Electrophysiological characteristics of atrial tachycardia originating from the coronary sinus

Jie Wang¹, Zhihong Zhao¹*, Xuebin Li², Jihong Guo²

¹Department of Cardiology, Guang Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China;
²Department of Cardiology, People’s Hospital, University of Peking, Beijing, China.

Email: *zhihong_zhao@126.com

Received 30 June 2011; revised 20 September 2011; accepted 18 November 2011.

ABSTRACT

A 22-year-old girl was admitted to our cardiology institute with Permanent tachycardia in last 6 years for diagnostic assessment and therapy. Doppler echocardiography show structural of heart is normal, ECG revealed a varied resting rate from 120 to 140 bpm, 1:1 AV ratio and long RP interval. P wave morphology was negative on leads I, II, III, aVF, and V4 to V6, positive on lead V1, and diphasic 1/2 on lead aVL. Electrophysiology (EP) study was performed, Although the exactly mapping was performed in left inferior pulmonary vein and mitral annulus, however, no target point was found ahead of CS1-2, the tried discharge was invalid. The ablation catheter was entered the coronary sinus to guide electrical isolation, curing the tachycardia. The ECG returned to normal sinus rhythm. Through three years follow up, no AT recurrence.

Keywords: Coronary Sinus; Atrial Tachycardia; Catheter Ablation

1. INTRODUCTION

Focal atrial tachycardia (at) is a relatively uncommon arrhythmia. Diagnosis of at is usually straightforward—simply by a routine ecg in most patients, only those with paroxysmal at may require holter monitoring. And this form of tachycardia can be successfully treated with radiofrequency catheter ablation (rfca) in long-term [1]. It has been demonstrated that specific anatomic structures form the preferential sites of origin of atrial tachycardia (at) [2-4]. In fact, when patients with failed ablation of focal at, an unusual location must be considered. There are few isolated reports of ats originating from the coronary sinus [5]. We present a case of 22-year old girl with focal atrial tachycardia, examined the electrophysiological and electrocardiography (ecg) features of this specific type of at arising from coronary sinus and the acute and long-term success rates of focal ablation.

2. CASE REPORT

Permanent tachycardia was diagnosed in a 22-year-old girl who was referred to our cardiology institute for diagnostic assessment and therapy.

Her heart rate was abnormally high in last 6 years with palpitation of exercise intolerance, her rhythm disorders was not previously identified by ecg. In our hospital, doppler echocardiography did not show a structural heart disease, ecg revealed a narrow complex tachycardia with a varied resting rate from 120 to 140 bpm, 1:1 av ratio and long rp interval. P wave morphology was negative on leads i, ii, iii, avf, and v4 to v6, positive on lead v1, and diphasic 1/2 on lead aVL (Figure 1(a)).

Ep study was performed to identify the tachycardia mechanism and the earliest atrial depolarization during tachycardia recorded from the distal coronary sinus suggested focal left atrial tachycardia. Precision mapping was performed in left inferior pulmonary vein and mitral annulus, however, no target point was found ahead of CS1 - 2, the tried discharge was invalid. The ablation catheter was then entered the coronary sinus, which revealed a complex, fragmented, triphasic atrial electrogram with a very sharp first deflection preceding the beginning of the p wave by 6 msec ahead of cs1 - 2 (Figure 2(a)). RF current application for 20 seconds in 50w at that level soon stopped the tachycardia after a transient slowing down over two cycles (Figure 2(b)).

After ablation, no atrial tachycardias were induced by isoprinosine i.v., and vena coronaria visualization found 20% phlebostenosis at the place of discharge (Figures 3 (a)-(b)). The ecg returned to normal sinus rhythm (Figure 1(b)).24-hour holter monitoring indicated a sinus rhythm. Through three years follow up, no at recurrence.

3. DISCUSSION

Electrophysiologists are often misled by varied patient’s manifestations combined with confused ECG. All of which
Figure 1. 12 lead ECG of the patients before (a), and after ablation; (b), the ECG returned to normal after ablation. Surface leads (I, II, V1) along with intracardiac electrogram recordings from the His-bundle, coronary sinus, and ablation catheters, the latter positioned at the successful ablation site just before energy delivery.

showed the complicated clinical manifestation of atrial tachycardia, made some patients suffered misdiagnosis and incorrect therapies by ostensible clinical situation. Precise diagnosis of those patients depended on the EP study, which is the most commonly used technique to locate the AT focus is endocardial activation mapping.

Figure 2. Fractionated electrogram preceding ectopic P wave from 6 msec is clearly individualized at the distal bipole of the ablation catheter. Radiofrequency energy applied from within that site resulted in termination of the tachycardia within a few seconds (a and b).

With the advent of radiofrequency ablation this has become the major treatment of choice in patients with significant symptoms.

Focal AT is well-recognized that these foci do not occur randomly throughout the atria but tend to cluster at characteristic anatomic locations. In the right atrium they tend to cluster around the crista terminalis, the ostium of the coronary sinus, perinodal region, tricuspid annulus, right atrial well and right atrial appendage. In the left
comparing the efficacy of different treatment regimes. In mon arrhythmia and there remains a paucity of trials
tive approach in many patients. Focal AT is an uncom-
quency ablation has seen a shift toward a primary abla-
in recent times. More recently the success of radiofre-
pirin been used for 3 months.
order to prevent thrombosis, the anticoagulation drug as-
our patient, there have 20% stenois in coronary sinus. In
nary sinus including stenosis, perforation, thrombosis. In
annulus. However, the complication of ablation in coro-
endocardial atrial activation is recorded along the mitral
endocardial atrial activation is recorded along the mitral
Under this condition, mapping and ablation inside the
vein and mitral annulus, however, no target point was

cise mapping was performed in left inferior pulmonary
atrium, the majority originate from the pulmonary vein
ostia, mitral annulus, left atrial appendage, and left sep-
tum being less common, even can originated from supe-
rior vena cava and in coronary sinus [4,6-17]. Patients
with atrial tachycardia may experience a spectrum of
symptoms like palpitations, dizziness, chest pain, dysp-
nea, fatigue, and syncope. The atrial rate during focal AT
usually ranges between 130 and 250 beats/min, but may
be as low as 100 beats/min or as high as 300 beats/min.
In general, younger patients tend to have faster AT, with
rates up to 340 beats/min in infants [18].
In our case, The ECG aspect of atrial tachycardia could
associate negative P wave on leads I, II, III, aVF, and V5
to V6, positive on lead V1, and diphasic on lead aVL,
the anticipated origin were left atrial, although the pre-
cise mapping was performed in left inferior pulmonary
vein and mitral annulus, however, no target point was
found ahead of CS1-2, the tried discharge was invalid.
Under this condition, mapping and ablation inside the
coronary sinus should be considered whenever the earliest
docardial atrial activation is recorded along the mitral
annulus. However, the complication of ablation in coro-
nary sinus including stenosis, perforation, thrombosis. In
our patient, there have 20% stenosis in coronary sinus. In
order to prevent thrombosis, the anticoagulation drug as-
spirin been used for 3 months.
The management of focal AT has progressed rapidly
in recent times. More recently the success of radiofre-
cency ablation has seen a shift toward a primary abla-
tive approach in many patients. Focal AT is an uncom-
mon arrhythmia and there remains a paucity of trials
comparing the efficacy of different treatment regimes. In
clinical practice, the different symptom may mislead the
correct diagnosis, delayed the prompt therapy strategy.
So we should pay attention to the possibility of atrial
tachycardia, EP study if necessary. Only in this way, we
can reduce the probability of misdiagnosis.

REFERENCES

doi:10.1111/j.1540-8159.2006.00413.x

*Journal of Cardiovascular Electrophysiology*, 7, 368-381. 


Sparks, P.B. and Kalman, J.M. (2006) P-wave morphology in focal atrial tachycardia: Development of an algo-

tachycardia requiring ablation within the coronary sinus. *Journal of Cardiovascular Electrophysiology*, 14, 1361-
1364. doi:10.1111/j.1540-8167.2003.03334.x

doi:10.1161/01.CIR.0000095269.36984.75

tachycardia arising from the mitral annulus: Electrocar-
diographic and electrophysiologic characterization. *Journal of the American College of Cardiology*, 41, 2212-
2219. doi:10.1016/S0735-1097(03)00484-4


trophysiologic characteristics of left septal atrial tachy-

Conti, J.B., Fishman, G.I., Schalij, M.J. and Gittenber-
ger-de-Groot, A.C. (2004) Left atrial tachycardia origi-
nating from the mitral annulus-aorta junction. *Circulation*, 110, 3187-3192. 
doi:10.1161/01.CIR.0000147613.45259.D1

cardia originating from the left atrial appendage: electro-
cardiographic and electrophysiologic characterization and long-term outcomes of radiofrequency ablation.


