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ABSTRACT 

Probability density and particle conservation in quantum mechanics are discussed. The probability density has incon- 
sistency with particle conservation in any quantum system. The inconsistency can be avoided by maintaining con- 
servation of particle. The conservation coerces, a system should exist in a linear combinations of some eigenstates ex- 
cept ground state. The point is applied to the three exactly solvable quantum systems i.e. a particle in one dimensional 
well potential, harmonic oscillator and hydrogen atom. 
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1. Introduction 

Quantum mechanics is one of the greatest scientific 
achievements in 20th century. In the present state of scien- 
tific knowledge, quantum mechanics plays a fundamental 
role in the description and understanding of natural phe- 
nomena. In fact, phenomena which occur on a very small 
(atomic or subatomic) scale cannot be explained outside 
the framework of quantum physics. For example, the ex- 
istence and the properties of atoms, the chemical bond 
and the propagation of an electron in a crystal cannot be 
understood in terms of classical mechanics.  

Even when we are concerned only with macroscopic 
physical objects (that is, whose dimensions are compara- 
ble to those encountered in everyday life), it is necessary, 
in principle, to begin by studying the behavior of their 
various constituent atoms, ions, electrons, in order to ar- 
rive at a complete scientific description. There are many 
phenomena which reveal, on a macroscopic scale, the 
quantum behavior of nature. It is in this sense that it can 
be said that quantum mechanics is the basis of our present 
understanding of all natural phenomena. 

Quantum mechanics became a wonderful and extremely 
powerful tool. The properties of the different materials, 
the whole chemistry, became for the first time objects 
that could be predicted from the theory and not only phe- 
nomenological rules deduced from experiments. The tec- 
hnological discovery that shaped the second half of the 
last century, the transistor as the basis of all the modern 
electronics and computers, could not be invented without a 
deep command of quantum mechanics. 

Recently, quantum mechanics leads to the possibility 
of constructing a quantum computer that would improve 
the speed of present day computers by an incredible fac- 
tor [1]. Another possible practical application is quantum 
cryptography [2], in which a message is transmitted in 
such a way that it cannot be read without interfering with 
it. Another quantum-information puzzling phenomenon, 
the teleportation [3], has been recently proved experimen- 
tally to exist and it is a very active area of experimental 
research. 

In spite of the above remarkable successes, quantum 
mechanics remains mysterious, although each year it is 
taught in thousands of university courses. It is not only 
the problem of explaining its meaning without using ad- 
vanced mathematics that forbids a simple exposition of its 
properties to the layman. One can read and follow a com- 
prehensive description all of the problem of the founda- 
tion of quantum mechanics and a deep interpretation of 
quantum mechanics in a unique book of Auletta [4] 

Not all of the problem of foundation and interpretation 
of quantum mechanics is explained in standard textbooks 
of the subject. One foundation which is always introduced 
in textbook of quantum mechanics is probability density. 
The fundamental objects in quantum mechanics are com- 
plex amplitudes and probabilities are the modulus square. 

Probability was not unknown in physics. It was intro- 
duced by Boltzmann in order to control the behavior of a 
system with a very large number of particles. It was the 
missing concept in order to understand the thermody- 
namics of macroscopic bodies, but the structure of the 
physical laws remained still deterministic. The introduce- 
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tion of probability was needed as a consequence of our 
lack of knowledge of the initial conditions of the system 
and our ability to solve an enormous number of coupled 
nonlinear differential equations. If we were both infi- 
nitely able experimentalists and infinitely able mathema- 
ticians, probability would be useless in classical physics: 
it is only a tool which allows imperfect beings, with a 
bounded brain like us, to control the behavior of many 
particle systems. 

In quantum mechanics, the tune is different: if we have 
106 radioactive atoms there are no intrinsic unknown 
variables decide which of them will decay firstly. What 
we observe experimentally seems to be an irreducible 
random process. The original explanation of this phe- 
nomenon in quantum mechanics was rather unexpected. 
All atoms have the same probability of having decayed: 
only when we observe the system we select which atoms 
have decayed in the past. In spite of the fact that this so- 
lution seems to be in contrast with common sense, it is 
the only possible one in the framework of the conven- 
tional interpretation of quantum mechanics.  

In this paper, we investigated the probability density 
and have discovered its inconsitency for all quantum me-
chanical systems which can be solved analytically. We 
can find, for example, in standart textbooks of quantum 
mechanics for examples, [5-9]. The inconsistency be-
tween concept and physical interpretation of probability 
density may give rise confusion for students and readers 
in general. The inconsistency can be avoided by main-
taining conservation of particle. The conservation coerces, 
a system should exist in a linear combinations of some 
eigenstates except ground state.  

The article is organized as follows. Section 2 gives 
short review on the Schrodinger equation and continuity 
equation. Section 3 describes probability density of three 
analytical solvable quantum mechanical systems i.e. par- 
ticle in infinite potential well, particle in oscillator har- 
monics potential and electron in hydrogen atom. Finally, 
discussions and conclusions, presenting how to solve the 
inconsitency of probility density problem, are given in 
Section 4. 

2. Probability Density 

2.1. Schrodinger Equation 

Quantum mechanics was discovered twice: first, by Wer- 
ner Heisenberg in 1925 as matrix mechanics [10], and 
then again by Erwin Schrodinger in 1926 as wave me- 
chanics [11-13]. The two forms were soon found to be 
identical in content, but wave mechanics is used more 
intensively as approach to introduce the concepts of quan- 
tum mechanics in the associated textbooks and became 
more useful tool because the mathematics of waves were 
more familiar than matrix mechanics.  

At the very beginning of the development of quantum 
mechanics, one was faced with the problem of finding a 
differential equation describing discrete state of an atom. 
It was not possible to deduce exactly such an equation 
from old and well known physical principles; instead, 
one had to search for parallels, in classical mechanics 
and try to deduce the desired equation on the basis of 
plausible arguments. Such an equation, not derived but 
guessed at intuitively, would then be a postulate of the 
new theory, and its validity would have to be checked by 
experiment. This equation for the calculation of quan- 
tum-mechanical states is called the Schrodinger equation. 
Short and fine qualitatively review obtaining Schrodinger 
equation was given in old textbook of Schiff [7]. 

At the end of the nineteenth century, people distin- 
guished between two entities in physical phenomena: 
matter and radiation. Completely different laws were 
used for each one. The laws of Newtonian mechanics 
were utilized to predict the motion of material bodies. 
With regard to radiation, the theory of electromagnetism, 
thanks to the introduction of Maxwell’s equations, had 
produced a unified interpretation of a set of phenomena 
of radiation, which had previously been considered as be- 
longing to different domains: electricity, magnetism and 
optics.  

Quantum ideas contributed to a remarkable unification 
of the concepts of fundamental physics by treating mate- 
rial particles and radiation on the same footing. Different 
from classical one, wave equation of quantum mechanics 
contains a first derivative with respect to t and a second 
derivative with respect to x 
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Phase of wave exp (ikr  it) and relation between en- 
ergy and momentum of a free particle E = p2/2m lead to 
wave equation 
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The parameters of particle (the energy E and the mo- 
mentum p of a photon) and wave parameters (the angular 
frequency  and the wave vector k) are linked by the 
fundamental relations E = ħ and p = ħk. Simply, wave 
Equation (2) seems as if transition from energy and mo- 
mentum to differential operators 

,   E i p i
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then operate to a wave function ψ. 
The extension from the free-particle wave Equation (2) 

so that it includes the effects of external forces that may 
act on the particle may be done directly. We shall assume 
for the present that these forces are of such a nature (elec-  
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trostatic, gravitational, possibly nuclear) that they can be 
combined into a single force F that is derivable from a 
potential energy V, . The total energy 
for system of particle with mass m and momentum within 
the region with potential V consist of kinetic energy and 
potential energy is expressed as Hamiltonian 

   , t V F r r, t

2

2
E H V

m
  

p
              (4) 

After substitution of the differential operators, Equation 
(3), and operating on wave function ψ(r,t), one obtain the 
three-dimensional Schrodinger equation 
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The solution of this equation, wave function ψ(r,t), should 
provide a quantum-mechanically complete description of 
the behavior of an particle of mass m with the potential 
energy V(r,t). 

In a case of the potential V does not depend on time, 
the Schrodinger Equation (14) is reduced to a form 

     
2
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This is the time independent Schrodinger equation. The 
time dependent wave function ψ(r,t) is related with time 
independent wave function φ(r) according to 

   , iEtt e  r r              (7) 

2.2. Continuity Equation and Copenhagen  
Interpretation 

The ultimate justification for choosing Equation (5), must, 
of course, come from agreement between predictions and 
experiment. The solution of Schrodinger Equation (5), 
wave function ψ(r,t), is assumed to contain all informa- 
tion about the state of the physical system at time t. 

In general, ψ(r,t) is a complex function, has no physic- 
cal meaning and cannot be a direct measure of the likely- 
hood of finding a particle at position r at time t. The 
positive quantity   2

, t r measures the probability of 
finding a particle in the vicinity of r at time t. This prob- 
ability interpretation is due to Max Born who, shortly 
after the discovery of the Schrodinger equation, studied 
the scattering of a beam of electrons by a target, and was 
explained in almost all textbooks of quantum mechanics. 
For example, in one dimensional case, the probability of 
finding electron, described by a wave function ψ(x,t), in 
the region lying between x and x + dx is given by [2] 

    2
, d , dP x t x x t x             (8) 

According to the probability interpretation, if there is a 
particle in space then 

all space

dV   1 .              (9) 

In the classical quantum mechanics, it is assumed that a 
particle is conserved, cannot be destroyed or annihilated 
as well as created. The wave function satisfying this 
equation is called normalized wave function. 

The probability interpretation of the ψ(r,t) waves can 
be made consistently only if this conservation of prob- 
ability is guaranteed. This requirement is fulfilled, owing 
to Gauss’ integral theorem, if it is possible to define a 
probability current  density j which together with the 
probability density ρ = ψ*ψ satisfies a continuity equa- 
tion 
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It is exactly as in the case of the conservation of matter in 
hydrodynamics, or conservation of charge in electrody- 
namics. In electrodynamics, this equation is the law of 
conservation for the electric charge: if the charge density 
in a volume element changes, then a current flows through 
the surface of the volume element (Gauss’ law). 

In quantum mechanics, ρ is the probability density and 
after a little process one obtain the probability current 
density 
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Application of Gauss’ law leads to the integrated equa- 
tion 
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The particle flux through the surface of a region, if there 
is no particles be created or annihilated, is equivalent to 
the variation of the particle density inside the region. 

3. Particle Conservation 

3.1. Infinite Potential Well 

The textbooks on quantum mechanics usually start with 
one dimensional case to illustrate some non-classical ef- 
fects of the theory. The simplest one-dimensional quan- 
tum mechanical system is a particle of mass m in region 
with potential is zero along L and otherwise is infinite. 
The Schrodinger equation is given 

2 2

22 d

d
V E

m x

    


,            (13) 

with potential V = 0 for 0 ≤ x ≤ L and otherwise are infi- 
nite. The infiniteness of potential ensures that the particle 
mass m can’t be outside the well L. It implies that wave 
function vanishes outside the well and gives the bound-
ary conditions    0 0L   . 
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Potential V = 0 inside the well L, boundary conditions 
and normalization requirement, Equation (9), in one- 
dimension  

*

0

d
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1x                  (14) 

give wave or eigen functions 
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with n = 1, 2, 3, ... are called quantum numbers. Eigen 
energies show the first non-classical effect of quantum 
mechanics that is the quantum system has a discrete en- 
ergy, not continue as in classical system. In this paper, we 
are interested in the characteristic of the probability density. 

Physically, The nornalization condition, Equation (14), 
states that the particle of mass m definitely exists in the 
well L. Peculiarly, the probability of finding a particle in 
the region lying between x and x + dx is given by 

   2 22 π, d sin dn L
nx t x x
L

  x .       (17) 

When the particle is at ground state, it can move freely to 
the right and vice versa. The particle can be found or 
observed at any point in the well. However, the situation 
will be difference when the particle is at excited state, see 
Figure 1. 

We can see, from Figure 1, for the first excited state, 
φ2(x), particle can be found at left or right part in the well 
but never be at the center 

  2

2 2L 0 .               (18) 

This result gives rise inconsistency as follows. 
 

 

Figure 1. Probability density of a particle in the well. 

If the particle always presents that is never disappear 
or annihilated, then the particle which is at the right or 
left part momentarily must move through the center of 
the well. It means, the probability of particle in the center 
is not actually zero and the result of Equation (18) is 
disobey. On the contrary, if particle can be annihilated 
while crossing at the center of well from left to right and 
vice versa then when the particle vanishes its density 
probability is zero, at the moment, at all positions in the 
well. When it is happened then Equation (14) is violated. 

This situation occurs for all excited states, since  n x , 
has n  1 zero density probabilities at x = kL/n 

  2
0, 1,2, , 1n kL n k n     .       (19) 

The particle can stay at two points but never stay at a 
certain point among them. If the particle can exist at 
every point in the well, it means the particle can move 
freely along the well. Further, the particle can exist and 
be observed at all points in the well. It can be occured if 
there are no zero points of density probability. 

3.2. Harmonic Oscillator 

The next application of the Schrodinger equation is a par- 
ticle in an oscillator potential. From classical mechanics 
we know that such a potential is of great importance, be- 
cause many complicated potentials can be approximated 
in the vicinity of their equilibrium points by a harmonic 
oscillator. 

The classical Hamiltonian function of a particle of mass 
m oscillating with frequency  takes the form 

2 2
2

2 2

p m
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m


  .             (20) 

From this Hamiltonian, one obtains the stationary Schrod- 
inger equation of harmonic oscillator of the form 

2 2 2
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The stationary states of the harmonic oscillator in quan- 
tum mechanics are  

 
21
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where quantum number n = 0, 1, 2, …, and Hn is Hermite 
polynomial whose n zero points. Energy of the particle is 

 1 2nE n  ħ. 
Some graphs of probability density Pn = |φn|

2 are given 
by Figure 2. The situations of oscillator particle are simi- 
lar with particle in well. The particle in ground state can 
move freely from equilibrium point to the left or right. 
The problem is occurred when the particle in the excited 
states. The n-th excited state has n zero points, one of 
these zero pints is at equilibrium point if n is odd. The  
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Figure 2. Probability density of particle in oscillator. 
 
zero points imply that particle may exist at two points but 
never stay at certain point between them. It is, of course, 
impossible one if the particle can’t be annihilated and 
created as assumed in quantum mechanics. Then, as par- 
ticle in infinite potential well, the state of oscillator parti- 
cle should be linear combination of two or more eigen- 
functions with totally different zero points. 

3.3. Hydrogen Atom 

The last quantum mechanical system we consider is hy- 
drogen atom. Without lost generality, for simplicity we 
assume that an atomic nucleus is at the rest. The Schrod- 
inger equation of hydrogen atom is given 

2 2
2 1

2 4π

e
E

m r
 


   

  .         (23) 

Considering the symmetry of the system, Laplacian 
operator 2 is given in spherical coordinate. Variable 
separation and finitely reasons in the zero point coordi- 
nate and vanishing function at infinitely give solution 

    , , ,m
nlm nl lr R r Y              (24) 

with l  is spherical harmonic function and Rnl(r) is 
radial function. Here, we only consider radial probability. 
The behavior of polar probability is similar with radial 
probability. Several function Rnl(r) are given in Table 1 
below. 

mY

The radial probability density is defined as 

    2 2
nl nlP r R r r .            (25) 

In general, the properties of particle described by this 
probability are similar with previous ones. Electron is 
permitted to stay at some area but forbidden at some sur-
faces. For any Rnl(r) there are n  l peaks and n  l  1 
zero surface. For an example n = 3, the radial probability 
has two peaks and one zero surface, as in Figure 3. 

The electron may be in a single groundstate. The dif- 
ferent from the previous ones is the electron in hydrogen  

Table 1. Radial functions of hydrogen atom state functions. 
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Figure 3. Radial probability P3l of electron in hydrogen 
atom. 
 
atom has degeneracy states. It implies that electron may 
exist at single excited state Rnl(r) with n is bigger than 
one, as long as satisfies n  l is equal to one. Otherwise, 
it should be linear combination of two or more states. 

4. Discussions and Conclusions 

We have shown that the probability interpretation of sin- 
gle eigenfunction of Schrodinger equation, in general, 
has inconsistency with conservation of particle. To be 
consistent, the eigenfunctions should be in linear combi- 
nations. However, some linear combinations are not al- 
lowed. The details are as follows. 

The particle in potential well or oscillatory potential 
may be at single eigen state only when the state is ground 
state. However, in case of hydrogen atom, the electron may 
be in single state although it stays at any excited state.  

Since the particle can be at single state with ground 
state then the particle may be linear combination of 
ground state and arbitrary other states. Meanwhile, an 
excited state should be a linear combination with certain 
excited states.  
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