theorem 9 

e exists a feasi or (PSuppose ther
alars  *0, 1, 2, , , 0,j iw j k u i I x     such that 

(1) of Th
k

eorem (5) holds. Let 

1
j j

j

w f

  

be pseudo roughly B-invex with respect to  
: nM M R    with roughness degree Ir  at x* and 

I Iu g  be quasi r
with 

oughly B-invex with respe  to same η 
roughness degree 

ct

Ir  at x*. Then x* is a properly 
efficient solution for problem (P). 

Proof. The proof is similar to the proof of Theorem (7). 
Theorem 10 

there exist a feasible solution x* for (P) Suppose that 
an

such that (1) of Theorem (5) holds. If 

d scalars 0, 1,2, ,jw j k   , 

 *

1

1, 0,
k

j i
j

w u i I x


   , 

 *I x  , 
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 * .i I x  k

1
j j

i

w f

  Similarly, for    * *, ii I x g x 0  , and for 0   

small enough 
is quasi roughly B-invex with respect to : nM M R    
with roughness degree r at x* and I Iu g  is strictly

to sa
 

pseudo roughly B-invex with respect me η with 
roughness degree rI at x*. Then x* is an efficient solution 
for problem (P). 

Proof. The pr

        * * * *, , , 0,i
*g x x x b x x x x i I x          . 

Thus, for λ sufficiently small and all  

     * * *0, , , , *x x x b x x x x           oof is similar to the proof of Theorem 
(8

mark 3 
 in Theorem (7), it can be easily seen that 

x*

tion for 
pr

). 
Re

is feasible for problem (P). For sufficiently small 0  , 
(5) gives 

Similarly as

        * * * *, , ,q q
*f x x x b x x x x f x         . (7)  becomes properly efficient solution for (P), in the 

above theorem, if 0, for all 1, 2, ,jw j k   . 
Theorem 11 (N ) ecessary Optimality Criteria Now, for all j q  such that 
Assume that x* is a properly efficient solu

        * * * *, , ,j j
*f x x x b x x x x f         x  (8) oblem (P). Assume also that there exist a feasible point 

x  for (P) such that   0, 1,2, ,ig x i m   , and each 
 *,ig i I x  is rough  to η: M × 

 roughness degree ri at x*. Then, there exists 
scalars 0, 1,2, ,jw j k    and 

ly B-invex with respect
M → Rn with

 *0,iu i I x  , 
such that the triplet  * , ,j ix w u  satisfies 

k

Consider the ratio (see Equation (9)) 
From (5), . Simi-

larly, 
     * *, 0

t

qN x x f x      
     * *, 0

t

jD x x f x      ; but, by (8) 
   ,so , 0D D   , 0  . 
Thus, the ratio in (9) becomes unbounded, contradicting 

the proper efficiency of x* for (P). Hence, for each q = 1, 
2, ···, k, the system (5) has no solution. The result then 
follows from an application of the Farkas Lemma as in 
[12], namely 

   
 *

* *

1

0j j i i
j i I x

w f x u g x
 

     .      (4) 

Proof. Let the following system 

l

   * *t

   
 *

* *

1

0
k

j j i i
j i I x

w f x u g x
 

     . 

   
     

* *

* * *

, 0,

, 0, for al

, 0,

q

t

j

t

i

x x f x

x x f x j

x x g x i I x







 

  

  

.q       (5) 

has a solution for every . Since by the as-

*

Theorem 12 
Assume that x* is an efficient solution for problem (P) 

at which the Kuhn-Tucker constraint qualification is sat-
isfied. Then, there exist scalars 1,2, ,q k 

n, sumed Slater-type conditio

   *

1

0, 1, 2, , , 1
k

j j
j

w j k w


   , , 0, 1,2, ,iu i   0,i i
mg x g x i I x  , 

*xand then from roughly B -invexity of g  at i i  with re-
spect to η, there exists a function  *,b x x  su  that 

   
ch

   * * * *, ,
t

     

such that 

   * *
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