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Abstract 
Differences between the inhibitory activities of specific compounds on ana-
logous enzymes isolated from different animal species are one of the critical 
issues to evaluate when exploring structure-activity relationships. The activity 
of acarbose is about ten times stronger in rat than in human, and that of neo-
salacinol is similar in both species. Binding affinities of acarbose and neosala-
cinol to four catalytic domains of alpha-glucosidases in human and rat were 
compared to investigate the cause of activity differences among species. Spe-
cies difference was brought about complicatedly by the balance of interaction 
with four domains, and the result was indicated that larger ligand would show 
larger species difference in activity. 
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1. Introduction 

The human intestinal alpha-glucosidases, maltase-glucoamylase (MGAM) and 
sucrase-isomaltase (SI), have two catalytic domains in the N-terminal side 
(NtMGAM, NtSI) and the C-terminal side (CtMGAM, CtSI) [1] [2]. These four 
catalytic domains are homologous, and every domain catalyzes maltose hydroly-
sis at the alpha-1,4-glycosidic bond. In addition, NtSI and CtSI catalyze the hy-
drolysis of isomaltose and sucrose, respectively [3]. To elicit their antidiabetic 
activity, alpha-glucosidase inhibitors must bind to all the mentioned domains to 
prevent disaccharide hydrolysis. We have investigated the structure-activity rela-
tionships of the compounds (salacinol, kotalanol and neosalacinol) isolated from 
Salacia reticulata [4] [5] [6] [7], and have designed novel derivatives from the 
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human target protein structure [8]. The inhibitory activities of these compounds 
were assayed using the enzymes isolated from rat intestine. When assaying the 
activity of compound, the activity may be affected by species difference. For in-
stance, it is reported that compound with agonist activity changed to antagonist 
in different animal species [9]. These species differences of the activities of 
compound are very difficult problem in rational drug design. Indeed, acarbose (a 
known alpha-glucosidase inhibitor, Figure 1(a)) and neosalacinol (Figure 1(b)) 
showed a different pattern of inhibitory activity between the human and rat en-
zyme [10]. These species-based differences in the inhibitory activities of salacinol 
derivatives should be investigated to increase our understanding of the struc-
ture-activity relationship. In this study, the species difference with regard to the 
inhibitory activity of these compounds has been examined by a computational 
method. 

2. Materials and Methods 
2.1. Homology Modeling 

Maltose hydrolysis by alpha-glucosidases take place in all four catalytic domains. 
Binding affinities of acarbose and neosalacinol must be calculated for all four 
domains of the enzymes from the two animal species. The crystal structures of 
three domains of the human enzyme (NtMGAM, CtMGAM, and NtSI) have 
been reported (PDBID: 3L4Z [11], 3TOP [12], and 3LPP [13], respectively), 
whereas that of CtSI and those of all four domains of the rat enzyme are un-
known. Therefore, the structures of the domains, for which relevant data were 
not available, were predicted by implementing a homology modeling method. In 
such an approach, the three-dimensional (3D) structure of a target protein is 
constructed from the experimental 3D structure of a homologous protein used 
as a template. To obtain a reliable model structure, an amino acid sequence ho-
mology greater than 30% is required between the target and the template protein 
[14]. As the homologies between the modeled domains and their templates listed 
in Table 1 exceeded this threshold, reliable model structure would be expected. 

As the model structure of human CtSI has been reported in a previous paper 
[15], models of the rat enzyme catalytic domains were constructed from the  
 

 
(a)                                           (b) 

Figure 1. Compounds for comparison of binding affinities. (a) acarbose (b) neosalacinol. 
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Table 1. Targetstructures and corresponding template structures in homology modeling. 

Target protein Template protein Template PDBID Homology 

human CtSI human CtMGAM 3TOP 60% 

rat NtMGAM human NtMGAM 3L4Z 57% 

rat NtSI human NtSI 3LPP 69% 

rat CtMGAM human CtMGAM 3TOP 76% 

rat CtSI human CtMGAM 3TOP 54% 

 
known human domains in the same manner previously described [15]. The 
amino acid sequences of rat MGAM and rat SI were retrieved from NCBI-Gene 
ID: rno312272 and rno497756, respectively. After sequence alignment using the 
BLOSUM62 scoring matrix, all 3D structures were modeled by DS-MODELLER 
[16]. All amino acid protonation states and the positions of the hydrogen atoms 
were assigned by the Protonate-3D method [17] implemented in MOE [18]. 

2.2. Binding Affinity Prediction 

Binding mode of the inhibitor is a critical factor in the prediction of the binding 
affinity. Each structure of acarbose and neosalacinol bound to the catalytic do-
main was constructed by superposition of the following crystal structures: acar-
bose with NtMGAM (PDBID: 2QMJ [19]) and salacinol with NtMGAM (PDBID 
3L4Z [11]). After the ligands were placed in each domain, the sulfate group of 
salacinol was replaced by a hydroxy group to obtain the chemical structure of 
neosalacinol. Binding affinity between each ligand and enzyme domain was cal-
culated by the MM-PBSA method [20]. 

Molecular dynamics (MD) simulations for 16 complexes (4 domains, 2 li-
gands, and 2 species) were performed using the AMBER software package [21]. 
Before the MD simulation, water molecules around each ligand located in the 
enzyme’s binding pocket were generated to detect hydrogen-bond bridging wa-
ter molecules by MOE-Solvent Analysis. Since alpha-glucosidases are very large 
proteins (about 900 amino acid residues and 13,000 atoms),to reduce computa-
tional cost, the binding pockets were capped by water molecules within a radius 
of 30 Å, and only the solvated region was kept movable during MD simulations. 
The AMBER ff99SB parameters [22] and GAFF/RESP parameters [23] [24] were 
assigned for protein and ligand atoms, respectively. A three-step energy mini-
mization were performed: positions of hydrogen atoms, side chain atoms, and 
finally, all atoms were gradually optimized by implementing the steepest descent 
method and the conjugate gradient method for each 500 cycle step. After energy 
minimization and 500 ps heating, the system was equilibrated for 500 ps before 
data collection. Subsequently, an MD simulation of 2 ns was performed and the 
complex structures were extracted through 400 snapshots taken every 5 ps. This 
MD simulation scheme was replicated three times, and the binding affinities 
were calculated for a total of 1200 snapshots using the AMBER-MMPBSA.py 
module. [25]. At this point, the binding entropy term was calculated for 120 
snapshots obtained at regular intervals from the 1200 snapshots by normal mode 
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analysis with GBHTC implicit solvent model [26] and with truncated complex 
structure within 12 Å from the ligand [27] to reduce computational costs. 

3. Results and Discussion 
3.1. Homology Modeling 

The structure model quality of the four rat catalytic domains was evaluated by 
QMEAN6 score [28]. The values of 0.63, 0.54, 0.66 and 0.70 for NtMGAM, 
CtMGAM, NtSI and CtSI, respectively. These values were high enough to allow 
comparisons between binding pockets to be conducted. All human and rat do-
mains were superimposed on each other based on the protein main chain atoms 
and compared (Figure 2). The residues involved in hydrogen bonds and ionic  
 

  
(a)                                         (b) 

  
(c)                                         (d) 

Figure 2. Comparisons of the ligand binding pockets with superposed acarbose. Acarbose 
is shown as a ball & stick model. Blue: human MGAM, Orange: rat MGAM, Green: Hu-
man SI, Magenta: rat SI, (a) Residues of the N-terminal catalytic domains involved in hy-
drogen bonding; (b) non-conserved residues in the ligand-binding pocket of the N-ter- 
minal catalytic domains; (c) residues of the C-terminal catalytic domains involved in hy-
drogen bonding; (d) non-conserved residues in the ligand-binding pocket of the 
C-terminal catalytic domains. 
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interactions were well conserved between human and rat domains except for 
Asn498/Glu437 in rat NtMGAM (Figure 2(a)) and Pro630 in rat CtSI (Figure 
2(c)). Thus, polar interactions with the ligands should also be conserved be-
tween enzymes. However, we observed significant differences in terms of the 
identity of residues between human and rat domains. For the sake of clarity, in 
the rest of the text, residues of the human enzyme will be reported in all capital 
letters, whereas those of the rat enzyme will be reported using the regular nota-
tion. Hydrophobic TYR299 and ALA576 residues are found in the human 
NtMGAM domain, which correspond to hydrophilic residues Arg299 and Glu532, 
respectively, in the corresponding domain of the rat enzyme (Figure 2(b)). 
Likewise, TRP459 in human CtMGAM is replaced by Arg474 in the rat domain, 
the acidic ASP571 in human NtSI is replaced by the neutral Thr573 in rat NtSI 
(Figure 2(b)), and the basic ARG503 in human CtSI is replaced by the acidic 
Glu504 in rat CtSI (Figure 2(d)). Conserved residues are found at the bottom of 
the ligand-binding pockets, whereas mutated residues are located rather outside 
of the pocket. These differences are predicted to affect the inhibitory activity of 
large compounds such as acarbose. 

3.2. Binding Affinity Prediction 

Calculated binding affinities of the two compounds for each domain are re-
ported in Table 2. Among the experimental inhibitory activities of alpha-gluco- 
sidase inhibitors, the strongest inhibition is observed for acarbose with respect to 
the rat enzyme. The calculated binding affinities averaged over four domains 
could not reproduce the experimental data on strongest inhibition; the calcu-
lated affinities of acarbose for alpha-glucosidases are both lower than those of 
neosalacinol. However, species-based differences clearly observed for each com- 
pound. These results may be affected by the estimated atomic partial charge of 
the compounds. As there are many charged residues around the ligand-binding 
pockets, affinity is sensitive to ligand partial charge. Although comparing the 
calculated affinities of two different ligands would, in this context, provide re-
sults that should be handled with care, comparing the binding affinities of a sin- 
 
Table 2. Binding affinities (kcal/mol) for enzyme domain and enzyme inhibitory activity 
of two compounds. 

 
Acarbose Neosalacinol 

Human rat Human rat 

NtMGAM −1.5 −15.4 −20.6 −20.6 

NtSI −4.3 −2.0 −12.5 −27.6 

CtMGAM −8.3 −13.3 −23.6 −7.0 

CtSI −12.5 −12.4 −14.1 −13.9 

Average of four domains −6.7 −10.9 −17.7 −17.3 

IC50 (μM)a 15.2 1.7 9.0 22.2 

aReported inhibitory activity of maltose glycolysis [10]. 
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gle ligand for two different enzymes is reasonable. The experimental inhibitory 
activity of acarbose on alpha-glucosidase is about ten times lower for the human 
enzyme than for its rat counterpart, and that of neosalacinol is slightly higher for 
the human than for the rat enzyme. Furthermore, the binding affinities of acar-
bose for the human C-terminal domains of alpha-glucosidase are significantly 
higher than those calculated for the N-terminal domains. On the other hand, 
this difference was quite small in the case of neosalacinol. Although substrate 
specificities of the domains of the rat enzyme have not been investigated, the 
C-terminal domains of human alpha-glucosidase are known to be the site of hy-
drolysis of, not only disaccharides, but also tri-saccharides [29]; therefore, large 
ligands prefer C-terminal domains over N-terminal domains. The chemical size 
of acarbose corresponds to that of large tetra-saccharides, whereas the size of 
neosalacinol corresponds to that of small disaccharides. The binding affinities of 
each compound to the human domains reflected ligand-size and substrate speci-
ficity. Species-based differences in terms of inhibitory activity of acarbose are 
hypothesized to originate from the binding affinity for NtMGAM. Given the 
small size of its binding pocket, human NtMGAM prefers small ligands [15], so 
the large acarbose could not interact well with human NtMGAM. Consequently, 
acarbose inhibitory activity is lower for the human enzyme than for its rat coun-
terpart. Almost half of the acarbose structure did not interact with NtMGAM 
(Figure 2(a)), and the inhibitor was exposed to the solvent in the crystal struc-
ture of the ligand-domain complex obtained by X-ray crystallography (PDBID: 
2QMJ). The binding affinities of neosalacinol for rat CtMGAM is lower than 
that for rat NtSI because of the interaction between the cationic neosalacinol and 
the charged residues; the neutral residue TRP549 in human CtMGAM corres-
ponds to the cationic residue Arg474 in the rat enzyme, with cation-cation un-
favorable interactions, and the neutral GLN203/ALA576 residues in human NtSI 
correspond to the anionic Glu204/Gly532 in rat NtSI with cation-anion favora-
ble interactions. These characteristics would result in a slight species-based dif-
ference in the inhibitory activity of neosalacinol. In the prospect of future struc-
ture-based drug design efforts to identify suitable neosalacinol derivatives, we 
should keep in mind that is very complicated to consider all four domains. 
However, designing such drugs on the basis of the CtSI structure would be a 
simple and efficient approach to determine the substituent effects, as the relevant 
binding affinities between ligand and enzymes from the two different animal 
species are similar. 

4. Conclusions 

Two alpha-glucosidase inhibitors, acarbose and neosalacinol, have been reported 
to display different inhibitory activity toward the human-isolated versus the 
rat-isolated enzyme. In this study, the binding affinities of these compounds to 
four catalytic domains of the human and rat alpha-glucosidases have been eva-
luated computationally. The crystal structures of human NtMGAM, NtSI, and 
CtMGAM domains have been reported but those of the other domains have not; 
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therefore, homology modeling of the unknown structures has been performed, 
and the ligand-binding pockets of all domains have been compared. The ligand- 
domain complex structures were obtained by superimposing and modeling 
known complexes, and binding affinities calculated by the MM-PBSA method 
were then compared. 

Averaged binding affinities of the compounds for four domains matched the 
experimental species differences in terms of inhibitory activity. The low inhibi-
tory activity of acarbose with respect to the human enzyme is caused by the weak 
interaction of the inhibitor with the NtMGAM domain, which prefers ligands 
that are smaller than acarbose. The fact that the inhibitory effect of neosalacinol 
on the human enzyme is comparable to that observed for the rat enzyme is ex-
plained by a compensation of the charge interactions between rat NtSI and hu-
man CtMGAM. Namely, since maltose glycolysis takes place in four catalytic 
domains, the inhibitory activity of ligands is affected in a complex way by the 
interactions of the ligand with these four domains. Small ligands, whose size 
corresponded to that of disaccharides, are not very affected by structural differ-
ences among domains because these ligands occupy the catalytic core region, 
wherein disaccharide glycolysis occurs. However, large ligands could not settle 
stably in small pockets, and species-based differences in inhibitory activity 
would thus be enhanced. In this context, enlarging ligands by design and syn-
thesis would probably not increase their activity. Activities predicted on the basis 
of calculated binding affinities of recently developed neosalacinol derivatives 
with large substituents have been estranged from the experimental result [30]. 
These results encouraged us to perform bioassays using human enzyme [31]. 
However, to improve the prediction accuracy of the inhibitory activities of de-
signed compounds, it is necessary to refine further the structure of all domains, 
including with respect to features such as protonation state of pocket residues 
and ligands and the ratio of MGAM to SI in the human small intestine. 
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