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Abstract 
This paper reports the kinetics of the oxidation of 2,6-dimethylphenol (DMP) to get 3,3’,5,5’-tetra- 
methyl-4,4’-diphenoquinone (DPQ) using novel oxidative coupling complexes [(Pip)4nCu4X4-(CO3)2] 
(n = 1 or 2, X = Cl or Br, Pip = piperidine). The new prepared tetranuclear complexes were charac-
terized using cryoscopic measurements, electronic spectra, FTIR, EPR and cyclic voltammetry 
techniques. These complexes are catalytically active. The proposed mechanism of the catalytic 
oxidative coupling can be illustrated as a pre-equilibrium, K, between the catalyst and DMP to 
form a complex intermediate which is converted to activated complex through the rate determin-
ing step, k2, to form the final product. The inverse of the observed rate constants kobsd versus 
1/[DMP]2 gives a straight line with intercept. From the slope and the intercept, both K and k2 are 
obtained. At different temperatures, thermodynamic and kinetic parameters are evaluated. It is 
worth to mention that, the dependence of kobsd on [DMP]2 indicates that the coordination number 
for every copper center in both n = 1 or 2 in [(Pip)4nCu4X4(CO3)2] is equal to six. Therefore, carbo-
nato bridging centers in n = 1 acts as a tridentate ligand, while for n = 2 acts as a bidentate ligand. 
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1. Introduction 
The study of homogenous oxidative coupling of DMP using copper catalysts has attracted scientists for several 
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years from the catalytic industry point of view as well as a model for tyrosinase enzyme. These copper catalysts 
showed activity towards phenol oxidation like tyrosinase [1]-[13]. In previous work it was reported that the oxo 
copper complexes showed a catalytic activity towards phenol oxidation [14]-[18]. The full 3D-molecular struc-
ture of tetranuclear copper (I) complex of [(Pip)CuI]4 was studied by Volker Schramm [19] and also the crystal 
structure of the copper (I) iodide-pyridine was previously reported [20]. 

The aim of this work is to study the kinetics of oxidation of DMP to DPQ (Scheme 1) using the prepared 
[(Pip)4nCu4X4(CO3)2] complexes and the strategy is: 

1) The use of well investigated tetranuclear carbonato-copper (II) complexes, [(Pip)4nCu4X4(CO3)2] as cata-
lysts for oxidation of (DMP) to (DPQ). 

2) To evaluate those initiators [(Pip)4nCu4X4(CO3)2] with [(Pip)4nCu4X4O2], the mechanism will deal with the 
first cycle under dinitrogen and the reaction followed by reduction of copper (II) to copper (I) at 740 nm or by 
DPQ formation at 431 nm. 

3) The efficiency of the [(Pip)4nCu4X4(CO3)2] relative to the oxo analogues for oxidative coupling of (DMP) 
to (DPQ). 

4) The impact of structural change in [(Pip)4nCu4X4(CO3)2] when n changes from 1 to 2, since the maximum 
coordination number of copper (II) is six. 

2. Experimental 
2.1. Reagents 
Piperidine, Pip (Aldrich) was used as received.10 cm column of Drierite was utilized to dry CO2 gas. The copper 
(I) halides as well as C6H5NO2, CH2Cl2, DMP and N2 gas were prepared for this work according to the proce-
dures described in the literature [21]. 

2.2. Instrumentation 
The rates of oxidation of (DMP) by copper complexes [(Pip)4nCu4X4(CO3)2]; in C6H5NO2 were measured by 160 
A uv-visible recording spectrophotometer Shimadzu in matched quartz cells. The monitoring wavelength was 
740 nm. Activation parameters were elucidated by repeating the reactions at different temperatures (20˚C - 
50˚C). All reactions and measurements are carried out at least three times under fixed conditions to give maxi-
mum error of ±4% in each reported rate constant. 

2.3. Kinetic Measurements 
The mechanism and kinetics of the catalytic oxidation of DMP (2.0 - 16.0) × 10−2 M using the copper [(Pip)4n- 
Cu4X4(CO3)2] complexes (1.0 × 10−3 M) in C6H5NO2 were investigated by uv-vis spectrophotometer at 740 nm. 
Activation parameters were elucidated by repeating the reactions at different temperatures (20˚C - 50˚C). All reac-
tions and measurements are carried out at least three times under fixed conditions to give maximum error of ±4% 
in each reported rate constant. 

3. Results and Discussion 
3.1. Stoichiometry and Products of Oxidation of Copper (I) Complexes by O2 and CO2 
The formation of tetranuclear complexes [(Pip)4nCu4X4]; n = 1 or 2, X = Cl, Br or I under N2 in C6H5NO2 or  
CH2Cl2 as aprotic solvents were carried out as described in Equation (1) and Equation (2). 
 

 
Scheme 1. Proposed catalytical cycle for homogenous oxidative coupling of phenols.                                                      
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( ) 4 444Pip 4CuX Pip Cu X + →                               (1) 

( ) 4 488Pip 4CuX Pip Cu X + →                               (2) 

The preparation of the new µ-carbonato complexes [(Pip)4nCu4X4(CO3)2] was performed under N2 by the 
reaction of [(Pip)4nCu4X4] (n = 1 or 2) with O2 followed by fast reaction with CO2 as described in Equation (3) 
and Equation (4) and Scheme 1 [22]-[28]. 

( ) ( )4 4 2 4 4 24n 4nPip Cu X O Pip Cu X O   + →                          (3)
 

( ) ( ) ( )4 4 2 2 4 4 34n 4n 2
Pip Cu X O 2CO Pip Cu X CO   + →                     (4) 

The µ-carbonato [(Pip)4nCu4X4(CO3)2] complexes are easily soluble in C6H5NO2 and CH2Cl2. The molar mass 
determination, analytical data, FTIR and electronic spectra (Figure 1) indicate that the formed complexes, 
[(Pip)4nCu4X4(CO3)2] are stable tetranuclear, similar to their copper (I) precursors (Scheme 2) [22]-[28]. 
 

 
Figure 1. Electronic spectra of (a) [(Pip)4Cu4Cl4(CO3)2], (b) [(Pip)4- 
Cu4Br4(CO3)2], (c) [(Pip)8Cu4Cl4(CO3)2], (d) [(Pip)8Cu4Br4(CO3)2].                                                  

 

 
Scheme 2. Proposed molecular structures for [(Pip)4nCu4X4(CO3)2].                                                               
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3.2. Kinetics of Oxidation of DMP to DPQ Using Novel [(Pip)4nCu4X4(CO3)2] Complexes 
The kinetics of homogeneous oxidative coupling of DMP to DPQ, Equation (5) are investigated at λmax = 740 
nm under pseudo 1st order conditions, where the concentration of [(Pip)4nCu4X4(CO3)2] complex is 1.0 × 10−3 M 
while the excess DMP concentration changes from 2 × 10−2 to 16 × 10−2 M in C6H5NO2 under N2 atmosphere to  

insure one cycle only, Figures 2-5. The first-order plots of ο
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 with time t, where At is the absorbance  

of [(Pip)4nCu4X4(CO3)2] at time t, were linear for at least 4 half-lives, Figures 6-9. A plot of the reciprocal of the 
observed pseudo first-order rate constant obsd1 k  vs. [ ]21 DMP  at constant temperature gives a straight line, 
Figures 10-13, suggesting that 2 molecules of (DMP) are included in the rate determining step with 1 molecule 
of [(Pip)4nCu4X4(CO3)2]. Such results suggest a mechanism similar to that reported for oxo complexes [(Pip)4n- 
Cu4X4O2] (Scheme 1), Equations (6)-(10) [29] [30]. From the relation of obsd1 k  vs. [ ]21 DMP , K and k2 are 
collected in Table 1. Thermodynamic and activation parameters associated with K and k2 respectively are 
shown in Figures 10-13, Table 1. 
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3.3. Thermodynamics of the Oxidation of DMP to DPQ 
On changing X from Cl to Br in [(Pip)4nCu4X4(CO3)2]; n = 1 or 2, k2 and K are increased and both ΔH˚ and ∆S˚ 
are directed to a more favourable reaction (Table 1) indicating that reduction of copper (II) is involved in the  
 

 
Figure 2. Absorbance-time data for the reaction of [(Pip)4Cu4Cl4(CO3)2], 1.0 × 10−3 M with 
2,6-dimethylphenol; (a, ×) 5.0 × 10−2 M, (b, •) 7.1 × 10−2 M, (c, ) 9.1 × 10−2 M, (d, ♦) 13.8 
× 10−2 M, in C6H5NO2 at 25˚C. Monitoring wavelength is 740 nm.                                                                  
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Figure 3. Absorbance-time data for the reaction of [(Pip)4Cu4Br4(CO3)2], 1.0 × 10−3 M with 
2,6-dimethylphenol; (a, ×) 2.0 × 10−2 M, (b, •) 3.8 × 10−2 M, (c, ) 5.2 × 10−2 M, (d, ♦) 8.0 
× 10−2 M, (e, ) 10.8 × 10−2 M, in C6H5NO2 at 22˚C. Monitoring wavelength is 740 nm.                            

 

 
Figure 4. Absorbance-time data for the reaction of [(Pip)8Cu4Cl4(CO3)2], 1.0 × 10−3 M with 
2,6-dimethylphenol; (a, ×) 5.0 × 10−2 M, (b, •) 6.4 × 10−2 M, (c, ) 9.6 × 10−2 M, (d, ♦) 
16.0 × 10−2 M, in C6H5NO2 at 25˚C. Monitoring wavelength is 740 nm.                                                 

 

 
Figure 5. Absorbance-time data for the reaction of [(Pip)8Cu4Br4(CO3)2], 1.0 × 10−3 M with 
2,6-dimethylphenol; (a, ×) 2.5 × 10−2 M, (b, •) 5.4 × 10−2 M, (c, ) 6.9 × 10−2 M, (d, ♦) 9.4 
× 10−2 M, in C6H5NO2 at 25˚C. Monitoring wavelength is 740 nm.                                                   
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Figure 6. First order plots for the reaction of [(Pip)4Cu4Cl4(CO3)2], 1.0 × 10−3 M, with 2,6-dimethylphenol, 
9.0 × 10−2 M, in C6H5NO2 at 24˚C (a, ♦), 32˚C (b, ), 38˚C (c, ) and 50˚C (d, ×). Monitoring wavelength 
is 740 nm.                                                                                                    

 

 
Figure 7. First order plots for the reaction of [(Pip)4Cu4Br4(CO3)2], 1.0 × 10−3 M, with 2,6-dimethylphenol, 
7.8 × 10−2 M, in C6H5NO2 at 22˚C (a, ♦), 28˚C (b, ), 36˚C (c, ) and 45˚C (d, ×). Monitoring wave-
length is 740 nm.                                                                                              
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Figure 8. First order plots for the reaction of [(Pip)8Cu4Cl4(CO3)2], 1.0 × 10−3 M, with 2,6-dimethylphenol, 9.6 × 10−2 M, in 
C6H5NO2 at 25˚C (a, ♦), 38˚C (b, ), 45˚C (c, ) and 50˚C (d, ×). Monitoring wavelength is 740 nm.                                                      

 

 
Figure 9. First order plots for the reaction of [(Pip)8Cu4Br4(CO3)2], 1.0 × 10−3 M, with 2,6-dimethylphenol, 9.4 × 10−2 M, in 
C6H5NO2 at 20˚C (a, ♦), 25˚C (b, ), 40˚C (c, ) and 50˚C (d, ×). Monitoring wavelength is 740 nm.                                                      
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Figure 10. Dependence of the observed pseudo-first order rate constant (1/kobsd) on the {1/[DMP]2} for the reaction with [(Pip)4- 
Cu4Cl4(CO3)2], 1.0 × 10−3 M, in C6H5NO2 at 25˚C (a, •), 32˚C (b, ), 38˚C (c, ) and 50˚C (d, ×). Monitoring wavelength is 
740 nm.                                                                                                             
 

 
Figure 11. Dependence of the observed pseudo-first order rate constant (1/kobsd) on the {1/[DMP]2} for the reaction with 
[(Pip)4- Cu4Br4(CO3)2], 1.0 × 10−3 M, in C6H5NO2 at 22˚C (a, •), 28˚C (b ), 36˚C (c, ) and 45˚C (d, ×). Monitoring wave-
length is 740 nm.                                                                                                                    
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Figure 12. Dependence of the observed pseudo-first order rate constant (1/kobsd) on the {1/[DMP]2} for the reaction with 
[(Pip)8Cu4Cl4(CO3)2], 1.0 × 10−3 M, in C6H5NO2 at 25˚C (a, •), 38˚C (b, ), 45˚C (c, ) and 50˚C (d, ×). Monitoring wave-
length is 740 nm.                                                                                                      
 

 
Figure 13. Dependence of the observed pseudo-first order rate constant (1/kobsd) on the {1/[DMP]2} for the reaction with 
[(Pip)8Cu4Br4(CO3)2], 1.0 × 10−3 M, in C6H5NO2 at 20˚C (a, •), 25˚C (b, ), 40˚C (c, ) and 50˚C (d, ×). Monitoring wave-
length is 740 nm.                                                                                                            
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Table 1. Kinetic and thermodynamic parameters for oxidation of (DMP) by [(Pip)4nCu4X4Y2]; n = 1 or 2, X = Cl or Br and Y = 
O2− or CO3

−2, in C6H5NO2 at 740 nm.                                                                         

[(Pip)4nCu4X4Y2] 
n, X, Y Temp. ˚C k2

a,b ∆H≠c ∆S≠d Ke ∆H˚c ∆S˚d 

2, Cl, O* 18 0.170 16.5 ± 0.5 −116 ± 3 3440 13.4 ± 0.5 −86 ± 3 

 30 0.260   3800   

 36 0.440   8760   

 42 0.770   9100   

1, Cl, CO3 25 0.015 11.2 ± 0.5 −30 ± 3 62 12.0 ± 0.5 −10 ± 3 

 32 0.018   78   

 38 0.040   104   

 50 0.062   380   

1, Br, CO3 22 0.192 11.0 ± 0.5 −26 ± 3 430 4.0 ± 0.5 −32 ± 3 

 28 0.263   540   

 36 0.510   560   

 45 0.770   1040   

2, Cl, CO3 25 0.067 12.0 ± 0.5 −23 ± 3 120 3.0 ± 0.5 −39 ± 3 

 38 0.167   176   

 45 0.213   196   

 50 0.263   250   

2, Br, CO3 20 0.210 12.0 ± 0.5 −22 ± 3 323 0.4 ± 0.5 −46 ± 3 

 25 0.310   333   

 40 0.870   357   

 50 1.72   375   

*Previously published data [29] [30].  
aUnits are sec−1. bUncertainties for k2 ca. ± 5% sec−1. cUnits are Kcal∙mol−1. dUnits are cal deg−1∙mol−1. eUncertainties for K ca. ± 5%. 
 
rate determining step as observed before for the oxo analogues [29] [30]. When the number of piperidine per 
each Cu changes from one to two, (i.e. for [(Pip)4nCu4X4(CO3)2]), the mode of coordination of the carbonato- 
moiety changes from structure a to structure b (scheme 2), such a change let ∆H˚ to decrease from 12 to 3 
Kcal∙mol−1, when X = Cl and from 4.40 to 0.36 Kcal∙mol−1, when X = Br, while ∆S˚ are directed to more nega-
tive values for both halo ligands. Therefore, the efficiency of structure b, (bidentate carbonato), as an initiator is 
higher than structure a, (tridentate carbonato). On comparing the data for [(Pip)4nCu4Cl4(CO3)2]; n = 1 or 2, with 
[(Pip)8Cu4Cl4O2] (Table 1) where copper (II) centres in all of them are six coordinate, therefore the only differ-
ence is oxo versus carbonato, either structure a or b, (scheme 2). In case of oxo, k2 is at least higher by about 
factor of 10 and K is higher by a factor of ∼50, while ∆H≠ and ∆H˚ are more endothermic and also ∆S≠ and ∆S˚ 
are getting more negative. This indicate that the oxo bridging centre let the catalyst, [(Pip)8Cu4Cl4O2], more ef-
ficient to initiate the cycle than the less basic, more steric carbonato initiators [(Pip)4nCu4Cl4(CO3)2] in either 
structure a (n = 1) or b (n = 2). 

4. Conclusion 
Novel complexes of [(Pip)4nCu4X4(CO3)2] can be used as initiators for the oxidation of DMP to DPQ, Equation 
(5). Formation of [(Pip)4nCu4X4(CO3)2] complexes suggested that, the Cu-O-Cu angle in [(Pip)4nCu4X4O2] is 
sharp to an extent enough to let oxo centre be sufficiently basic for catalytic activity and to ease CO2 insertion to 
give the carbonato complexes. On the basis of k2, K and their kinetic and thermodynamic parameters for the first 
catalytic cycle, the [(Pip)4nCu4X4(CO3)2] are less powerful initiators for oxidative coupling reactions when 
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compared to [(Pip)4nCu4X4O2]. The above result was attributed to less basic, more steric carbonato moiety rela-
tive to the oxo analogue. However, the final yield of the overall catalytic cycles was about the same. 
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