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Abstract 
In this paper, we study a new version from Dual-pivot Quicksort algorithm when we 
have some other number k  of pivots. Hence, we discuss the idea of picking k  pi-
vots 1 2, , , ki i i  by random way and splitting the list simultaneously according to 
these. The modified version generalizes these results for multi process. We show that 
the average number of swaps done by Multi-pivot Quicksort process and we present 
a special case. Moreover, we obtain a relationship between the average number of 
swaps of Multi-pivot Quicksort and Stirling numbers of the first kind. 
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1. Introduction 

Quicksort studied in many books such as [1] [2] and [3]. It is an exhaustively anatom-
ize sorting algorithm and following the idea of divide-and-conquer on an input con-
sisting of n  items [4]. Quicksort used a pivot item to divide its input items into two 
partitions; the items in one sublist seem diminutive or identically tantamount to the 
pivot; the items in the other sublist seem more sizably voluminous than or equipollent 
to the pivot, after then it uses recursion to order these sublists. It is prominent that the 
input consists of n  items with different keys in arbitrary order and the pivot is picked 
by just picking an item, and then on average Quicksort utilizes ( )2 lnn n O n+  com-
parisons between items from the input. The Partial Quicksort algorithm analyzed by 
Ragab [5] [6] and [7] depends on the idea of the standard Quicksort. It uses a smart 
strategy to find the l  smallest elements out of n  distinct elements and sort them. 
Yaroslavskiy declared in 2009 that he had made some improvements for the Quicksort 
algorithm, the demand being drawn by experiments.  

Yaroslavskiy’s algorithm replaced the new standard Quicksort algorithm in Oracle’s 
Java 7 runtime library. This algorithm uses two items as pivots to divide the items. If 
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two pivots 1p  and 2p  such that 1 2p p<  are used, the splitting step sublists the re-
maining 2n −  items into three sublists, items more minute than or equipollent to 1p , 
items between 1p  and 2p , and items more sizably voluminous than or equipollent to 

2p . Recursion is then applied to the three sublists. It came as a surprise that two pivots 
should avail, since in his thesis [8] Sedgewick had introduced and explained a Dual- 
pivot technique inferior to classical Quicksort. Hence, Hennequin in his thesis studied 
the general technique of using 1k −  pivot items [2].  

We analyze the limiting distribution of the number of swaps needed by the duality 
process is proposed. It is known to be the unique fixed point of a certain distributional 
transformation T  with zero mean and finite variance. Depending on the results of [1] 
and [9], we analyze the Multi-pivot Quicksort when we selected k  pivots and we 
study the relationship with Striling numbers of the first kind.  

2. Multi -Pivot Quicksort 

Later, many researchers has received the interest of the visualization of multi-pivot 
Quicksort in accordance with Yaroslavskiy proposed the duality pivot process which 
outperforms standard Quicksort by Java JVM. After that, this algorithm has been ex-
plained in terms of comparisons and swaps by Wild and Nebel [10].  

A normal expansion of duality process would be to have some other number k  of 
pivots. Hence, we cogitation the approximation of pick k  pivots 1 2, , , ki i i  by ran-
dom way and splitting the list simultaneously according to these. let a random permu-
tation of the list { }1,2, ,n  be given to be ordered using this variant, with all the !n  
substitution. The k  rightmost item are picked as pivots are compared to each other 
and interchange, if they are out of order.  

There are n k−  items are swaps to the pivots and the list is splitted to 1k +  sub-
lists. The partition step can be worked as follows. We compare the leftmost item to pi-
vot which chosen by random way; if this pivot is bigger than it, it is compared with 
another pivot which was smaller than the first pivot. Otherwise it is swaped with a big-
ger pivot (to the right) and after a series of number of swaps are inserted to its place 
between any two pivots, or to the left of the smallest pivot or to the right of the biggest 
pivot. We continue with the same technique, until all items are examined.  

Each item of the n k−  items swaps with the pivots by binary tree, first each item is 
swaps with the median of the sorted list of the pivots. If it is compared with the first 
element, otherwise is compared with the third element and after a collection of swaps is 
inserted to its placement.  

For the pervious process, there are k  sublists. If we let that the input is a random 
permutation { }1

, ,
kn nU U

 of { }1, 2,3, , n .  
We assume that 1k ≥  be an integer. The method “ k -pivot quicksort” performs as 

follows:  
As long as n k≤  then sort the input directly. When kn > , order the first k  items 

such that 
1 2 kn n nU U U< < <  and set 

11 , ,np U=   
kk np U= . In the splitting step, 

the remaining n k−  items are divided to 1k +  sets 0 1, , , kL L L  where an item x  
belongs to set hL  as long as 1h hp x p +< < . The sets 0 1, , , kL L L  are then ordered 
recursively. Assume that 1k ≥  be fixed. As for duality Quicksort process, if we assume 
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that ,n kS  and nP  give the random variables that count the swaps required to sort n  
items when we select k  pivot items, uniformly selected from the list and partitioning 
respectively. The total number of swaps needed by Multi-pivot Quicksort sorting inputs 
given by  

0, 1, ,, ,
k k k k

d

n k n a a aS P S S S∗= + + + +                     (1) 

where 
0 ,a kS  random variable that count the number of swaps made for sort the items 

smaller than first pivot 
1,kaS∗  denote the number of swaps need to order the items be-

tween first pivot and the second pivot. ,ka kS  denote the number of swaps need to or-
der the items between 1k −  pivot and the k  pivot. The random variables 

0 ,a kS , 

,1 2 ,,ka a kS S∗
  and 

,k kaS  have the same distribution and independent of 
1 2
, , ,

kn n nU U U  
and d  means the equality in distribution.  

The average number of swaps done by the multi algorithm applied to an list of n  
items by k -pivot Quicksort given by the following recurrence  

( ) ( ) ( ) ( ) ( ),0 1
0

, , , ,

1 .
k k

k

d

an k n k a k a k
a a n k

E S E P E S E S E S
n
k

∗

+ + = −

= + + + +
 
 
 

∑


      (2) 

( ) ( )
21

1 1
, 1, 1, ,1

1, ,
k

k
n

n n
U

d

n k k U U k n U kn n nUnU U
E S T n k E S E S E S

n
k

∗

− − − −

   = + + + +           
 
 

∑∑ ∑ 

 

where 
1 2 kn n nU U U< < <  refers to the pivots in increasing order, see [11] and [12].  

Let ( ) ( ) ( ),T n k c k n d k= +  be the expected value of a “toll function” during the  

first recursive call, where ( )c k  and ( )d k  are constants and 
1

1,U kn
E S

−

 
 
 

 denotes  

the average number of swaps for ordering the sublist of 
1

1nU −  items less than 
1nU  by 

the Multi-Pivot Quicksort on k  pivots to simplify the relation by noting that the pi-
vots are selected by the random way and the sums are equal,  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
1

1
11

,

1 2

,1, 1 ,
1 1 1

1

1,
1

1 ...

1 1 .
1

n n k
k k

n k

n k n k n

kU k U U n U kn n n nU U Un n n

n

U U

k

k

E S c k n d k

E S E S E S
n
k

n
c k n d k k E S

n k
k

− + − +
∗

− − − −
= = + = +

− +

−
=

= +

    + + +            
 
 

− 
= + + +  −   

 
 

∑ ∑ ∑

∑








 

By collecting terms with a common factor ( ),kE S


, when 1 1n k≤ ≤ − + . Fix  
{ }1,2, , 1 .n k∈ − +   There are 1k +  methods of picking { }1,2, , 1j n k∈ − +  with 

ja =  .  

( ) ( ) ( ) ( ) ( )
1

, 1,
1

1 1 .
1

n k

n k k

n
E S c k n d k k E S

n k
k

− +

−
=

− 
= + + +  −   

 
 

∑






          (3) 

Multiplying both sides by 
n
k
 
 
 

, the recurrence relation becomes  
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( ) ( ) ( ) ( ) ( )
1

, 1,
1

1 ,
1

n k

n k k

n n n
E S c k n d k k E S

k k k

− +

−
=

−      = + + +       −     
∑







 
multiplying by nz  and summing over n ., hence we get the generating function for 
the average number of swaps [10]. Let ( ),n n ka E S=  and consider the generating func- 

tion ( )
0

n
n

n
g z a z

∞

=

= ∑  

( ) ( ) ( ) 1
0 0 0 1

1 .
1

n
n n n

n
n n n

n n n
a z c k n d k z k a z

k k k

∞ ∞ ∞

−
= = = =

 −       = + + +         −      
∑ ∑ ∑ ∑





      (4) 

We find that  

( ) ( )

( ) ( )
0 0

1 1
!

.
!

n n
n n

n n

kk

n
a z n n n k a z

k k

z g z
k

∞ ∞

= =

 
= − − 

 

=

∑ ∑ 

 
Such that ( ) ( )kg z  gives the k-th order derivative of ( ).g z  In the right-hand side 

of Equation (4), the first sum becomes  

( ) ( ) ( ) ( )

( )( ) ( )( )( )
( )

0 0

2

!

1

1

k
n n

n n

k

k

n zc k n d k z c k n d k z
k k

z c k z k d k z

z

∞ ∞

= =

+

      + = +        

+ + −
=

−

∑ ∑
. 

The recurrence becomes as follows  
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )( ) ( )( )( )
( )

( ) ( )

0 0

0

2

1
1

1!

1
1

1
1 ,

11

k k
n n

n n

k
n

n

k k

k

g z z n n
c k n d k z g z k z

k kk

n n zc k n d k z k g z
k k z

z c k z k d k z zk g z
zz

∞ ∞

= =

∞

=

+

−    = + + +     −   

      = + + +       −    

+ + −  = + +  − −

∑ ∑

∑        (5) 

In the right -hand side of Equation (5). The first sum becomes in this form because it 
may be easily explained by mathematical induction that the k-th order derivative of  

( ) ( )( ) ( ) ( )( )
( )2

0

1
,

1
n

n

c k z d k z
c k n d k z

z

∞

=

+ −
+ =

−
∑

 

is  

( )( ) ( )( )( )
( ) 2

1
.

1 k

c k z k d k z

z +

+ + −

−  

The recurrence is converted to the following differential equation [13]:  
( ) ( ) ( )( ) ( )( )( )

( )
( ) ( )2

1
1 .

! 11

kk kk

k

z c k z k d k zg z z zk g z
k zz +

+ + −  = + +  − −
      (6) 

Multiplying by 
1

kz
z

−
 
 − 

, the previous Equation (6) is transformed to  
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( ) ( )( ) ( )( ) ( )( )( )
( )

( ) ( )
11

1 .
! 1

kk

k

c k z k d k zg z z
k g x

k z

+ + −−
= + +

−  
This differential equation is a Cauchy-Euler equation [14]. We change variables  

1x z= − , it is ( ) ( )1h x g x= −   

( ) ( ) ( )( ) ( ) ( ) ( )2

1
1 ! 1 .k k k c k x k d k x

x h x k k h x
x

 − + +
− = + +  

 
         (7) 

By using the differential operator Θ  to solve the previous differential Equation (7) 
which is defined by  

( )( ) ( )( : ,h x xh x′Θ =
 

and using the mathematical induction we find that at 1n =   

( )( ). . ,L H S h x= Θ
 

and  

( ). . .R H S xh x= 

 
We find  

. . . . ,L H S R H S=  
the relation holds at 1n = . We assume the relation holds at n k=   

( ) ( )
,

!

k kx h x
h x

k k
Θ 

= 
   

at 1,n k= +  we find  

( )

( ) ( ) ( )

( )

. .
1

!
1 ! 1 !

.
!

k k

L H S h x
k

h x
k k

x h x
k

Θ 
=  + 

Θ
=

+ Θ− −

=
 

So, it is easy to find the relation is satisfied for all values of .k   

( ) ( )
.

!

k kx h x
h x

k k
Θ 

= 
   

When we apply the operator Θ , our relation seems in the form  

( ) ( ) ( ) ( )( ) ( )
( )( ) ( )( )

2

! 1
1 1 1 1 ! ,k k c k x k d k x

k k h x
x

− + +
− Θ Θ− Θ− + − + =

 

( ) ( )
( )( ) ( )( )

2

! 1
,k

k c k x k d k x
P h x

x

− + +
Θ =                 (8) 

where ( )kP Θ  is called as the initial polynomial and is given as follows, see [15],  

( ) ( ) ( ) ( )1 1 !,k
k kP kθΘ = − − +  

where ( ) ( ) ( )1 1k kΘ = Θ Θ− Θ− +  with 0k ≥ , denotes the falling factorial. If we use 
the fundamental theorem of algebra which proposed that a polynomial of degree n  
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has n  complex roots with multiplicities. Notice that −2 is constantly a simple root 
because,  

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )
( ) ( ) ( )2

2 1 2 3 2 1 1 !

1 2 3 1 1 !

1 1 ! 1 ! 0.

k
k

k

k

P k k

k k

k k

− = − − − − + + − +

= − − − − − +

= − + − + =





 
And we get  

( ) ( ) ( ) ( )
1

1
0

12 1 ! 1 ! 1 0.
2

k

k k
j

P k k H
j

−

+
=

− = + = − + − <
− −∑

 
Setting 2kr = −  and the residual roots be 1 2 1, , , kr r r − , see [16]. Our polynomial be 

in the form  

( )( ) ( )( ) ( )
( )( ) ( )( )

1 2 1 2

! 1
2 .k

k c k x k d k x
r r r h x

x−

− + +
Θ− Θ− Θ− Θ+ =

 
This differential equation can be written as  

( )( ) ( )
( )( ) ( )( )

1 2

! ( 1
2 ,k

k c k z k d k z
S h z

z
θ θ−

− + +
+ =             (9) 

where ( ) ( )( ) ( )1 1 2 1k kS r r r− −Θ = Θ− Θ− Θ−  to solve our differential equation, we as-
sume that there are two functions ( )1h z  and ( )2h z  where  

( ) ( ) ( )1 2 .h z h z h z+ =  
Then  

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( ) ( )( )

1 2 1 2

2

2

2

! 1
.

!1 !
,

kr r r h z h z

k c k z k d k z

z
d k c k kc k k

zz

Θ− Θ− Θ− Θ+ +

− + +
=

−+
= +



 

By using the property of linearity of differential operator  

( )( ) ( )( ) ( ) ( )( )
1 2 1 1 2

1 !
2 .k

c k k
r r r h z

z−

+
Θ − Θ− Θ− Θ+ =

 

( )( ) ( )( ) ( )
( ) ( )( )

1 2 1 2

!
2 ,k

d k c k k
r r r h z

z−

−
Θ − Θ− Θ− Θ+ =

 

if we apply k  times the solution, we get  

( ) ( )( )
( )( ) ( )1 12

1 2 1

1 ! log .
2 2 2

irk
i i

k

c k k zh z d z
r r r z =

−

+
= +

− − − − − −

           (10) 

( ) ( )( )
( ) ( )( )

2
11 2

! ,
1 1 1

i
k

r
i

i

d k c kkh z w z
r r z =

−
= +

− − ∑


            (11) 

where id  and iw  are constants of integration. Note that  

( ) ( ) ( )12 .K kP S −Θ = Θ+ Θ  
Therefore, to evaluate ( )1 2kS − − , we find  
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( ) ( )1

1

0

2 2 ,

2 1 1.
2

k K

k

j

S P

k j

−

−

=

− = −

− 
= − −  − − 

∑



                    (12) 

( ) ( )11 ! 1 .kk H += − + −                     (13) 

 

Moreover  

( )1 !.kP kk− = −  
Combining both solutions,  

( ) ( )
( )

( ) ( ) ( )( )
12

1

log 1 ,
1

rk i
i i

k

c k d kc k z
h z e z

H k zz =
+

−−
= + +

−
           (14) 

such that i i ie w d= + . To solve this system of of equations, we should calculate the 
constants of integration  

( ) ( ) ( ) ( )11 1 1 0.kh h h −= = = =

  
In terms of series;  

( ) ( )
( ) ( )( ) ( ) ( ) ( )

0 0 1 01

1 1 .
1

k n in n n
n i

n n i nk

c k c k d kr
g x n H n x e x x

nH k

∞ ∞ ∞

= = = =+

− 
= + − + − + −  

∑ ∑∑ ∑  (15) 

The third sum of Equation (15) collects to the solution a stationary contribution. 
Furthermore, the root 1k +  when k  is even, participates a constant and the root 

2kr = − , collects ( )1ks n + , with ks R∈ . Eliciting the coefficients, the average number 
of swaps for Multi-pivot Quicksort is  

( ) ( )( ) ( )
1

1
1n n

k

c k
a n H n O n

H +

= + − +
−

                  (16) 

The number of methods to permute a list of n  items into k  cycles counted by the 
Stirling numbers of the first kind ( ), ,s n k  see [17].  

We show the relation between the number of swaps done by the multi Quicksort 
process and Sirling number of the first kind. Form Equation (17) we assume that  

( ),n n ka E S=  and consider the generating function ( )
0

n
n

n
g z a z

∞

=

= ∑   

( ) ( ) 1
0 0 0 1

, 1 .
1

n
n n n

n
n n n

n n n
a z T n k z k a z

k k k

∞ ∞ ∞

−
= = = =

 −      
= + +       −      

∑ ∑ ∑ ∑




        (17) 

The relation is converted to a k-th order differential equation  
( ) ( ) ( ) ( )( ) ( ) ( )

0

1
1 .

1!

k k
n

n

g z z n n
c k n d k k g z z

k kk

∞

=

 −    
= + + +    −    
∑

 

This differential equation is a Cauchy-Euler equation. We use the deferential opera-
tor Θ  for the solution of the differential equation. It is defined as follows  

( )( ) ( ): ,g z zg zΘ = 

 

also, by induction  



M. Ragab et al. 
 

54 

( ) ( )
!

k kz g z
g z

k k
Θ 

= 
   

applying the operator Θ ,our equation becomes  

( ) ( ) ( ) ( ) ( )
0

1
1

1
n

n

n n
g z c k n d k k g z z

k k k

∞

=

Θ  −       = + + +        −      
∑

 
( )( ) ( ) ( )

( ) ( ) ( ) ( )
0

1 2 1

1
1

1
n

n

k g z

n n
c k n d k k g z z

k k

∞

=

Θ Θ− Θ− Θ− +

 −     = + + +      −    
∑



 

( ) ( ) ( ) ( ) ( ) ( )
0

1
! 1 ,

1
n

k
n

n n
g z k c k n d k k g z z

k k

∞

=

 −     Θ = + + +      −    
∑

 
where ( ) ( )( ) ( )1 2 1k kΘ = Θ Θ− Θ− Θ− +  is falling factorial, see [18].  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

0

1 !!! ! 1
! ! 1 ! 1 1 !

n
k

n

nng x k c k n d k k k g x z
k n k k n k

∞

=

 −
Θ = + + + 

− − − − +  
∑

 

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

0 0

1 1 2 1

1 1, 1 .

n n
k k

n n

n n
k

n n

g z n c k n d k z k k n n n k g z z

n c k n d k z k k s n k g z z

∞ ∞

= =

∞ ∞

= =

 Θ = + + + − − − + 

 = + + + − − 

∑ ∑

∑ ∑



 
where ( ) ( )( ) ( )1, 1 1 2 1s n k n n n k− − = − − − +  is Stirling numbers of the first kind, 
see [19]. we use the relation  

( ) ( ) ( ) ( )
0

, , where   0,0 land   0, 0  for  0,
n

k
n

k
x s n k x s s k k

=

= = = >∑
 

hence  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

0

,

  1 1, 1 .

k
r n

k
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n

n

s k r g z n c k n d k z

k k s n k g z z

∞

= =

∞

=

 Θ ⋅ = + 

+ + − −

∑ ∑

∑
 

( ) ( ) ( ) ( )

( ) ( )

0 0 0 0

0 0

, ,

  1 1, 1
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r n l n

n
n r n l

n n
n

n n

a s n r z c k n d k s k l n z

k k s n k a z z

∞ ∞

= = = =

∞ ∞

= =

  Θ ⋅ = +     
 + + − −  
 

∑ ∑ ∑ ∑

∑ ∑
 

( ) ( ) ( ) ( )

( ) ( )

0 0 0 0

0
0 0

, ,

  1 1, 1 ,

n k
r n l n

n
n r n l

n
n

n n r
n r

a s n r z c k n d k s k l n z

k k s r k a z

∞ ∞

= = = =

∞
∞
= −

= =

  Θ ⋅ = +     

+ + − −  

∑ ∑ ∑ ∑

∑∑
 

by equality the coefficients we obtain  

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

, , 1 1, 1
n k n

r l
n n r

r n l r
a s n r c k n d k s k l n k k s r k a

∞

−
= = = =
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∑ ∑ ∑ ∑
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( ) ( ) ( ) ( ) ( )

0 0 0

0

1 , 1 1, 1
,

k n
l

n n rn
r n l r

r

a c k n d k s k l n k k s r k a
s n r

∞

−
= = =

=

  = + + + − −      Θ
∑ ∑ ∑

∑
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3. Quicksort 

In this section we show the average number of swaps needed by the Quicksort is a par-
ticular case form the public case of the multi-pivot Quicksort [20]. For 1k =   

1 1
1 ,

d

n n U n Un n
S P S S∗

− −= + +                        (18) 

where nP  give the random variables which counting the number of swaps needed for 
splitting the list of n  items, such that the classical algorithm is applied to an list of n  
different items [5]. We find that 0 1 0S S= =  such that if 2n ≥ , the following recur-
rence holds. We find the average number of swaps done by the Quicksort from Equa-
tion (2) we find at 1k =  the equation becomes  

( ) ( ) ( ) ( )
1 1

1 ,
d

n n U n Un n
E S E P E S E S∗

− −= + +                 (19) 

Assume that if we need to sort list of n  of different items, where their positions in 
the list are counted from left to right by 1,2, , n  [6]. First, the item at position 1 
compared with the pivot. The number of items which are bigger than pivot and were 
animated during split operation is  

( )1 .
1

n k k
n
−

⋅ −
−  

Subsequently, we consider as well that pivots are uniformly picked and noticing that 
we have to number the final swap with the pivot at the end of split operation [21], we 
get  

( )( )
( )

1 21 .
1 6 3

n k k n
n n
− −

+ = +
−∑

 
So, we find the toll function given by 

( ) 2 .
6 3
nT n cn d= + = +

 

We find 1
6

c = , 2 .
3

d =  So the recurrence becomes  

( ) ( ) ( )
1 1

1

1
1

2 1 ,
6 3

nd

n U n Un n
Un

nE S E S E S
n

∗
− −

=

= + + +∑               (20) 

( ) ( )
1

1

1
1

2 2 .
6 3

nd

n Un
Un

nE S E S
n −

=

= + + ∑                    (21) 

We solve this recurrence relation by transforming into a differential equation. First 
multiply both sides by n   

( ) ( )
1

1
11

4 2 .
6

n

n Un
Un

nnE S n E S −
=

+ = + 
 

∑
 

Let ( )n na E S=   

1
1

1
=1

2= 2 ,
6 3

n

n UnUn

nna n a
−

 + + 
 

∑
 

multiplying by nz  and summing over n , so as to get the generating function for the 
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average number of swaps consider the generating function ( )
0

n
n

n
g z a z

∞

=

= ∑   

1
1

1
0 0 0 1

2 3 2
6

n
n n n

n Unn n n Un

nna z n z a z
∞ ∞ ∞

−
= = = =

+ = + 
 

∑ ∑ ∑ ∑
 

( ) ( )

( ) ( )

( )
( )

( )
( )

0

3

3

2 2
6 3 1

1 21 1
6 3 2

11

1 2 1 2
6 3 6 3 2 .

11

n

n

n zzg z n z g z
z

z z z
zg z

zz

z z z
zg z

zz

∞

=

   = + +   −   
 + + −    = +  − −

 − + −    = +  − −

∑

             (22) 

Multiplying by 
1

1
z

z

−
 
 − 

, the differential equation is simplified to  

( ) ( )
( ) ( )

( )
( )2

1 21 1
6 31 2 .

1

z z
z g z g z

z

+ + −
− = +

−


 
We can solve this differential equation using basic principles  

( ) ( ) ( )
( )2

5 1
6 21 2
1

z
z g z g z

z

−
− − =

−
                     (23) 

This differential equation is a Cauchy-Euler equation [22]. We change variables 
1x z= − , it is ( ) ( )1h x g x= −   

( ) ( )
( )

( )2

1 21 1
6 31 2 ,

x x
xh x h x

x

 − + + 
− = + 

  
 



 
we use the differential operator Θ  to solve the differential equation which defined as 
follows  

( )( ) ( ):h x xh xΘ = 

 
applying the operator Θ , our equation becomes  

( )( ) ( )
( )

2

1 21 1
6 31 2

x x
h x

x

− + +
− Θ− =

 

( ) ( )1 2

1 2
6 3

x x
P h x

x

− +
Θ =

 

( ) ( )1 2

1
2

x
P h x

x
Θ =

 

( ) ( )1
1

2
P h x

x
Θ =

 



M. Ragab et al. 
 

57 

and applying the pervious technique we find the solution of the differential equation 
given by  

( ) ( )
12

1 21
log 6 36 ,

2 1
3

z
h z e z

zz

 − 
 = + +

 − 
 

                 (24) 

where 1e  is constant of integration. In terms of series  

( ) ( ) ( )( ) ( )1
0 0 02

1
16 1 1 .

1 2
nn n n

n
n n n

r
g x n H n x e x x

nH

∞ ∞ ∞

= = =

  −
= + − + − + −  

∑ ∑ ∑      (25) 

Extracting the coefficients, the expected number of swaps for Multi-pivot Quicksort 
is  

( ) ( ) ( )1 1
3 ng x n H o n= + +                       (26) 

4. Conclusion  

We study a new version from Dual-pivot Quicksort algorithm when we have some 
other number k  of pivots. Hence, we discuss the idea of picking k  pivots 1 2, , , ki i i  
by random way and splitting the list simultaneously according to these. Moreover, we 
derive a generalization of this result for multi process. We show that the average num-
ber of swaps done by Multi-pivot Quicksort process and we present a special case. Fur-
thermore, we present the relationship between the average number of swaps of Mul-
ti-pivot Quicksort and Stirling numbers of the first kind.  
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