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ABSTRACT 

Strategies for CADD vary depending on the extent of structural and other information available regarding the target 
(enzyme/receptor) and the ligands. Computer-aided drug design (CADD) is an exciting and diverse discipline where 
various aspects of applied and basic research merge and stimulate each other. In the early stage of a drug discovery 
process, researchers may be faced with little or no structure activity relationship (SAR) information. The process by 
which a new drug is brought to market stage is referred to by a number of names most commonly as the development 
chain or “pipeline” and consists of a number of distinct stages. To design a rational drug, we must firstly find out which 
proteins can be the drug targets in pathogenesis. In present review we reported a brief history of CADD, DNA as target, 
receptor theory, structure optimization, structure-based drug design, virtual high-throughput screening (vHTS), graph 
machines. 
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1. Introduction 

All the world’s major pharmaceutical and biotechnology 
companies use computational design tools. At their lowest 
level the contributions represent the replacement of crude 
mechanical models by displays of structure which are a 
much more accurate reflection of molecular reality capa-
ble of demonstrating motion and solvent effects [1-3]. 
Beyond this, theoretical calculations permit the computa-
tion of binding free energies and other relevant molecular 
properties. The theoretical tools include empirical mo-
lecular mechanics, quantum mechanics and, more re-
cently, statistical mechanics. This latest advance has 
permitted explicit solvent effects to be incorporated. Un-
derpinning all this work is the availability of high quality 
computer graphics, largely supported on workstations 
[1-5]. 

Two distinct categories of research are clearly distin- 
guishable: 

1) Crystallography, NMR or homology modelling. A 
detailed molecular structure of the target macromolecule, 
the drug receptor, is known from x-ray. 

2) Variable activity of otherwise similar molecules. 
The target receptor binding site has properties which 

can only be inferred from a knowledge of the both these 

types of approach will now be considered and illustrated 
with some recent examples. 

DNA as Target 

The sequencing of the human genome represents one of 
the major scientific endeavours of this century. A major 
aspect of the utilization of this information will be the 
provision of small molecules which will recognize se- 
lected sequences, perhaps with the goal of switching off 
particular genes as in cancer chemotherapy. For some 
time, antibiotics such as netropsin have been known to 
bind preferentially to sequences rich in A-T pairs. A 
variant based on this research has been to try to design a 
bioreductive ligand based upon netropsin [1]. The idea of 
bioreductive anti-cancer agents, statts with the fact that 
tumours receive less blood and hence less oxygen than 
normal tissue. 

A second starting point for sequence selective ligands 
is an organometallic molecule with chiral properties. The 
propeller-like ruthenium tris-phenanthroline complexes 
do show differential binding between A-T and G-C se- 
quences [2] and moreover may exhibit a preference for 
purine 3’, 5’ pyrimidine sites in DNA [3]. Perhaps the 
most intriguin starting point for a molecule upon which 
to build nucleic acid selectivity is the ubiquitous sper- *Corresponding author. 
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mine. It has been proposed [4] that spermine can bind to 
DNA in a cross-groove manner, with relatively non-spe- 
cific interactions between the positive nitrogens of the 
spermine and the negatively-charged phosphate back- 
bone.  

The Ras family of protooncogenes (N-Ras, H-Ras and 
K-Ras) codes for small proteins of 189 amino acids with 
molecular weight 21 kDa protein [5]. Ras proteins are 
localized in the inner plasma membrane and are involved 
in the transduction of external stimuli to effect molecule 
Raf serine/threonine kinase [6]. These proteins bind GDP/ 
GTP and possess intrinsic GTPase activity allowing in-
activation following signal transduction in the normal 
cellular environment [7]. Activation of point mutations in 
the Ras is one of the most frequent genetic alterations 
associated with human cancers [8]. Approximately 90% 
of these activating mutations occur in codons 12 and 59, 
identifying these codons as hot-spot targets [9]. A par- 
ticular genetic alteration has been identified in a signifi- 
cant percentage of bladder tumors; this mutation changes 
a single amino acid in the H-Ras protein. Specifically, 
the mutation replaces the amino acid glycine with the 
amino acid valine at position 12 (RasG12V) [10]. The 
mutant form of RasA59T, which is known to undergo 
autophosphorylation on Thr-59 [11], shows a very strong 
signal that argues against the occurrence of a covalently 
bound phosphate [8]. As a result of these mutational 
changes, the mutated Ras-p21 has a structure that dis- 
ables its ability to bind with GTPase activating protein 
(GAP) and creation of an autophosphorylation site [12], 
thus keeping the Ras-p21 in the GTP-bound, activated 
state contributing to a malignant cell phenotype . Drug 
target discovery involves the identification and early 
validation of disease-associated targets. Mutations occur- 
ring in the Ras gene(s) lead to uncontrolled cell growth 
and proliferation. In general, 30% of human tumor oc- 
curs through mutation in Ras gene. In colorectal and 
pancreatic cancers, the occurrence of mutation in Ras is 
50% - 90% [5]. When we consider treatments for cancer, 
they depend on the types and stages of cancer develop- 
ment. Chemotherapy, targeted therapies, surgery, radia- 
tion therapy, biological therapy, and hormonal therapy 
are the various treatments that currently exist. 

2. A Brief History of CADD [9] 

1900: The receptor and lock-and-key concepts P. Eh- 
rich (1909) and E. Fisher (1894); 

1970s: Quantitative structure-activity relationships (QS- 
AR), Limitations: 2-Dimensional, retrospective analy- 
sis; 

1980s: Beginning of CADD Molecular Biology, X-ray 
crystallography, multi-dimensional NMR Molecular mo- 
deling, computer graphics; 

1990s: Human genome Bioinformatics, Combinatorial 
chemistry, High-throughput screening. 

2.1. How Does CADD Work? [13] 

 

2.2. Software for Molecular Modeling 

General purpose molecular modeling (large & small mole- 
cules) 

—molecular mechanics, dynamics and multifunctional 
programs; 

Quantum Chemistry calculations (small molecules) 
—molecular orbital or quantum mechanical calcula- 

tion; 
Database of molecular structures (large & small 

molecules) 
—software for storage and retrieval of molecular struc- 

ture data; 
Molecular graphics (large & small molecules) 
—programs to visualize molecules QSAR (small 

molecules). 

2.3. Software for General Purpose Molecular  
Modeling [13] 

For workstations, minicomputers, and supercomputers 
(SGI, Sun, Cray, etc.) 

AMBER—Peter Kollman and coworkers, UCSF. 
Computer assisted model building, energy minimiza-

tion, molecular dynamics, and free energy perturbation 
calculations. 

Midas Plus—UCSF Computer Graphics Laboratory. 
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CHARMM—Martin Karplus and cowrokers, Har- 
vard. 

QUANTA/CHARMm—Molecular Simulations Inc. 
(MSI) molecular/drug design, QSAR, quantum chemis- 
try. 

X-ray & NMR data analysis Insight/DISCOVER— 
Biosym, Inc. Now MSI and Biosym became Accelrys 
Inc. 

SYBYL—Tripos, Inc. 
ECEPP—Harold Scheraga and coworkers, Cornell 
MM3—Norman Allinger and coworkers, Georgia 
For personal computers (Apple, Compaq, IBM, etc.) 
Alchemy III—Tripos, Inc. 
Structure building and manipulation, SYBYL energy 

minimization, molecular display, conformational search-
ing Chem3D Pro—CambridgeSoft Corp. 

Desktop Molecular Modeller—Oxford Elec. Publish- 
ing Molecular Modeling Pro—WindowChem Software 
Energy minimization, QSAR (surface area, volume, logP), 
etc. 

PC MODEL—Serena Software. 

2.4. Optimization [14] 

The second step of drug discovery involves the modifica- 
tion of the hits in order to improve the biological proper- 
ties of the compound by changing its pharmacophore. 
Using QSAR to modify lead compounds would be less 
tedious then having to physically synthesize the com- 
pounds. Moreover, such in silico methods could theo- 
retically help to modify the compounds to exhibit the 
most potency, most selectivity, best pharmacokinetics 
and least toxicity. QSAR involves mainly physical che- 
mistry and molecular docking tools that lead to tabu- 
lated data and first and second order equations. There are 
many theories, being the most relevant Hansch’s analysis 
that involves Hammett electronic parameters, Esteric para- 
meters and logP parameters [15]. 

2.5. Receptor Theory 

A receptor [16], in the biochemistry context, is a/are 
protein molecule(s), found in either the plasma mem- 
brane or the cytoplasm of a cell, to which one or more 
specific kinds of signaling molecules may attach. A 
molecule which attaches to a receptor is called a ligand, 
and may be a peptide or other small molecule, such as a 
neurotransmitter, a hormone, a pharmaceutical drug, or a 
toxin. Each kind of receptor can bind only certain ligand 
shapes. Each cell typically has many receptors, of many 
different kinds. 

An agonist is a drug that binds to a receptor of a cell 
and triggers a response by the cell. An agonist often 
mimics the action of a naturally occurring substance. An 
agonist produces an action. An antagonist blocks an ac- 

tion of an agonist. Endogenous (such as hormones and 
neurotransmitters) or exogenous (such as drugs) agonists 
and antagonists, either stimulate or inhibit a biological 
response in receptors [17]. 

3. CADD Strategies in the Drug Discovery  
Process 

Strategies for CADD vary depending on the extent of 
structural and other information available regarding the 
target (enzyme/receptor) and the ligands. “Direct” and 
“indirect” design are the two major modeling strategies 
currently used in the drug design process. In the indirect 
approach the design is based on comparative analysis of 
the structural features of known active and inactive com- 
pounds. In the direct design the three-dimensional fea-
tures of the target (enzyme/receptor) are directly con- 
sidered. 

3.1. CADD in Lead Generation 

3D Structure of the Protein Unknown 
In the early stage of a drug discovery process, research- 
ers may be faced with little or no structure activity rela- 
tionship (SAR) information. At this point, assay devel- 
opment and screening should be undertaken immediately 
by the high-throughput screening (HTS) group [18], and 
chemists should immediately follow up on any screening 
leads or other sources of initial information. The com- 
pounds screened could be commercially available, natu- 
ral products, collections of in-house synthesized com- 
pounds or emerge from combinatorial libraries. Compu- 
tational chemists can, however, help in the choice of the 
compounds to be selected for HTS. 

Instead of performing random screening, a set of 
compounds presenting diversity in their physicochemical 
properties can be selected to find leads. The aim of these 
analyses is to select and test fewer compounds, whilst 
gaining as much information as possible about the data- 
set [19]. Any reduction of the number of compounds to 
be tested, while only reducing the amount of redundancy 
within a database without introducing any voids, should 
have an important impact on research efficiency and the 
costs associated [20]. Recently, the use of rational design 
to maximize the structural diversity of database, for lead 
findings and refinements, was investigated. Hierarchical 
clustering and maximum dissimilarity methods were 
compared to a random approach in order to study their 
efficiency for the diversity enhancement of three-dimen-
sion databases. The investigations were done using two- 
dimensional fingerprints as a validated molecular descrip-
tor and the performance of rational selection methods vs. 
random approach has been compared [18,19,21-23]. 

The first step to derive a new lead, also called second- 
dary lead, will be to study the stereoelectronic properties 
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of the selected primary leads Table 1. The primary leads 
should be selected among a set of compounds showing a 
large variety in chemical structures, and interact with the 
same target via the same binding mechanism. By com- 
parison of the stereoelectronic properties of primary 
leads, a pharmacophore is defined. A pharmacophore 
model is a spatial arrangement of atoms or functional 
groups believed to be responsible for biological activity 
[24]. In this model the rest of the molecule acts as a 
skeleton to hold the groups in the right place. Typically, 
the derived pharmacophores consist, generally, of 3 - 5 
features, and the distances between them (angles and 
other geometric measures are sometimes used). 

3.2. Structure-Based Drug Design 

Within many of the rational drug design projects in the 
group, computer-aided methods, such as virtual screen- 
ing and de novo design techniques, play an important 
role. NMR spectroscopy in conjunction with molecular 
modeling and other spectroscopic methods allows invest- 
tigations to be made into molecular mechanisms of 
ligand-target recognition at the atomic level [25]. This 
information is a necessary component in the design of 
novel therapeutics and in prediction of interactions of 
drugs with the targets. Also over the years, the group 
hasstudied details of binding of ligands to the minor 
groove of DNA, such as Hoechst 33,258, or to tRNA [26]. 
NMR methods are also used by the group to study inter- 
actions of proteins with ligands. There is 300 MHz in- 
strumentation in the school, and the group has shared 
usage of 500 MHz high-field instruments housed in the 
Department of Chemistry. The group collaborates exten- 
sively with Professor Gareth Morris, inventor and pio- 
neer of many modern NMR techniques, thereby bringing 

 
Table 1. Main stereoelectronic properties used in CADD 
[13]. 

Steric L (Substituent length) 
B5 ( Substituent width) 
MR (Molar refractivity) 
Volume 
Surface area 

Electronic σ (Hammet constant) 
F, R (Field and resonance parameters) 
pKa (Ionization constants) 
q (atomic charges) 
MEP (Molecular Electrostatic Potential)… 

Lipophilic π (Hansch constant) 
f (Hydrophic fragmental constant) 
LogP (partition coefficients) 
Logkw (capacity factor values from RP-HPLC) 
CLOGP (calculated log P values) 
MLP (Molecular lipophilic potential) 

H-bonding HA (number of H-bond acceptors) 
HD (number of H-bond donors) 
∆lopP (oct-hex) (H-bond capability)… 

novel techniques to bear on red biological problems 
[27]. 

3.3. Bioinformatics in Computer-Aided  
Drug Design 

A few years ago, the National Institutes of Health (NIH) 
created the Biomedical Information Science and Tech- 
nology Initiative (BISTI) to examine the current state of 
bioinformatics in the United States. BISTI’s working 
definition of bioinformatics included its use in biomedi- 
cal research, in particular for drug discovery and devel- 
opment programs. Bioinformatics was seen as an emer- 
gin how drugs are found, brought to clinical trials and 
eventually released to the marketplace [28]. 

Computer-Aided Drug Design (CADD) is a special- 
ized discipline that uses computational methods to simu- 
late drug-receptor interactions. CADD methods are heav- 
ily dependent on bioinformatics tools, application and on 
the support side of the hub, information technology, in- 
formation management, software applications, databases 
and computational resources all provide the infrastruc- 
ture for bioinformatics. On the scientific side of the hub, 
bioinformatics methods are used extensively in molecu- 
lar biology, genomics, proteomics, other emerging areas 
(i.e. metabolomics, transcriptomics) and in CADD re- 
search. There are several key areas where bioinformatics 
supports CADD research Figure 1 [29]. 

3.4. Virtual High-Throughput Screening  
(vHTS) 

Pharmaceutical companies are always searching for new 
leads to develop into drug compounds. One search 
method is virtual high-throughput screening. In vHTS, 
protein targets are screened against databases of small 
molecule compounds to see which molecules bind  

 

 

Figure 1. Bioinformatics in computer-aided drug design. 
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strongly to the target. If there is a “hit” with a particular 
compound, it can be extracted from the database for fur- 
ther testing. With today’s computational resources, sev- 
eral million compounds can be screened in a few days on 
sufficiently large clustered computers. Pursuing a hand- 
ful of promising leads for further development can save 
researchers considerable time and expense. ZINC is a 
good example of a vHTS compound library [30]. 

4. Serendipity in Drug Research 

Accidental discoveries always played an important role 
in science [31], especially in the search for new drugs 
[32-36]. Even if we do not count the traditional evalua- 
tion of plants, animal toxins and minerals for therapeutic 
potential, in ancient history, and the more or less system- 
atic screening of synthetic compounds in our century, the 
number of serendipitous findings in drug history is legion. 
“Ein glücklicher Zufall hat uns ein Präparat in die Hand 
gespielt” (a lucky accident played a new drug in our 
hands) are the first words of a publication which de- 
scribes the fortunate discovery of the fever-reducing ac- 
tivity of acetanilide. Erroneously this compound was 
clinically tested, instead of naphthalene that should have 
been investigated as an intestinal worm-killing agent 
[32-36]. 

The two best known examples of serendipitous find- 
ings are the discovery of the antibiotic effect of a certain 
Penicillium strain by Sir Alexander Fleming, which led 
to the development of penicillin and its synthetic deriva- 
tives, and the discovery that Chlordiazepoxide, which 
resulted from an unexpected chemical rearrangement, is 
a potent tranquillizer. Five years later, he prepared the 
compound once again; this time he experienced halluci- 
nations, after accidental intake or inhalation of minute 
amounts of this highly potent compound [31,34,36]. 
Acetylsalicylic acid was originally designed as a prodrug 
of salicylic acid to treat headache, fever and rheumatic 
diseases. Much later it turned out to be an irreversible 
cyclooxygenase inhibitor, preventing blood coagulation 
by the inhibition of thrombocyte aggregation. A careful 
inspection of the reasons for the observed cytotoxic ef- 
fect led to the surprising result that it was due to the ac- 
tion of ammonium and chloride ions on the platinum 
electrode, forming Cisplatin in the electrolysis medium 
[34]. Cyclosporin was developed because of its antifun- 
gal activity. Sandoz was already going to stop the pro- 
gram when the compound turned out to be an immuno- 
suppressant, highly valuable to prevent the rejection of 
organ transplants. The story of the anticoagulants Di- 
coumarol and Warfarin is full of serendipitous findings. 
First, cattle bleeded to death after they were fed with 
moldy hay. The toxicagent Dicoumarol was isolated and 
introduced into human therapy. Because of its narrow 

therapeutic range and its frequent side effects it was 
abandoned after a short period. The Wisconsin Alumni 
Research Foundation developed the Dicoumarol analog 
Warfarin as a rat poison. New clinical trials started when 
a US army cadet unsuccessfully attempted to commit 
suicide. Warfarin is now the drug of choice to protect 
against stroke and other acute thrombotic events [37]. 
Recently it was recognized as a valuable lead for the de- 
velopment of potent HIV protease inhibitors. Application 
of a water-soluble salt, lithium urate, led to the seren- 
dipitous discovery of the beneficial effect of lithium salts 
[31,34,37]. Phenylbutazone and Valproic acid were de- 
signed as solubility enhancers for other drugs. However, 
both compounds turned out to be valuable drugs on their 
own. Phenolphthalein was discovered to be a potent 
laxative when it was tested as a possible marker to label 
cheap Hungarian wines. The three most important artifi- 
cial sweeteners, saccharine, cyclamate and aspartame, 
were also serendipitous discoveries. Chemists experi- 
enced the sweet taste when licking their fingers or 
smoking a cigarette [38]. An important discovery in re- 
ceptor research was also a case of serendipity. The sec- 
ond messenger cyclic AMP was discovered in 1957, 
adenylate cyclase in 1958. Fluoride ions activated ade- 
nylate cyclase but the mechanism of this surprising 
stimulation of enzymatic activity could not be explained 
for the next 24 years. Adenylate cyclase originally con- 
sisted of two components, the cyclase and a regulatory 
unit, the G protein. Fluoride activation of the G protein 
was observed in disposable glass tubes or in the presence 
of tap water, but not with distilled water in plastic tubes 
[39]. Further systematic investigation of these confusing 
results made clear that fluoride ions activate the G pro- 
teins only in the presence of minute amounts of alumi- 
num ions. Whereas a GDP-G protein complex is inactive, 
the GTPG protein or GDP-fluoroaluminate-G protein 
complexes activate adenylate cyclase: It was supposed 
that the fluoroaluminate ion mimics the outer phosphate 
group of GTP [39]. 

5. Graph Machines 

Definitions and notations for handling acyclic graphs, 
and the construction of graph machines from general 
graphs (possibly cyclic). It is shown that the training and 
model selection methods developed for vector machines 
can be extended to graph machines. 

5.1. Handling Directed Acyclic Graphs 

Definitions: We consider the mapping from a set of 
acyclic graphs G to a set of realvalued numbers. Graph 
machines and their applications to computer-aided drug 
design for each acyclic graph Gi of G, a parameterized 
function gi Rn R is constructed, which is intended 1) to 
encode the structure of the graph [40]. 
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5.2. Model Selection 

Similarly to vector machines, usual model selection tech- 
niques such as hold-out, K-fold cross-validation, leave- 
one-out, can be applied to recursive networks and to 
graph machines. In the present section, we show how 
virtual leave-one-out, a powerful method for estimating 
the generalization capability of a vector machine, can be 
extended to graph machines. 

5.3. Graph Machines for the Prediction of  
Properties and/or Activities of Molecules 

The prediction of the physico-chemical properties and 
pharmaceutical activities of molecules is a critical task in 
the drug industry for shortening the development times 
and costs. Typically, one synthesized molecule out of 
10,000 becomes a commercial drug, and the development 
time of a new drug is approximately 10 years. Therefore, 
predicting the activity of a hitherto non-existent molecule 
may lead to tremendous savings in terms of development 
time and cost. Hence, over the past few years, QSPR/ 
QSAR has become a major field of research in the che- 
mical industry. In a typical QSAR/QSPR scenario, a da-
tabase of measured properties or activities of molecules 
is available, and it is desired to infer, from those data, the 
property/activity of molecules that have not yet been 
synthesized. 

5.4. Encoding the Molecules 

Molecules are usually described in databases in a repre- 
sentation called SMILES (Simplified Molecular Input 
Line Entry System), which provides a description of the 
graph structure of the molecule as a character string. In 
the applications described here, the functions gi were 
generated from the SMILES files of the molecules by the 
following procedure: The molecules, described by these 
files, were converted into labeled graphs by the associa- 
tion of each non-hydrogen atom to a node, and each bond 
to an edge. The nodes were also assigned labels describe- 
ing the atoms they were related to (e.g. their nature, their 
degree or stereoisomery). Then the adjacency matrices 
associated to those labeled graphs were generated. In the 
subsequent step, the matrices were cast into a canonical 
form, by an algorithm that ranks the nodes according to 
criteria such as their degree, the fact that they belong to a 
cycle [41]. This canonical form allowed the choice of the 
root nodes, and the conversion of the graphs into directed 
acyclic graphs. 

5.5. Predicting the Boiling Points of Halogenated  
Hydrocarbons 

The volatility of halogenated hydrocarbons is an impor- 
tant property, because those compounds are widely used 

in the industry, for example as solvents, anaesthetics, 
blowing agents, and end up in the environment, where 
they can damage the ozone layer or be greenhouse gases. 
The volatility of a molecule can be assessed by its boiling 
point, a property measured only for a small proportion of 
possible halogenated hydrocarbons. We studied a data set of 
543 haloalkanes, whose boiling points were previously pre-
dicted by Multi Linear Regression (MLR) [41,42]. This 
regression required the computation of numerous molecular 
descriptors, including arithmetic descriptors, topological 
indices, geometrical indices, and counts of substructures and 
fragments. The best feature subset was then selected, and 
generally comprised 6 or 7 descriptors. 

To provide a comparison with the results obtained by 
this method, we used the same training and test sets [43]. 
They feature 507 and 36 halo alkanes respectively, whose 
boiling points range from −128˚C to 249˚C. In order to 
select the number of neurons required by the complex-
ity of the problem, we first performed 10-fold cross- 
validation on the 507 examples of the training set. The 
results suggested the use of neural networks with 4 
hidden neurons. We then trained the selected graph 
machines, and predicted the boiling points of the test 
set molecules. The results of this study are shown in 
Table 2, where they are compared to the results ob-
tained by [43] on the same sets, using a 7-regressor 
MLR model. 

5.6. Predicting the Anti-HIV Activity of TIBO  
Derivatives 

TIBO (Tetrahydroimidazobenzodiazepinone) derivatives 
are a family of chemicals with a potential anti-HIV ac- 
tiveity. They belong to the category of non-nucleoside 
inhibitors, which block the reverse transcriptase of the 
retrovirus and prevent its duplication. We studied a data 
set of 73 of those compounds, whose activity was previ- 
ously modeled with several QSAR methods, including 
conventional neural networks [44], multi-linear regres- 
sion, comparative molecular field analysis (CoMFA) [45], 
and the substructural molecular fragments (SMF) method. 
The latter approach is based on the representation of the 
molecules with graphs, which are split into fragments, 
 
Table 2. Four major cases in CADD also known as “direct” 
and “indirect design when the structure of the target is re- 
spectively known or unknown [18]. 

Compounds 
(inhibitor/ligand) 

Target (enzyme/receptor) 

 Unknown Known 

Unknown 
Similarity Searching 
Rational Screening 

de novo design 

Known 
Analog-Based  
Drug Design 

Structure-Based 
Drug Design 
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whose contribution to the modeled activity is then com- 
puted with linear or non-linear regression. Those frag- 
ments are either atom-bond sequences, or “augmented 
atoms”, defined as atoms with their nearest neighbors. In 
order to compare the prediction abilities of graph ma- 
chines to the performances of the SMF method , the data 
set was split into a training and a test set of 66 and 7 
examples respectively, exactly as in. The activity is ex- 
pressed as log (1/IC50) where IC50 is the concentration 
leading to the inhibition of 50% of the HIV-1 reverse 
transcriptase enzyme. Since some compounds of the set 
are stereoisomers, a label that described the enantiomer 
(R or S) of the atoms was added when necessary. We 
first performed 6-fold cross-validation on the training set 
with node functions having up to five hidden neurons to 
select the complexity of the model [46]. 

6. Drug Discovery Process 

The process by which a new drug is brought to market 
stage is referred to by a number of names most com- 
monly as the development chain or “pipeline” and con- 
sists of a number of distinct stages. Broadly it can be 
grouped under two stages Preclinical and the Clinical. 
Subsequently, the drug goes through many phases of 
clinical development in humans. In the clinical phase, the 
drug is administered to human volunteers to determine: 

• The passage of the drug through the body-from the 
time it is taken to the time it is excreted; 

• The effect of the drug on the body; 
• Its effectiveness on the disease being targeted; 
• Undesirable side effects of the drug. 

6.1. Pitfall in Current Drug Discovery Process  
the Productivity Gap 

A recent US Government Accountability Office (GAO) 
report found that Pharma R & D spending grew by 147% 
between 1993 and 2004 while the overall number of New 
drug applications (NDAs) submitted to the FDA in- 
creased only 38% and, worse still, the number of NDAs 
submitted for the presumably more innovative New mo- 
lecular entities (NMEs) increased by only 7% in that 
time. 

The attrition rate is unacceptably high. Only 1 out of 
12 drugs entering clinical trials become a new drug. A 
particular worry or the pharmaceutical industry is that, 
despite a variety of approaches being used for R & D, at- 
trition rates remain high during drug development. There 
are a number of factors attributed to the high attrition 
rates observed, but the number of active substances with 
poor pharmacological properties has been cited as a ma- 
jor concern. These are active substances that lack appro- 
priate bioavailability, exhibit poor pharmacokinetics or 
cause adverse events and will therefore need to be with- 
drawn from development. It is estimated that these types  

of failures represent approximately 50% of all failures in 
drug development. 

6.2. Need for an Alternative Tool 

From the above facts and figures it is evident that there is 
an urge for an alternative tool that would not only 
shorten the R & D time cycle but also reduce the ever 
increasing cost involved in the drug discovery process. 
There is a general perception that applied sciences have 
not kept pace with the advances of basic sciences [48]. 

6.3. Impact of Technology 

The process of finding a drug molecule that attaches it-
self to the target protein in the body has now moved from 
the lab to the computer [49]. The words in silico drug 
design and computer aided drug design are almost syn-
onymous. In the post genomic era, computer aided drug 
design (CADD) has considerably extended its range of 
applications, spanning almost all stages in the drug dis-
covery pipeline, from target identification to lead dis-
covery, from lead optimization to preclinical or clinical 
trials Figure 2 [50]. 

6.4. In Silico Drug Discovery Process Comprises  
of 3 Stages 

Stage 1 It involves Identification of a therapeutic target 
and building a heterogeneous small molecule library to 
be tested against it. This is followed by the development 
of a virtual screening protocol initialized by either dock- 
ing of small molecules from the library or building these 
structures in the active site by employing De novo design 
methods. 

Stage 2 These selected hits are checked for specificity 
by docking at binding sites of other known drug targets. 

Stage 3 These selected hits are subjected to detail in 
silico ADMET profiling studies and those molecules that 
pass these studies are termed as leads. 

6.5. Target Identification and Validation in Silico 

Target identification and validation is the first key stage 
in the drug discovery pipeline. However, identification 
and validation of drug able targets from among thou- 
sands of candidate macromolecules is still a challenging 
task. Numerous technologies for addressing the targets 
have been developed recently. Genomic and proteomic 
approaches are the major tools for target identification. 
For example, a proteomic approach for identification of 
binding proteins for a given small molecule involves- 
comparison of the protein expression profiles for a given 
cell or tissue in the presence or absence of the given 

olecule. m 
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Figure 2. It shows the applications of CADD to the various stages of drug development [47]. 
 

6.6. In Silico ADMET (Absorption, Distribution,  
Metabolism, Excretion, Toxicity) Prediction  
[51] 

Studies indicate that poor pharmacokinetics and toxicity 
are the most important causes of costly late stage failures 
in drug development and it has become widely appreci- 
ated that these areas should be considered as early as 
possible in the drug discovery process. Combinatorial 
chemistry and high throughput screening have signifi- 
cantly increased the number of compounds for which 
early data on absorption, distribution, metabolism, excre- 
tion (ADME) and toxicity (T) are needed. With use of in 
silico tools it is possible to model the most relevant phar- 
macokinetic, metabolic and toxicity endpoints, thereby 
accelerating the drug discovery process. 

6.7. In Silico Prediction of Drug Safety [52] 

There is considerable interest in computational models to 
predict drug safety in drug discovery and development. 
Significant adverse toxicological findings for a drug in 
late-stage clinical trials or post marketing can cause 
enormous financial losses and place patients at risk. The 
earlier such molecules are identified and the drug devel- 
opment process halted the better. 

There are tools to predict toxicities like 
1) Genotoxicity; 
2) Liver toxicity; 
3) CYP450 inhibition; and 
4) Cardiotoxicity. 

6.8. In Silico Prediction of Drug-Drug  
Interactions [53] 

Recently, metabolic drug-drug interactions (MDDI) have 
raised some high profile problems in drug development 
resulting in restricted use, withdrawal or non approval by 
regulatory agencies. The use of in vitro technologies to 

evaluate the potential for MDDI has become routine in 
the drug development process. Nevertheless, in the ab- 
sence of an integrated approach, their interpretation and 
value remains the subject of debate, and the vital distinc- 
tion between a useful “simulation” and a precise “pre- 
diction” is not often appreciated. Various in silico soft- 
ware are now available for the simulation of MDDI. One 
such software is SIMCYP. 

6.9. Virtual Screening [54] 

Virtual screening involves the docking of selected lead 
molecules against the biological target. This is followed 
by a scoring pattern. There is a number of software 
available for this. Some are commercially available and 
some are free to use. 

7. Conclusion 

The successful stories of CADD application in drug dis- 
covery in recent years have demonstrated the potential 
value of CADD in drug development. CADD approaches 
can provide valuable information for target identification 
and validation, lead selection, small-molecular screening 
and optimization. In particular, those sub disciplines of 
CADD have demonstrated promising application for de- 
sign of drug. The latest technological advances (QSAR/ 
QSPR, structure-based design, combinatorial library de-
sign, chemoinformatics & bioinformatics); the growing 
number of chemical and biological databases; and an 
explosion in currently available software tools are pro-
viding a much improved basis for the design of ligands 
and inhibitors with desired specificity. In future our re-
view will helpful for design of drug with minimal side 
effect and high potency. 
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