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Abstract 
This paper is devoted to study a new generalization of the flexible Weibull with three 
parameters. This model is referred to as the exponential flexible Weibull extension 
(EFWE) distribution which exhibits bathtub-shaped hazard rate function. Some sta-
tistical properties such as the mode, median, the thr  moment, quantile function, 
the moment generating function and order statistics are discussed. Moreover, the 
maximum likelihood method for estimating the model parameters and the Fisher’s 
information matrix is given. Finally, the advantage of the EFWE distribution is con-
cluded by an application using real data. 
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1. Introduction 

The Weibull distribution (WD) submitted by Weibull [1], is an important and popular 
distribution for modeling lifetime data where the hazard rate function is monotone. 
Recently, new classes of distributions were based on modifications of the Weibull dis-
tribution (WD) to provide a good fit to data set with bathtub hazard failure rate Xie and 
Lai [2]. The Modified Weibull (MW) distribution has been derived by Lai et al. [3] and 
Sarhan and Zaindin [4]. Moreover the Beta-Weibull (BW) distribution has been stu-
died by Famoye et al. [5], Beta modified Weibull (BMW) distribution, see Silva et al. [6] 
and Nadarajah et al. [7] and Kumaraswamy Weibull (KW) distribution, see Cordeiro et 
al. [8]. Furthermore, many generalizations of the Weibull distribution are investigated 
like a Generalized modified Weibull (GMW) distribution, Carrasco et al. [9] and Ex-
ponentiated modified Weibull extension (EMWE) distribution, Sarhan and Apaloo 
[10]. Also we can find good review of these models in Pham and Lai [11] and Murthy et 
al. [12]. 
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The Flexible Weibull (FWE) distribution (Bebbington et al. [13]) has many applica-
tions in life testing experiments, applied statistics, reliability analysis and clinical stu-
dies. For more details on this distribution, see [13]. If X  is a random variable and it 
has the Flexible Weibull Extension (FWE) distribution with parameters , 0α β > , then 
it’s probability density function (pdf) is given by  

( ) 2 e exp e , 0,
x x

x xg x x
x

β βα αβα
− −   = + − >  

    
                (1) 

while the cumulative distribution function (cdf) is given by  

( ) 1 exp e ,  0.
x

xG x x
βα −  = − − > 

  
                     (2) 

The survival function is given by the equation  

( ) ( )1 exp e ,  0,
x

xS x G x x
βα −  = − = − > 

  
                 (3) 

and the hazard rate function is  

( ) 2 e .
x

xh x
x

βαβα
− = + 

 
                        (4) 

In this article, a new generalization of the Flexible Weibull Extension (FWE) distri-
bution called exponential flexible Weibull extension (EFWE) distribution is derived. 

Using the exponential generator applied to the odds ratio 
( )

1
1 G x−

, such as the expo- 

nential Pareto distribution by AL-Kadim and Boshi [14], exponential lomax distribu-
tion by El-Bassiouny et al. [15]. If X  is a random variable and ( )G x  is the baseline 
cumulative distribution function with probability density function ( )g x  and the ex-
ponential cumulative distribution function is 

( ); 1 e ,   0,   0.xF x xλλ λ−= − ≥ ≥                     (5) 

By using Equation (5) and replacing the random variable X  with ratio 
( )

1
1 G x−

.  

The cdf of exponential generalized distribution is defined by AL-Kadim and Boshi [14] 
and El-Bassiouny et al. [15]  

( )
( )

( )

1
1

0

e d

11 exp ,  0, 0,
1

G x
tF x t

x
G x

λλ

λ λ

−
−=

   = − − ≥ ≥  
−    

∫
               (6) 

where ( )G x  is a baseline cdf. Hence the pdf corresponding to Equation (6) is given as  

( ) ( )
( ) ( )2

1exp .
11

g x
f x

G xG x

λ
λ

  ⋅  = ⋅ −   
− −      

                (7) 

This article is organized as follows. The cumulative function, density function and 
hazard function of the exponential flexible Weibull extension (EFWE) distribution are 
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defined in Section 2. Some of statistical properties including, quantile function and si-
mulation, the mode, median, the skewness and kurtosis and rth  moments are pre-
sented in Sections 3. The moment generating function (mgf) is derived in Sections 4. 
The order statistics is determined in Section 5. The maximum likelihood estimation of 
the parameters is obtained in Section 6. Real data sets are analyzed in Section 7. More-
over, we discuss the results and compare it with existing distributions. Finally, we in-
troduce the conclusion of our results. 

2. Definition of the EFWE Distribution 

We define in this section three parameters of the Exponential Flexible Weibull Exten-
sion EFWE ( ), ,α β λ  distribution. Using ( )G x  Equation (2) and ( )g x  Equation 
(1) in Equation (6) and Equation (7) to obtain the cdf and pdf of EFWE distribution. 
The cumulative distribution function cdf of the Exponential Flexible Weibull Extension 
distribution (EFWE) is given by  

( ) e; , , 1 exp e ,  0,  , , 0.
x

xF x x
βα

α β λ λ α β λ
−  = − − > > 

  
            (8) 

The pdf corresponding to Equation (8) is given by  

( ) e e
2; , , e e exp e ,

x x
x xx

xf x
x

β βα αβαβα β λ λ α λ
− −−    = + −  

    
            (9) 

where 0x >  and , 0α β >  are two additional shape parameters. 
The survival function ( )S x , hazard rate function ( )h x , reversed hazard rate func-

tion ( )r x  and cumulative hazard rate function ( )H x  of ( ), ,X EFWE α β λ∼  are 
given by  

( ) ( ) e; , , 1 ; , , exp e ,  0,
x

xS x F x x
βα

α β λ α β λ λ
−  = − = − > 

  
         (10) 

( ) e
2; , , e e ,

x
xx

xh x
x

βαβαβα β λ λ α
−− = + 

 
                 (11) 

( )

e e
2

e

e e exp e

; , , ,

1 exp e

x x
x x

x
x

x
x

x
r x

β βα α

βα

βαβλ α λ

α β λ

λ

− −

−

−    + −  
    =

  − − 
  

           (12) 

( ) ( )
0

; , , d exp e ,
xx xH x h u u

βα
α β λ λ

−  = =  
  

∫                (13) 

respectively, 0x >  and , , 0α β λ > . 
Figures 1-6 display the cdf, pdf, survival function, hazard rate function, reversed 

hazard rate function and cumulative hazard rate function of the EFWE ( ), ,α β λ  dis-
tribution for some parameter values. 

3. Some Statistical Properties 

Some statistical properties for the EFWE distribution, such as quantile and simulation  
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Figure 1. The cdf of the EFWE for different values of parameters. 

 

 
Figure 2. The pdf of the EFWE for different values of parameters. 

 

 

Figure 3. The ( )S x  of the EFWE for different values of parameters. 
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Figure 4. The ( )h x  of the EFWE for different values of parameters. 

 

 

Figure 5. The ( )r x  of the EFWE for different values of parameters. 

 

 

Figure 6. The ( )H x  of the EFWE for different values of parameters. 
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median, the mode, moments, the skewness and kurtosis are given as follows.  

3.1. The Quantile and Simulation 

Suppose the random variable qx  is the quantile of the EFWE distribution given by  

( ) ,   0 1.qF x q q= < <                        (14) 

Using the distribution function of EFWE distribution, from (8), we have  

( )2 0,q qx k q xα β− − =                        (15) 

where  

( ) ( )ln 1
ln ln .

q
k q

λ
 −  = −  
   

                     (16) 

So, the simulation of the EFWE distribution random variable is straightforward. We 
obtain the random variable X  by solve the Equation (15) as follows form  

( ) ( )2 4
.

2
k u k u

X
αβ

α
± +

=                      (17) 

Since the median is 50%  quantile then by setting 0.5q =  in Equation (15), we can 
obtain the median M  of EFWE distribution. 

3.2. The Mode of EFWE 

The mode of the EFWE distribution can be obtained by differentiating its probability 
density function in Equation (9) with respect to x  and equaling it to zero. So the 
mode of the EFWE is the solution of the following equation  

e e e
3 2

2e e exp e 1 e e 0
x x x

x x xx x
x x

x x

β β βα α αβ βα αβ βλ λ α λ
− − −− −       − − + + + − =             

    (18) 

The EFWE distribution has only one peak, then this distribution is a unimodal dis-
tribution. Figure 2 shows that Equation (18) has only one solution. It is difficult to get 
an explicit solution of Equation (18). Therefore, it can be solved numerically. Some 
values of median and mode for various values of the parameters ,α β  and λ  are 
calculated in Table 1. 

3.3. The Skewness and Kurtosis  

In this subsection, we can obtain the skewness and kurtosis based on the quantile  
 

Table 1. The median and mode for EFWE ( ), ,α β λ . 

α  β  λ  median mode 

0.015 0.381 0.076 53.3576 10.6657 

0.158 0.158 0.273 0.801066 1.96923 

0.700 1.000 0.150 1.537340 1.87122 

1.000 0.700 0.130 1.132920 1.35312 

1.000 0.800 0.200 1.009750 1.27259 

1.200 1.000 0.100 1.228750 1.38465 
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measures. The Bowely’s skewness (Kenney and Keeping [16]) is given by  

( ) ( ) ( )

( ) ( )

0.75 0.5 0.25

0.75 0.25

2
,k

q q q
S

q q

− +
=

−
                     (19) 

and the Moors Kurtosis (Moors [17]) can be obtained, based on octiles, as follows  

( ) ( ) ( ) ( )

( ) ( )

0.875 0.625 0.375 0.125

0.75 0.25

,u

q q q q
K

q q

− − +
=

−
                 (20) 

where the ( ).q  is quantile function. 

3.4. The Moments 

Here, we derive the rth  moment for EFWE distribution in the next theorem 
Theorem 1. If X  has EFWE ( ), ,α β λ  distribution, then the rth  moments of 

random variable X , is given by  

( ) ( ) ( ) ( )
( )

( )
( )

1

1 11
0 0 0

1 1 1 1 1
.

! ! ! 1 1

i k j ki k

r r k r kr k r k
i j k

i j r k r k
i j k j j

λ β β
µ

α α

+ +∞ ∞ ∞

− + − −− − −
= = =

 − + + Γ − + Γ − −
′ = + 

+ +  
∑∑∑   (21) 

Proof. From the definition of the moments, we know that the rth  moment of the 
random variable X  with the pdf ( )f x  is given by  

( )
0

; , , d .r
r x f x xµ α β λ

∞

′ = ∫                       (22) 

Substituting from Equation (9) into Equation (22) we get  

e e
20

e e exp e d ,
x x

x xxr x
r x x

x

β β
α αβαβµ λ α λ

− −−∞    ′ = + −  
    

∫
 

the expansion of eexp e
x

x
βα

λ
−  − 

  
 is  

( )ee e

0

1
e e ,

!

x xx x
i i

i

i i

β βα α
λ λ− −∞

−

=

−
= ∑

 
then we have  

( ) ( )
1

1 e
20

0

1
e e d ,

!

x
x

i i x ir x
r

i
x x

i x

β
αβαλ βµ α

−+∞ −∞ +

=

−  ′ = + 
 

∑ ∫
 

using series expansion of ( )1 ee
x

xi
βα −

+ ,  

( ) ( )1 e

0

1
e e ,

!

x
x

j
j xi x

j

i
j

β
α βα−  ∞ − +  

=

+
= ∑

 
hence, we obtain  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
2

0
0 0

1 112
0

0 0

1 1
e d ,

! !

1 1
e e d ,

! !

i ji j x
r x

r
i j

i ji jj xr x

i j

i
x x x

i j

i
x x x

i j

βα

β
α

λ
µ α β

λ
α β

 +∞ ∞ + − ∞ −  

= =

+∞ ∞ − +∞ +−

= =

− +
′ = +

− +
= +

∑∑ ∫

∑∑ ∫
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using series expansion of 
( )1

e
j

x
β

− +
,  

( ) ( ) ( )1

0

1 1
e ,

!

k k kj kx

k

j
x

k

β β∞− + −

=

− +
= ∑

 
we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1
1

20
0 0 0

1
1

0
0 0 0

12
0

1 1 1
e d ,

! ! !

1 1 1
e d

! ! !

 e d ,

i k j ki k
j xr k

r
i j k

i k j ki k
j xr k

i j k

j xr k

i j
x x

i j k x

i j
x x

i j k

x x

α

α

α

λ β βµ α

λ β
α

β

+ +∞ ∞ ∞ ∞ +−

= = =

+ +∞ ∞ ∞ ∞ +−

= = =

∞ +− −

− + +  ′ = + 
 

− + + = 

+ 

∑∑∑ ∫

∑∑∑ ∫

∫
 

using the definition of the gamma function (Zwillinger [18]), in the follows form,  

( ) 1
0

e d ,   , , 0.z tx zz x t t z x
∞ −Γ = >∫  

Finally, the rth  moment of EFWE distribution is obtained in the form  

( ) ( ) ( ) ( )
( )

( )
( )

1

1 11
0 0 0

1 1 1 1 1
.

! ! ! 1 1

i k j ki k

r r k r kr k r k
i j k

i j r k r k
i j k j j

λ β β
µ

α α

+ +∞ ∞ ∞

− + − −− − −
= = =

 − + + Γ − + Γ − −
′ = × + 

+ +  
∑∑∑

 
This completes the proof.  

4. The Moment Generating Function  

The moment generating function (mgf) of the EFWE distribution is given by theorem 2. 
Theorem 2. If X  is a random variable from EFWE ( ), ,α β λ  distribution, then its 

moment generating function is  

( ) ( ) ( ) ( )

( )
( )

( )
( )

1

0 0 0 0

1 11

1 1 1
! ! ! !

1 1
                .

1 1

i k j ki k r

X
i j k r

r k r kr k r k

i j t
M t

i j k r

r k r k

j j

λ β

β

α α

+ +∞ ∞ ∞ ∞

= = = =

− + − −− − −

− + +
=

 Γ − + Γ − −
× + 

+ +  

∑∑∑∑
            (23) 

Proof. The moment generating function (mgf) of the random variable X  with the 
pdf ( )f x  is  

( ) ( )
0

e d .tx
XM t f x x

∞

= ∫                         (24) 

using series expansion of etx , we obtain  

( ) ( )
0

0 0
d . .

! !

r r
r

X r
r r

t tM t x f x x
r r

µ
∞ ∞∞

= =

′= =∑ ∑∫                  (25) 

Substituting from Equation (21) into Equation (25) we obtain the moment generat-
ing function (mgf) of EFWE distribution in the form  

( ) ( ) ( ) ( )

( )
( )

( )
( )

1

0 0 0 0

1 11

1 1 1
! ! ! !

1 1
                .

1 1

i k j ki k r

X
i j k r

r k r kr k r k

i j t
M t

i j k r

r k r k
j j

λ β

β

α α

+ +∞ ∞ ∞ ∞

= = = =

− + − −− − −

− + +
=

 Γ − + Γ − −
× + 

+ +  

∑∑∑∑

 



B. S. El-Desouky et al. 
 

91 

This completes the proof.  

5. The Order Statistics 

In this section, we derive closed form expressions for the probability density function 
pdf of the rth  order statistic of the EFWE distribution. Suppose 1: 2: :, , ,n n n nX X X  
denote the order statistics obtained from a random sample 1 2, , , nX X X  which taken 
from a continuous population with cumulative distribution function ( );F x ϕ  and 
probability density function ( );f x ϕ , then the pdf of :r nX  is as follows 

( ) ( ) ( ) ( ) ( )1
:

1; ; 1 ; ; ,
, 1

r n r
r nf x F x F x f x

B r n r
ϕ ϕ ϕ ϕ

− −
= −      − +

       (26) 

where ( );f x ϕ  and ( );F x ϕ  are the probability density function and cumulative 
distribution function of EFWE ( ), ,α β λ  distribution given by Equation (9) and Equ-
ation (8) respectively, ( ).,.B  is the Beta function and ( ), ,ϕ α β λ= , also we define 
first order statistics ( )1: 1 2min , , ,n nX X X X=  , and the last order statistics as 

( ): 1 2max , , ,n n nX X X X=  , where ( )0 ; 1F x ϕ< <  for all 0x > . Using the binomial 
expansion of ( )1 ;

n r
F x ϕ

−
−     

( ) ( ) ( )
0

1 ; 1 ; .
n rn r ii

i

n r
F x F x

i
ϕ ϕ

−−

=

− 
− = −       

 
∑               (27) 

Substituting from Equation (27) into Equation (26), we have  

( ) ( ) ( ) ( ) ( ) 1
:

0

1; ; 1 ; .
, 1

n r i ri
r n

i

n r
f x f x F x

iB r n r
ϕ ϕ ϕ

− + −

=

− 
= −     − +  

∑       (28) 

Substituting from Equation (8) and Equation (9) into Equation (28), we obtain  

( ) ( )
( ) ( ) ( ) ( )1

:
0

1 !
; , ; .

! 1 ! !

in r i r
r n

i

n
f x F x f x

i r n r i
ϕ ϕ ϕ

− + −

=

−
=   − − −∑          (29) 

Relation (29) shows that ( ): ;r nf x ϕ  is the weighted average of the Exponential 
Flexible Weibull Extension distribution with different shape parameters. 

6. Parameters Estimation 

In this section, point and interval estimation of the unknown parameters of the EFWE 
distribution are derived by using the method of maximum likelihood based on a com-
plete sample. 

6.1. Maximum Likelihood Estimation 

Let 1 2, , , nx x x  denote a random sample of complete data from the EFWE distribu-
tion. The Likelihood function is given as  

( )
1

; , , ,
n

i
i

L f x α β λ
=

=∏                         (30) 

substituting from (9) into (30), we have  

e e
2

1
e e exp e .

x xi ii x xi ii
n x

x

i i

L
x

β β
α αβαβλ α λ

− −−

=

    = + −  
    

∏
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The log-likelihood function is  

( ) e
2

1 1 1 1
ln ln e e .

xii xii
n n n nx

x
i

i i i iii

n x
xx

βαβαβ βλ α α λ
−−

= = = =

   
= + + + − + −   

  
∑ ∑ ∑ ∑      (31) 

The maximum likelihood estimation of the parameters are obtained by differentiat-
ing the log-likelihood function   with respect to the parameters ,α β  and λ  and 
setting the result to zero, as follows  

2
e

2
1 1 1 1

e e e 0,
xii i xii i

n n n nx x
x xi

i i i
i i i ii

x
x x x

x

βαβ βα α
λ

α β α

−− −

= = = =

∂
= + + − =

∂ +∑ ∑ ∑ ∑
         (32) 

e
2

1 1 1 1

1 1 1 1e e e 0,
xii i xii i

n n n nx x
x x

i i i ii i ii x x xx

βαβ βα α
λ

β β α

−− −

= = = =

∂
= − − + =

∂ +
∑ ∑ ∑ ∑

      (33) 

e

1
e 0.

xi xi
n

i

n
βα

λ λ

−

=

∂
= − =

∂ ∑
                                        (34) 

The MLEs can be obtained by solving the nonlinear Equations (32)-(34), numerically 
for ,α β  and λ  by using Mathcad program. 

6.2. Asymptotic Confidence Bounds 

The asymptotic confidence intervals can be obtained when the parameters ,α β  and 
λ  are positive as the maximum likelihood estimations of the unknown parameters 
( ), ,α β λ  but can’t be obtained in closed forms. So, by using variance covariance ma-
trix 1−I  see (Lawless [19]), where the 1−I  is inverse of the observed information 
matrix which defined as follows  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

12 2 2

2

2 2 2
1

2

2 2 2

2

ˆ ˆˆ ˆ ˆvar cov , cov ,

ˆ ˆ ˆ ˆˆcov , var cov , ,

ˆ ˆ ˆ ˆˆcov , cov , var

α β α λα α α β α λ

β α β β λ
β α β λβ

λ α λ β λ

λ α λ β λ

−

−

 ∂ ∂ ∂
− − −   ∂ ∂ ∂ ∂∂    ∂ ∂ ∂  = − − − =   ∂ ∂ ∂ ∂∂      ∂ ∂ ∂   − − − ∂ ∂ ∂ ∂ ∂ 

I

  

  

  

  (35) 

where  

( )
42

2 2 e
2 221 1 1

e e e 1 e ,
xii i ixii i i

n n nx x x
x x xi

i i
i i i

i

x
x x

x

βαβ β βα α α
λ

α β α

−− − −

= = =

 ∂
= − + − + 

∂  +  
∑ ∑ ∑

      (36) 

( )
22

e
221 1 1

e e e 1 e ,
xii i ixii i i

n n nx x x
x x xi

i i i
i

x

x

βαβ β βα α α
λ

α β β α

−− − −

= = =

 ∂
= − − + + 

∂ ∂  +  
∑ ∑ ∑

        (37) 

2
e

1
e e ,

xii xii
n x

x
i

i
x

βαβα

α λ

−−

=

∂
= −

∂ ∂ ∑
                                       (38) 

( )
2

e
2 2 2 221 1 1

1 1 1e e e 1 e ,
xii i ixii i i

n n nx x x
x x x

i i ii ii
x xx

βαβ β βα α α
λ

β β α

−− − −

= = =

 ∂
= − + − + 

∂  +  
∑ ∑ ∑

   (39) 

2
e

1

1 e e ,
xii xii

n x
x

i ix

βαβα

β λ

−−

=

∂
=

∂ ∂ ∑
                                        (40) 
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2

2 2 .n
λ λ
∂

= −
∂
                                                    (41) 

Furthermore, the ( )1 100%δ−  confidence intervals of the parameters ( ), ,α β λ  can 
be obtained by using variance matrix as the following forms  

( ) ( ) ( )
2 2 2

ˆ ˆ ˆ ˆˆ ˆvar ,   var ,   var ,Z Z Zδ δ δα α β β λ λ± ± ±
 

where 0δ > , and 
2

Zδ  denote the upper 
2
δ 
 
 

-th percent of the standard normal dis-

tribution. 

7. Application 

In this application, we will analysis a real data set given by Aarset [22], see Table 2, us-
ing the EFWE ( ), ,α β λ  distribution and compare it with the other fitted distributions 
like a flexible Weibull extension (FWE) distribution, Weibull (W) distribution, linear 
failure rate (LFR) distribution, Exponentiated Weibull (EW) distribution, generalized 
linear failure rate (GLFR) distribution and Exponentiated Flexible Weibull (EFW) dis-
tribution by using Kolmogorov Smirnov (K-S) statistic, P-value, Akaike information 
criterion (AIC), as well as Akaike Information Criterion with correction (AICC), see 
[20] and also Bayesian information criterion (BIC), see [21], values. 

Table 3 gives the maximum likelihood estimations of parameters for EFWE distribu-
tion, the value of K-S Statistics and P-value. As well the values of the log-likelihood 
functions, AIC, AICC and BIC are in Table 4. 

From Table 3 and Table 4 we note that the EFWE distribution with three parameters 
gives a better fit than the previous models distributions. It has the largest log-likelihood  

 
Table 2. Life time of 50 devices, see Aarset [22]. 

0.1 0.2 1 1 1 1 1 2 3 6 

7 11 12 18 18 18 18 18 21 32 

36 40 45 46 47 50 55 60 63 63 

67 67 67 67 72 75 79 82 82 83 

84 84 84 85 85 85 85 85 86 86 

 
Table 3. The maximum likelihood estimations and K-S of parameters for Aarset data [22]. 

Model MLE of the parameters K-S P-value 

FW ( ),α β  ˆ 0.0122α = , ˆ 0.7002β =  0.4386 94.29 10−×  

W ( ),α β  ˆ 44.913α = , ˆ 0.949β =  0.2397 0.0052 

LFR ( ),a b  ˆ 0.014a = , 4ˆ 2.4 10b −= ×  0.1955 0.0370 

EW ( ), ,α β γ  ˆ 91.023α = , ˆ 4.69β = , ˆ 0.164γ =  0.1841 0.0590 

GLFR ( ), ,a b c  ˆ 0.0038a = , 4ˆ 3.04 10b −= × , ˆ 0.533c =  0.1620 0.1293 

EFW ( ), ,α β θ  ˆ 0.0147α = , ˆ 0.133β = , ˆ 4.22θ =  0.1433 0.2617 

EFWE ( ), ,α β λ  ˆ 0.015α = , ˆ 0.381β = , ˆ 0.076λ =  0.1387 0.2719 
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Table 4. The log-likelihood function, AIC, AICC and BIC values of distributions for Aarset data 
[22]. 

Model   −2   AIC AICC BIC 

FW ( ),α β  −250.810 501.620 505.620 505.88 509.448 

W ( ),α β  −241.002 482.004 486.004 486.26 489.828 

LFR ( ),a b  −238.064 476.128 480.128 480.38 483.952 

EW ( ), ,α β γ  −235.926 471.852 477.852 478.37 483.588 

GLFR ( ), ,a b c  −233.145 466.290 472.290 472.81 478.026 

EFW ( ), ,α β θ  −226.989 453.978 459.979 460.65 465.715 

EFWE ( ), ,α β λ  −224.832 449.664 455.664 456.19 461.400 

  

 
Figure 7. Profile of the log-likelihood for ,α β . 
 

function, and also P-value, on the other hand the smallest K-S, AIC, AICC and BIC 
values from among those considered in this article. 

Substituting the maximum likelihood estimations of the unknown parameters ,α β  
and λ  into Equation (35), we have the estimation of the variance covariance matrix as 
follows 

6 5 5

1 5 4
0

5 4 4

1.11 10 1.175 10 2.187 10
1.175 10 0.021 3.275 10
2.187 10 3.275 10 5.469 10

− − −

− − −

− − −

 × − × − ×
 

= − × × 
 − × × × 

I

 

The approximate 95% two sided confidence intervals of the unknown parameters 
,α β  and λ  are [ ]0.013,0.017 , [ ]0.1,0.662  and [ ]0.03,0.122 , respectively. 
From, Figure 7 and Figure 8 we note that the likelihood function have unique solu-

tion. 
Figure 9 represents the estimation for the survival function ( )S x , by using the 

Kaplan-Meier method and its fitted parametric estimations when the distribution is 
assumed to be FW, W, LFR, EW, GLFR, EFW and EFWE are computed and plotted in 
the following shape. 

Figure 10 and Figure 11 give the form of the hazard rate ( )h x  and cumulative dis-
tribution function for the FW, W, LFR, EW, GLFR, EFW and EFWE which are used to 
fit the data when the unknown parameters included in each distribution are replaced by 
their maximum likelihood estimation. 
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Figure 8. Profile of the log-likelihood for λ . 

 

 

Figure 9. The Kaplan-Meier estimate of the survival function ( )S x  for Aarset data [22]. 

 

 

Figure 10. Fitted hazard rate function ( )h x  for Aarset data [22]. 
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Figure 11. Fitted cumulative distribution function ( )F x  for Aarset data [22]. 

8. Conclusion 

We propose a new distribution, based on the exponential generalized distribution. The 
general idea is to add parameter to a flexible Weibull extension FWE distribution, this 
new distribution is called the exponential flexible Weibull extension EFWE. Its defini-
tion and some of statistical properties are studied. We use the maximum likelihood 
method for estimating parameters. Finally, the advantage of the EFWE distribution is 
concluded by an application using real data. Moreover, it is shown that the exponential 
flexible Weibull extension EFWE distribution fits better than existing modifications of 
the Weibull and flexible Weibull distributions. 
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