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Abstract 
Calculating analytical approximate solutions for non-linear infectious disease models 
is a difficult task. Such models often require computational tools to analyse analytical 
approximate methods which appear in some theoretical and practical applications in 
systems biology. They represent key critical elements and give some approximate so-
lutions for such systems. The SIR epidemic disease model is given as the non-linear 
system of ODE’s. Then, we use a proper scaling to reduce the number of parameters. 
We suggest Elzaki transform method to find analytical approximate solutions for the 
simplified model. The technique plays an important role in calculating the analytical 
approximate solutions. The local and global dynamics of the model are also studied. 
An investigation of the behaviour at infinity was conducted via finding the lines and 
singular points at infinity. Model dynamic results are computed in numerical simu-
lations using Pplane8 and SimBiology Toolbox for Mathlab. Results provide a good 
step forward for describing the model dynamics. More interestingly, the simplified 
model could be accurate, robust, and used by biologists for different purposes such as 
identifying critical model elements.  
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1. Introduction 

A system of kinetic equations can be applied to describe the behaviours of biochemical 
kinetics. The system is obtained from the reaction mechanisms by the law of mass ac-
tion. The rate constant of any given elementary reaction, known as the proportionality 
constant, depends on the reaction condition (temperature, solvent, PH, etc.). The reac-
tion conditions are generally held by biochemists to avoid dealing with higher-order 
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complexities [1] [2] [3]. 
An arbitrary number n  of elementary reactions can be expressed as follows:  

1 1
, 1, 2, ,

km mi

ij j ij j
j j

S S i nα β
= =

→ =∑ ∑                       (1) 

where jS  is the thj  species and ik  is the rate constant of step i . The non-negative 
integers ijα  and ijβ  are the stoichiometric coefficients for species j occurring as a 
reactant and product, respectively, in the thi  reaction step. The rate of product of spe-
cies j can be given by:  

1

d
, 1, 2, ,

d

nj
ij j

i

S
F F j m

t =

   = = =∑                      (2) 

where jS    is the concentration of thj  species and ijF  is the rate of change of thj  
species in reaction i . A reaction rate ijF  is given by the law of mass action as follows:  

( ) [ ]
1

, 1, 2, , ,   1, 2, ,
m

il
ij ij ij i l

l
F k S i n j mαβ α

=

= − = =∑               (3) 

The readers can see further details about the chemical kinetics in [4]-[12]. 
The idea of sensitivity analysis has been used in dynamical analysis of biochemical 

kinetics and systems biology models. The concept of sensitivity analysis theory in ap-
plication to chemical kinetic problems was given by Rabitz in [13]. The local and global 
methods of sensitivity analysis in chemical kinetics were further studied in [14]. There 
are also some applications of sensitivity analysis of systems biology models in [15]-[21]. 
More recently, the methods of local sensitivity analysis have been used to identify the 
critical model elements for a kinetic model of nuclear receptor signalling, the reader 
can see further details about the method in [10] [11]. This method is applied to deter-
mine which variable or parameter is sensitive to a particular condition which is defined 
by a variable or parameter. The system of ODEs discussed here is:  

( )( )d
, ,   1, 2, , .

d
i

i
x

w t i m
t
= =                      (4) 

The model input   is a vector of parameters, and the model output   is a vector 
of state variables. Local sensitivity is the changes in state variables ,   1, 2, ,ix i m=   
with respect to parameters ,   1, 2, ,pk p n=  .  

The general form of the local sensitivity is given as a Jacobian matrix as follows  

. ,   1, 2, , ,
pk p n= + =

                         (5) 

where the matrices ,
pk

   and   are defined by  
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The initial conditions of the Equation (5) are determined by the input parameter pk  
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and the initial condition of the output variables ix .  
The idea of ELzaki transform was introduced by Tarig Elzaki for solving linear ordi-

nary differential equations with constant coefficients. Then, this became more popular 
and works as a powerful tool in mathematics for solving some complicated equations, 
for example, solving high order ordinary differential equations with variable coeffi-
cients [22], applying ELzaki transform for solving the integro-differential equations 
[23], showing some relationships between Laplace transform and the ELzaki transform 
[24], solving linear systems of integro-differential equations with constant coefficients 
[25], a solution for nonlinear systems of differential equations using a mixture of Elzaki 
transform [26]. 

The SIR model, first published by Kermack and McKendrick in 1927 [27], is surly the 
most well known mathematical model for the spread of an infectious disease. Then, the 
model was further developed mathematically in [28] [29]. Here, people are divided into 
three classes: susceptible S, infective I and removed R. Removed individuals are no 
longer susceptible nor infective for whatever reason. For instance, they have recovered 
from the disease or they have been vaccinated. They may have been isolated from the 
rest of the people [30] [31] [32]. After that further explanation of the model was pro-
posed by the authors of these papers [33] [34] [35] [36] [37]. 

The main problem in this study is identifying the critical model parameters. There-
fore, the aim in this work is to apply some mathematical tools to simplify and analyse 
the model and then identifying the model elements (variables and parameters). We 
proposes a number of steps of model analysis, which plays in reducing the number of 
elements and in calculating analytical approximate solutions of the SIR model. The 
proposed steps and their advantages are simply given. The first step is that a proper 
scaling is used in order to minimize the number of elements. This becomes a good step 
forward for simplifying the original model. Another step is calculating some analytical 
approximate solutions using Elzaki transformation. Furthermore, using local sensitivity 
method is another important step in this study. This helps us to identify critical model 
parameters of the reduced model. Finally, studying the behaviour at infinity of the re-
duced model provide us an understanding of global dynamics and drawing the global 
phase portrait of the system.  

2. The SIR Epidemic Disease Model 

The SIR model may be diagrammed as in Figure 1. The chemical reactions of the mod-
el are given  

2S I I
I R

α

β

+ →

→
                           (6) 

where α  is the rate at which susceptible people become infectious and β  is the rate 
at which infectious people recover/develop immunity, both parameters are positive 
constant reactions. By using mass action law, we have the corresponding coupled diffe-
rential equations  

d d d= ,   = ,   = ,
d d d
S I RSI SI I I
t t t

α α β β− −                 (7) 
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Figure 1. Scheme of the SIR infectious diseases model. Geometric shapes here represent com-
partments, and arrows indicate flux between the compartments. 

 
with initial conditions  

( ) ( ) ( )0 00 , 0 , 0 0.S S I I R= = =                      (8) 

Equation (7) has a conservation law  
.S I R N+ + =                            (9) 

where N  is a constant population. We assume in this study the population is closed 
with no death or births, or immigration or emigration. 

The dimensionless SIR equations are then given by  
* * *

* * * * * *d d d,   ,   ,
d d d
S I RS I S I I Iδ δ
τ τ τ

= − = − =               (10) 

where * * *, , ,S S N I I N R R N tτ β= = = =  and .Nδ α β=  
Therefore, the conservation law (9) takes the form  

* * * 1.S I R+ + =                           (11) 

In addition, the Equation (10) is then reduced to  
* *

* * * * *d d,   ,
d d
S IS I S I Iδ δ
τ τ

= − = −                    (12) 

with initial conditions ( )* *
00S S=  and ( )* *

00I I= . It can be concluded that the sim-
plified Equation (12) is minimal in terms of the number of its elements (variables and 
parameters).  

Many nonlinear systems of differential equations have not exact solutions. Calculat-
ing analytical approximate solutions for such systems is a difficult task. The SIR epi-
demic disease model is given as the non-linear system of ODE’s. Equation (12) can not 
be solved analytically. Therefore, calculating some analytical approximate solutions for 
the system provides more information about the behaviours of the model dynamics. 
Applying the idea of Elzaki transform, we can obtain some analytical approximate solu-
tions of the Equation (12). Take Elzaki transform of Equation (12) to get:  

( ) ( ) ( ) ( )
** **

* * * * * * *0 , 0 .
S u I u

uS E S I uI E S I I
u u

δ δ   − = − − = −          (13) 
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Take the inverse Elzaki transform of Equation (13), the recursive relations are then 
given by  

( ) [ ]{ }
( ) ( ){ }

* * 1
0

* * 1 *
0

1 ,

1 ,

n

n

S n S E uE P

I n I E uE P I n
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−
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                (14) 

where 

( ) ( )* *

0
,  for 0,1, 2,  

n

n
r

P I r S n r n
=

= − =∑                  (15) 

For 0n = , and from Equation (15) and Equation (14), we have  
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( ) ( )
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0 0 0
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0 0 0 0
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1 ,
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P I S
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For 1n = , and from Equation (15) and Equation (14), we have  

( ) ( )( )
( )
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where, 

* *
1 0 02 I Sα δ= , ( )
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I S I

δ
α δ= − −  

* * *
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For 2n = , and again from Equations ((15) and (14)), we obtain  
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where 

( )* * * *
3 0 0 0 01 ,I S S Iβ δ δ= − −

 

( )* * * * *
4 0 0 0 0 0 ,I S I S Iβ δ δ= −

 

( )* * *
5 0 0 02 ,S I Sβ = +

 
* *

6 0 1 3 1 0 ,I Sβ α β α= − + −  
* *

7 0 2 4 2 0 .I Sβ α β α= − − −  
In general, a series form of the model solution can be given  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

* * * * * *

0

* * * * * *

0

0 1 2 3

0 1 2 3

k

k

S t S k S S S S

I t I k I I I I

∞

=

∞

=

= ≈ + + + +

= ≈ + + + +

∑

∑





           (19) 



S. H. A. Khoshnaw et al. 
 

37 

3. Proposed Steps of Model Analysis and Simplification 

In this work, we propose some steps of model analysis and simplification for the SIR 
epidemic disease model. The suggested steps are used for minimizing the number of 
elements (variables and parameters), calculating analytical approximate solutions and 
identifying critical model parameters. The proposed steps in this study are presented 
below:  
1) Define chemical mechanisms of SIR Model.  
2) Define a kinetic model of biochemical reactions as a system of ODEs using the mass 

action law.  
3) Eliminate some variables based on the stoichiometric conservation laws, and use 

proper scaling for the kinetic equations and determine the minimal number of pa-
rameters.  

4) Apply Elzaki transform method to calculate analytical approximate solutions of the 
reduced model.  

5) Simulate the reduced model dynamics for different parameter values using Pplane8 
for Mathlab. Analyse the reduced models to identify the critical model parameters 
by the local sensitivity analysis in numerical simulations using the SimBiology 
Toolbox for Mathlab.  

6) Study the global behaviours of the reduced model at infinity.  
The above steps can be simply presented in the following flowchart: 

 

 
 

The flowchart of proposed steps of model analysis and simplification, the steps are 
presented in the order of their application.  
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4. Local Behaviours of the Simplified Model 

We use Pplane8 for Mathlab to study the stability analysis of the Equation (12) and to 
compute numerical simulations in * *S I -plane, we also identify model nullclines; see 
Figure 2. It can be concluded that the model has the same stability properties at differ-
ent values for the parameter used. 

Furthermore, we identify the model interacting and numerical simulations in two 
and three dimensional planes, for different values of δ ; see Figure 3 and Figure 4. We 
notice that the dynamics of susceptible and infective people go to stable state very 
quickly as δ  becomes larger. Results are given here by using Pplane8 for Mathlab. 

In addition, we calculate the local sensitivity of state variables *S  and *I  with re-
spect to the given parameter δ  to identify critical mode parameters. We identify that 
infective people are more sensitive to the constant rate δ  when ( )0,0.4δ ∈  while  

 

 
Figure 2. Dynamics of the Equation (12) and numerical simulations using Pplane8 for Mathlab 
in * *S I -plane for different values of parameter δ , red lines stand for model nullclines. 
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Figure 3. Dynamics of the simplified model and numerical simulations using Pplane8 for Math-
lab in two dimensional plane, for different values of parameter δ . 

 
they are less sensitive to the given parameter δ  as 0.4δ > . More interestingly, both 
susceptible and infective people have same sensitivity to δ  when 0.4δ = ; see Figure 5. 
Results here are computed in numerical simulations using the SimBiology Toolbox for 
Mathlab in the time interval [ ]0,10  unites of time. Identifying critical model parame-
ters in this study is a good step forward for describing and understanding the model 
dynamics in systems biology.  

5. The Global Behaviours of the Simplified Model 

This section is devoted to examine the global phase portrait for Equation (12) by stud-
ying the isoclines and the behaviours at infinity. The isoclines are the lines with equal 
slope. These lines are an important role in sketching the phase portrait. It is easy to 
know where the trajectories have vertical and horizontal tangent lines by finding the  
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isoclines for 
*d

d
S
τ

 and 
*d

d
I
τ

. There are no motion horizontally and vertically when 

*d 0
d
S
τ

=  and 
*d 0

d
I
τ
=  respectively. The vertical trajectories are given by 

*d 0
d
S
τ

=  

which are * 0S =  and * 0I = . The horizontal trajectories are given by 
*d 0

d
I
τ
=  

which are * 1 0Sδ − = . From above, we note that 
* 0S =  is an invariant line and 

* 0I =  is a line of singularities. Since the Jacobian matrix at each points on the line of 
singularities, * 0I = , are 0 and * 1Sδ − , therefore the singular points that are belong-

ing to the left side of the vertical line, * 1S
δ

= , are stable and on the other side are un-

stable.  
Here, we study the direction of trajectories in the quadrants. In the first quadrant, 

 

 
Figure 4. Dynamics of the simplified model and numerical simulations using Pplane8 for Math-
lab in three dimensional plane, for different values of parameter δ . 
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Figure 5. The local sensitivity of state variables *S  and *I  with respect to the given parameter 
δ  for different values, using the SimBiology Toolbox for Mathlab in the time interval [ ]0,10  

unites of time. 
 

since *S  and *I  are positive, then 
*d

d
S
τ

 is always negative, 
*d

d
I
τ

 is negative where 

* 1S
δ

<  and 
*d

d
I
τ

 is positive where * 1S
δ

> . In the second and third quadrants, 

* *d d0,  0
d d
S I
τ τ

> <  and 
* *d d0,  0

d d
S I
τ τ
< >  respectively. In the fourth quadrant, 

*d
d
S
τ

 



S. H. A. Khoshnaw et al. 
 

42 

is always positive, but 
*d

d
I
τ

 is positive where * 1S
δ

<  and 
*d

d
I
τ

 is negative where 

* 1S
δ

> .  

The second required one is the line at infinity. It is a projective line that is added to 
the affine plane. Finding them including singular points and studying the behaviours at 
infinity of the reduced Equation (12) is very important to an understanding its global 
dynamics. For this purpose, the two below nonlinear change of variables are used indi-
vidually.  

*
*

* *

1 ,  and ; 0.IX Y S
S S

= = ≠                      (20) 

*
*

* *

1,  and ; 0.SX Y I
I I

= = ≠                      (21) 

Salih in [38] have used above transformation in three dimensional case. The points 
( )00,Y  and ( )0 ,0X  where ,X  and Y  vanish are obtained from the nonlinear 
change of coordinates (20) and (21) respectively. These are the singular points of the 
new system that are corresponding to the singular points at infinity for simplified Equ-
ation (12). 

Applying the nonlinear change of variables (20) on the reduced Equation (12) and 
after rescaling of the variables, the new system is obtained  

,X XYδ=  
( ).Y Y X Yδ δ= − − + −                        (22) 

The above system has two singular points ( )0,0S∞  and ( )1 0, 1L ∞ − . The first one is 
the intersection point of the line at infinity { }0L X∞ = =  and *S − axis, the system at 
that point has Jacobian matrix  

0 0
,

0
J

δ
 

=  
 

                           (23) 

with a positive δ  and one zero eigenvalues, therefore the singular point is unstable. 
The Jacobian at the second singular point ( )0, 1L∞ −  is given by 

0
,

1
J

δ
δ

− 
=  − 

                          (24) 

with two negative eigenvalues δ−  and δ− , the singular point is stable. 
The system below is obtained by applying the nonlinear change of variables Equation 

(21) on Equation (12) after rescaling of variables  

( ) ,X X X Yδ δ= − + −

 
( ).Y Y X Yδ= − −                          (25) 

System (25) has only two singular points ( )0,0I∞  and ( )2 1,0L ∞ − . At the first sin-
gular point ( )0,0I∞ , Equation (12) has Jacobian matrix  

0
,

1 0
J

δ− 
=  
 

                          (26) 

which it has one negative eigenvalue δ−  and a zero eigenvalue. At the second singu-
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lar point ( )2 1,0L ∞ − , Equation (12) has Jacobian matrix  

1
,

0
J

δ
δ
− 

=  
 

                           (27) 

which it has two positive eigenvalues δ  and δ . Figure 6 shows the dynamics beha-
viours at an affine plane and also at infinity, which exams a good understanding of the 
global behaviours of the Equation (12). We note that, the sum of the ratio of eigenva-
lues of either line is unity according to an index formula Lins Neto [39]. 

6. Conclusion 

Mathematical presentations and numerical simulations of infectious disease models are 
crucial topics in systems biology. Describing the dynamics of such systems often re-
quires some techniques of model analysis. We studied an epidemic disease model called 
SIR model with three species and two parameters. We proposed a number of steps of  

 

 
Figure 6. Global phase portraits of the simplified Equation (12); the green solid curves depict the line at infinities, the green dotted lines 
depict unstable singular points and the red dotted line depict stable singular point. 
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model analysis. The suggested steps of model analysis here importantly play in reduc-
ing the number of elements and in calculating analytical approximate solutions of the 
SIR model. The simplified model helps to study the full model of SIR in different ways. 
Firstly, identifying the critical model parameters of the reduced model becomes much 
easier compared to the full model. Secondly, the mathematical representation of the 
reduced model can help to integrate experimental knowledge into a coherent picture. 
Furthermore, studying the behaviour at infinity of the reduced model helped us to un-
derstand its global dynamics and to draw the global phase portrait of the system. Final-
ly, the reduced model could be accurate, robust, and applied by biologists for various 
purposes. The proposed techniques here of model analysis will be applied to a wide 
range of complex infectious disease models in systems biology. 
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