Evaluation of Reaction Mechanism for Photocatalytic Degradation of Dye with Self-Sensitized TiO₂ under Visible Light Irradiation

Md. Ashraful Islam Molla¹, Ikki Tateishi¹, Mai Furukawa¹, Hideyuki Katsumata¹, Tohru Suzuki², Satoshi Kaneco¹,²

¹Department of Chemistry for Materials, Mie University, Mie, Japan
²Mie Global Environment Center for Education and Research, Mie University, Mie, Japan
Email: professoraislam@gmail.com

Abstract
The dye-sensitized TiO₂ method is one of the most promising methods for the visible-light-induced detoxification of pollutants. The reaction mechanism for photocatalytic degradation of orange II (OII) and rhodamine B (RhB) with self-sensitized TiO₂ under visible light irradiation (λ > 400 nm) has been evaluated. Radical scavenger studies were carried out to investigate the active species involved in the photodegradation of 5 mg/L of initial concentration of OII and RhB at room temperature. The trapping effects of different scavengers results proved that the oxidation of OII and RhB mainly occurred by the direct oxidization of h+ and •O₂⁻ radicals, while the •OH radicals played only a relatively minor role in the direct oxidization process.

Keywords
TiO₂, Photocatalytic Degradation, Visible Light, Dye-Sensitization, Reaction Mechanism

1. Introduction
The dye-sensitization technique has been reported as an innovative technology that could play an important role in developing efficient and cost-effective semiconductor photocatalyst in the near future [1]. It can extend the light absorption range, enhance photon harvesting efficiency, provide extra excited electron pairs from a dye and accelerate charge transfer, leading to a high efficiency of photoe-
lectric conversion [2]. The photo-sensitized mechanism of the dye-adsorbed TiO₂ under the visible light illumination can be simply expressed as follow: (1) the adsorbed dye is effectively excited to generate the electron/hole pair by the light illumination because of its narrower band gap in comparison with TiO₂ and (2) the photo-excited electrons are injected from the lowest unoccupied molecular orbital (LUMO) of adsorbed dyes into the conduction band (CB) of TiO₂ [3] [4] [5] [6]. Park et al. [7] reported that the dye-sensitization can be applied for the self-degradation of dyes. Shang et al. [8] studied the photocatalytic degradation of rhodamine B by dye-sensitized TiO₂ under visible-light irradiation. The present study is intended to investigate the photocatalytic degradation reaction mechanism of orange II (OII) and rhodamine B (RhB) with self-sensitized TiO₂ under the visible light irradiation (λ > 400 nm) and the possible mechanism is discussed based on radical trapping experiments.

2. Experimental

2.1. Chemicals and Materials

All reagents were of analytical grade and were used without further purification. Orange II and rhodamine B used in this study were purchased from Nacalai Tesque. Ascorbic acid (AA), ammonium oxalate (AO) and t-butyl alcohol (TBA) were obtained from Wako Pure Chemicals. P-25 TiO₂ was purchased from Degussa Co. Ltd. Ultrapure water (18 MΩ cm) was prepared by an ultrapure water system (Advantec MFS Inc.).

2.2. Photocatalytic Activity and Detection of Reactive Oxygen Species

The photocatalytic activities of TiO₂ were evaluated by the degradation of OII and RhB under visible light irradiation at ambient temperature. Typically, 30 mL of dye solution and 20 mg of photocatalyst were added to a 35 mL Pyrex glass cell. The initial concentration of dye in all experiments was 5 mg/L and the appropriate quantity of the photocatalyst powder was magnetically stirred before and during irradiation. Before irradiation, the photocatalyst suspension containing dye was allowed to equilibrate for 30 min in the dark. The sample solution was irradiated with a LED lamp (TOSHIBA LDA14L-G/100W) in conjunction with a UV cut filter (Y-44, HOYA), which was positioned on the side of the reaction cell. The luminous intensity was measured by a UV radio meter (UD-400, TOPCON TECHNOHOUSE Co., Japan). The light intensity of the LED lamp after the filter was 5.3 mW/cm². After the desired irradiation time, TiO₂ was separated through the 0.45 μm Advantec membrane filter. The TiO₂ powder could be almost removed by the filtration. The absorbance of the remnant dye was measured using a UV-visible spectrometry (UV-1650PC, SHIMADZU Co., Tokyo, Japan). The relative concentration (C/Cᵰ) of the OII solution was calculated by the relative absorbance (A/Aᵰ) at 485 nm according to Beer-Lambert law. Aᵰ and A are the absorbance of the OII solution at the beginning time (t₀) of
visible light irradiation and at time \(t \), respectively. \(C_0 \) and \(C \) are the concentrations of \(\text{OII} \) at the beginning of visible light irradiation and at time \(t \), respectively. The photodegradation of RhB (5 mg/L) was similar to that of \(\text{OII} \) except that the detection wavelength was 554 nm.

Radical scavenger studies were carried out to investigate the active species involved in the photodegradation of dye. The scavenging experiments of reactive oxygen species were similar to the photodegradation experiments. Three scavengers were selected, namely, \(\text{t-butyl alcohol} \) (\(\cdot \text{OH} \) radical scavenger), \(\text{di-ammonium oxalate monohydrate} \) (hole scavenger) and \(\text{ascorbic acid} \) (\(\cdot \text{O}_2^- \) radical scavenger). Different quantity of \(\text{t-butyl alcohol} \), \(\text{di-ammonium oxalate monohydrate} \) and \(\text{ascorbic acid} \) were added into the dye solution prior to addition of catalysts.

3. Result and Discussion

3.1. Radical Scavenger Studies on \(\text{TiO}_2 \) Using \(\text{OII} \)

To determine the possible degradation mechanism of \(\text{Orange II} \) by \(\text{TiO}_2 \), different scavengers were introduced to quench the relevant active species. In this study, \(\text{t-butyl alcohol} \) (TBA), \(\text{di-ammonium oxalate monohydrate} \) (AO) and \(\text{ascorbic acid} \) (AA) were adopted to be the scavengers of hydroxyl radicals (\(\cdot \text{OH} \)), superoxide radical (\(\cdot \text{O}_2^- \)) and holes (\(h^+ \)), respectively. As shown in Figure 1, the photocatalytic degradation efficiency of \(\text{OII} \) (5 mg/L) with \(\text{TiO}_2 \) was about 100% after 6 h under visible light irradiation. The photodegradation of \(\text{OII} \) over the \(\text{TiO}_2 \) was affected slightly by the addition of TBA, demonstrating that \(\cdot \text{OH} \) active species played a small role in the photocatalytic degradation of \(\text{OII} \). However, the photocatalytic degradation efficiency of \(\text{OII} \) decreases significantly in the presence of AA, which indicates that \(\cdot \text{O}_2^- \) is an important active species in the process of \(\text{OII} \) degradation. In addition, the photocatalytic activity of the \(\text{TiO}_2 \) was completely suppressed by AO, suggesting that \(h^+ \) can be also involved in the process of \(\text{OII} \) degradation.

3.2. Radical Scavenger Studies on \(\text{TiO}_2 \) Using \(\text{RhB} \)

In order to investigate the active species involved in photodegrading RhB, scavenger studies were also carried out on \(\text{TiO}_2 \). As shown in Figure 2, photocatalytic degradation of RhB over \(\text{TiO}_2 \) was retarded with the presence of \(\text{di-ammonium oxalate monohydrate} \) (AO) and \(\text{ascorbic acid} \) (AA). The results strongly indicated that \(h^+ \), and \(\cdot \text{O}_2^- \) were the active species involved in the photodegradation of RhB. However, \(\cdot \text{O}_2^- \) was more dominant in photodegrading RhB, with \(h^+ \) as the most important active species. As aforementioned, the enhanced photocatalytic degradation of \(\text{MB} \) was contributed by the photosensitizing of RhB toward \(\text{TiO}_2 \). The electron ejected from HOMO to conduction band of \(\text{TiO}_2 \) could have been utilized for the reduction of surface adsorbed oxygen to produced \(\cdot \text{O}_2^- \) \[11\]. The photocatalytic degradation of RhB was retarded most significantly with the presence of AO, conveying that oxidation reaction occurred.
mainly via photogenerated holes, not via hydroxyl radical [12]. Therefore, the presence of holes scavenger has decreased the most the photocatalytic degradation of RhB. The presence of TBA had little effect on the decolorization rate, indicating that RhB was almost not degraded by 'OH.

3.3. Reaction Mechanism

Figure 3(a) demonstrates the valence band (VB) and conduction band (CB) levels and the band gap energy of orange II and rhodamine B and TiO2 vs NHE reference electrodes. The energy bands of rhodamine B, orange II and TiO2
Figure 3. Schematic (a) energy level diagram of TiO$_2$ with respect to potential of O$_2^*/$O$_2^-$ and the HOMO-LUMO levels of dye and (b) mechanisms of self-sensitized TiO$_2$ reaction of superoxide radical (‘O$_2^-$) and holes (h$^+$) formation under visible light irradiation.

are 2.37 [13], 2.03 [14] and 3.2 eV [13], respectively. The band gap energies of orange II and rhodamine B are narrow enough to absorb visible light. Otherwise, as the more negative potential of OII and RhB lowest unoccupied molecular orbital (LUMO) level than the conduction band (CB) of TiO$_2$ [13] [14], the electron transfer from the LUMO of dyes to the CB of TiO$_2$ is feasible. It is reported the redox potential of O$_2^*/$O$_2^-$ is ~0.33 V vs NHE [15], which is less negative than conduction band potential of TiO$_2$ (~0.5 V vs NHE) [16].

Under visible light irradiation, a dye sensitized mechanism has been depicted in Figure 3(b). Upon irradiation of visible light, a dye absorbs the light to create an electron and hole in the conduction and valence bands (LUMO and HOMO)
of the dye [17]. The electron in the LUMO then transfers to the CB of TiO₂. The adsorbed molecular oxygen on the catalyst captures electron from the CB of TiO₂ to form ‘O₂⁻. The oxidant (‘O₂⁻) radical reacts with adsorbed dye to degrade it. The holes in the HOMO react with adsorbed OH⁻ species to form ‘OH radical. However, the formation channel to ‘OH is minor under visible right [17], which is similar with the result shown in Figure 1 and Figure 2. According to the results of the radical scavengers, OII and RhB were attacked by the super oxides, ‘O₂⁻ and holes, h⁺ for the degradation of dye. A possible degradation reaction mechanism is described below.

\[
\text{Dye} + \text{visible light} \rightarrow \text{dye}\left(e^- + h^+ \right) \quad (1)
\]

\[
\text{Adsorbed dye}\left(e^- + h^+ \right) + \text{TiO}_2 \rightarrow \text{TiO}_2\left(e^- \right) + \text{dye}\left(h^+ \right) \quad (2)
\]

\[
\text{TiO}_2\left(e^- \right) + \text{adsorbed O}_2 \rightarrow \text{TiO}_2 + \text{‘O}_2 \quad (3)
\]

\[
\text{Adsorbed dye} + \text{dye}\left(h^+ \right) \rightarrow \text{degradation} \quad (4)
\]

\[
\text{‘O}_2^- + \text{adsorbed dye} \rightarrow \text{degraded or mineralized products} \quad (5)
\]

4. Conclusion

The radical scavenger studies were carried out to investigate the active species involved in the photodegradation of orange II and rhodamine B with self-sensitized TiO₂ under the visible light irradiation (λ > 400 nm). Investigation of the photocatalytic mechanism showed that the TiO₂ self-sensitized degradation of OII and RhB under visible-light irradiation could be mainly attributed to the direct oxidization by h⁺ and ‘O₂⁻ radicals, while the ‘OH radicals played only a relatively minor role in the direct oxidization process. The present work may provide deep insight into the photosensitization induced photocatalytic mechanism, and also offer new opportunities for their industrial application in the elimination of dye pollutants from wastewater.

Acknowledgements

The present research was partly supported by Grant-in-Aid for Scientific Research (C) 15K00602 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. All experiments were conducted at Mie University.

References

DOI: 10.4236/ojinm.2017.71001
Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ojinm@scirp.org