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Abstract 
We are considering two initial-boundary value problems for Rayleigh-Benard con-
vection in Oberbeck-Boussinesq approximation for incompressible fluid in 3D-rec- 
tangular domain with 4:4:1 geometric ratio with periodicity in two directions and 
cubic domain with 1:1:1 ratio and zero velocity and temperature gradient boundary 
conditions. For this purpose, we use two numerical method: one is a Pseudo-Spec- 
tral-Galerkin method with trigonometric-Chebyshev polynomials and the other is fi-
nite element/volume method with WENO interpolation for advection term. Numer-
ical methods are presented shortly and are benchmarked against known DNS data 
and against one another (for quasi-periodic domain problem). Then we perform sta-
bility analysis using analytical expression for main stationary solutions and eigenva-
lue numerical analysis by applying Implicitly Restarted Arnoldi (IRA) method. The 
IRA is used to perform linear stability analysis, find bifurcations of stationary points 
and analyze eigenvalues of monodromy matrices. Thus characteristic exponents of 
the system for time periodic solutions (limited cycles of various periods and reson-
ance invariant tori) are computed. We show, numerically, the existence of multista-
ble rotes to chaos through chaotic fractal attractors, full Feigenbaum-Sharkovski 
cascades and multidimensional torus attractors (Landau-Hopf scenario). The exis-
tence of these attractors is shown through analysis of phase subspaces projections, 
Poincare sections and eigenvalue analysis of numerically computed DNS data. These 
attractors burst into chaos with the increase of Rayleigh number either through re-
sonance and phase-locking or through emergence of singular chaotic attractors. 
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1. Introduction 

The bifurcation analysis of Rayleigh-Benard convection was inspired by the 0-th modal 
approximation—the Lorenz system. The latter is known to show chaotic behavior and 
is a classic example of such ODEs (formulated as the 14th Smale problem). For the 
rigorous proof of the Smale’s 14th Problem, you can see [1]. The first analysis of the 
phenomenon was conducted by Lord Rayleigh in [2]. Details about Rayleigh-Benard 
convection in general are described in [3], where reader can find information about 
linear analysis, secondary flows, experiments and other useful information. The bifur- 
cation analysis of the full system of Navier-Stokes equations was formulated in some 
papers later, see [3] [4] [5] [6]. Note that most of these papers are dedicated to 2D 
convection [6] or low mode problems [5]. Good review on the problem in general is 
presented in the Paul Manneville’s chapter, see [7]. However, a large amount of review 
is dedicated to intermittency with almost no focus on Landau-Hopf scenario and 
Feigenbaum-Sharkovskii scenario. On the other hand, we were able to obtain some 
results in previous papers, see [8]. We show that the problem branches itself with the 
transition to chaos either through bifurcations of limited cycles (so called Feigenbaum- 
Sharkovskii-Magnitskii scenario, see [8]) or through Landau-Hopf scenario with the 
formation of high dimensional tori in the phase space. The present work is a revision of 
these results for cubic wall bounded domain and presentation of new results obtained 
for cuboid periodic domain. In this paper, we also apply analysis of Monodromy matrix 
eigenvalues to confirm some bifurcations and transition mechanisms. 

The paper is laid out as follows. Firstly, the Initial-Boundary value problem is posed. 
Then, the analytical data concerning linear stability are presented in order to perform 
benchmark of numerical methods. The next section includes numerical methods: 
Pseudo-Spectral-Galerkin method, Finite Element/Volume method and the IRA ma- 
trix-free eigenvalue solver. We outline some properties of these methods. Then we 
show some benchmark results for Rayleigh-Benard convection problem. We compare 
eigenvalues with some known data and analytical expressions; we also compare DNS 
results for moderate Rayleigh numbers with known statistical results. In the last section, 
we show result for bifurcation analysis in the considered two domains. The final 
sections are discussion and conclusion. 

2. Initial-Boundary Value Problem  

We are considering Oberbeck-Boussinesq approximation for incompressible Navier- 
Stokes equations, i.e. the temperature dependence of the fluid parameters is nulled for 
all but the density in the buoyancy term. This term varies with temperature linearly. Let 
the domain s x y zL L LΩ = × ×  be a cuboid with side ratios either 4:4:1 for 1Ω  and 
1:1:1 for 2Ω  with almost everywhere Lipschitz continuous boundaries s∂Ω . We are 
interested in the solution of the following problem:  

Problem 1. For given values of Pr, ,Ra τ +∈� , 1,2s = , find fluid velocity vector- 
function [ ] 3: 0,sθ τΩ × →   and scalar function of fluid temperature  

[ ]: 0,sθ τΩ × →   that satisfy the following:  
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Here 2  is a solution on a 2D torus, i.e. periodic, in appropriate direction, ln -unit 
outward normal to the lx  boundary, p  is the pressure; Pr µ χ= ,  

( )( ) ( )3
h cRa g hβ θ θ µχ= −  are Prandtl and Rayleigh numbers, where g  is the 

magnitude of gravity; β  is the fluid thermal expansion coefficient; h  is the length in 
the direction of gravitational force ( zL  in our case); χ  is the fluid thermal con- 
ductivity; µ  is the fluid kinematic viscosity; hθ  is the temperature on the hot plane 
of the domain and cθ  is the temperature on the cold plane of the domain, 

( )0 1 2 h hθ θ θ= + . The nondenominational form is derived if the time scale is chosen as 
characteristic time for momentum transfer by viscosity through the layer of height 

2: zh Lµτ µ= . Pressure is not explicitly defined and is treated differently for every 
numerical method that we use. 

3. Stability of the Main Solution  

We are following [3] to show the analysis of stability for the main stationary solution. 
Considering a layer of fluid that is defined on 1Ω  with 0 1, 2zz L= − =  and boundary 
conditions of temperature set to 1hθ = , 0cθ = . The boundary conditions for velocity  
can be either set up as non-slip, i.e. 2 20, 0zl l

u z
∂Ω ∂Ω

= ∂ ∂ =u  or free slip, i.e.  

0, 0z x yl l
u u z u z

∂Ω ∂Ω
= ∂ ∂ = ∂ ∂ = . Setting 0=u  in 1Ω  we get ( )h cT T T∇ = − g , so  

the stability is defined for the linearly varying temperature profile with no dependence 
on ,x y . So we will consider the stability in the form of normal modes with fixed wave 
vector { }, ,0x yk k=k :   

( ) ( ), e ,t
zu w x y f z λ=                           (3) 

where λ  is the increment and ( ),w x y  is the planar waveform function being a 
solution to the Helmholtz equation ( ) ( )2 0, ,k w x y∆ + = =x , i.e.  

( ) ( ),jw
∈ −∞ ∞

=x { }
( ),

0
ˆ e ji

jw∑ k x  with j jk=k  and reality condition j j− = −k k  and  
*ˆj jw w− = , where *()  is a complex conjugate. Solving (3) for ( )f z  one gets the 

following homogeneous equation [3]:  
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2 2 2
2 2 2 2

2 2 2

1 0.
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d d dk k k Rak f
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         (4) 

Applying normal mode analysis to (1) gives the following boundary conditions for 
(4):  

2 4

2 4

4
2

4

0 for free slip condition,
d d

d 12 0 for non-slip condition.
d Prd

l

l

d f d ff
z z

f df k f
z z

λ

∂Ω

∂Ω

 
= = = 

 

  
= = − − =  

   

       (5) 

The case for the free slip condition can be easily solved by choosing eigenfunctions in 
the form of ( )sin π , 1,2,nf nz n= = �  that satisfy boundary conditions. The solution of 
the quadratic equation for λ  is:  

( ) ( ) ( ) ( ) 2
222 2 2 2 2

2 2 2

PrPr 1 π 1 4 Pr 1 ,
2 πn

Ra k
n k n k

n k
λ +

= − + ± − + +
+

      (6) 

for the case of stability loss 0nλ =  one can find that ( )
( )32 2 2

2

π
cr n

n k
Ra Ra k

k

+
= =   

and also see that the stability of the main solution is not dependent on Pr . However 
coming up with eigenfunctions for the non-slip case is much harder so we use 
numerical approach, since we are only interested in the value for crRa  itself.  

We seek solution for the critical point 0λ =  in the form eqzf = . Plugging con- 
ditions into (4), one gets:  

6 2 4 4 2 6 23 3 0,q k q k q k Rak− + − + =                   (7) 

that has the following six roots:  

2 2 3 1 3
1,1

2 2 3 1 3 2 3 1/3
2,2

2 2 3 1 3 2 3 1 3
3,3

,

1 1 3 ,
2 2
1 1 3 .
2 2

a

a

a

q k k Ra

q k k Ra i k Ra

q k k Ra i k Ra


 = ± −



= ± + −



= ± + +


               (8) 

So the solution for f  is presented in the form:   
3 31 1 22 .q z q z q zq z q z q zf Ae Be Ce De Ee Fe−− −= + + + + +             (9) 

The solution for the constants can be organized in the homogenoius system of linear 
equations using boundary conditions (5):  

0,=Ab                               (10) 

where ( )T, , , , ,A B C D E F=b  is the column vector of the unknown constants A, B,···, F 
and matrix A  depends on the boundary conditions. We are not interested in finding 
b  explicitly, but rather determine the condition for the homogenoius liner system to 
have a solution and from that condition derive critical values of Ra  and k , called 

crRa  and crk , respectively. For the free-slip boundary the expression for the matrix is:  
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corresponding to ( ) ( ) ( ) ( ) ( ) ( )0 0; 1 0; 0 0; 1 0; 0 2 0 0;IVf f f f f kf′ ′ ′′= = = = − =  
( ) ( )1 2 1 0IVf kf ′′− = , row wise. The determinant of A  must be zero in order for the 

system (10) to have a nontrivial solution. So for a fixed value of k  we must solve the 
nonlinear equation ( )det 0=A  numerically. It is done by using Newton method as:  

( )( )( ) ( )( )1
1 det det ,n n n n

cr cr cr crRa Ra J Ra Ra
−

+ = − A A             (11) 

here the Jacobi matrix is found using analytical differentiation technique. Iterations 
stop if 1n n

cr crRa Ra ε+ − ≤ . On the other hand, knowing from the literature [3] the 
critical values of Rayleigh number, one can find a critical wavenumber k  using the 
same method for fixed crRa . It should be noticed, however, that the solution should be 
pure real despite that the roots are complex. In Figure 1 we show neutral curves for  
 

 
Figure 1. Neutral curves for free-slip and non-slip boundary conditions. Dot 
plots are numerically calculated points of first bifurcation for given crk  and 
non-slip boundary conditions for 1z = ± . Asterisks for Fourier-Galerkin method 
and circles for Finite Element/Volume Method. 
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both cases of boundary conditions with ,free ,free657.5113651, 2.221441cr crRa k= =  and 

,non ,non1707.7617784,  3.116825cr crRa k= = . So one can verify the appearance of the first 
bifurcation in numerical methods. 

4. Numerical Methods  

In this section we give information about numerical methods that are used to solve the 
problem. 

4.1. Pseudo-Spectral-Galerkin Method  

The Pseudo-Spectral-Galerkin Fourier-Chebyshev method is applied to the domain 

1Ω  (Fourier-Galerkin method or FGM for short). All vector-functions in (1) are 
expanded by the divergence free basis functions ( ), ,jkl x y zw , constructed analogues to 
[5]:  

( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

, ,

, , , , .

, , d

x
jkl
y

jkl jkl
z x y

jkl x jkl y jkl

w x y z

x y z w x y z

w x y z w w z

 
 
 =
 
 = − ∂ + ∂ ∫

w           (12) 

We can check that the following bases functions are analyticaly divergence free, i.e. 
( ) ( ) ( ) ( ) ( )( ), , 0x y x y

jkl x jkl y jkl x jkl y jklw x y z w w w w∇⋅ = ∂ + ∂ − ∂ + ∂ = , no matter the expressions for 
them. For the case of 1Ω  we use the following set of scalar bases functions:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2π 2

2π 2π

2π 2π

, , e ,

, , e ,

, , 2π e ,

x i j k
jkl l
y i j k

jkl l
z i j k

jkl l

w x y z z

w x y z z

w x y z i j k z

π ϕ

ϕ

ψ

+

+

+

 =
 =


= − +

             (13) 

where ( ) ( )l lz zψ ϕ′ = . We use Chebyshev polynomials in z  direction for [ ]1,1zL = − , 
as in [5] for 2D and 3D Dirichlet box cases. We use the relation for Chebyshev 
polynomials of the first and the second kind to get:  

( ) ( ) ( ) ( )1 1, hence, d .k k k kT x kU x T x k U x x
+ +

′ = = ∫           (14) 

In order to meet homogeneous Dirichlet conditions we must have:  
( ) ( ), , 1 0.z
jklw x y ± =                         (15) 

With all this together we get the following scalar basis functions in z  direction:  

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

1 3

3
,

1
, with   0,1, 2

l l l

l l l

l
z U x U x

l
z T x T x l

ϕ

ψ

+

+ +

 +
= − + +

 = − + = �

           (16) 

It is a straightforward way to check that (16) and, hence, (12) are complied with (14) 
and (15). Such functions form a basis in [ ] [ ] [ ]{ }2 0, 2π 0,2π 1,1× × −  that we use to 
approximate the solution of the initial-boundary value problem (2) for (1). Note, that 
the basis (12) is not orthogonal in z  direction but orthogonal in ,x y  directions due 
to the use of Fourier basis functions. It can be shown by the construction of the Mass 
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matrix using an 2  projection. 
From here we turn our attention to the truncated series for basis functions, so that 

the problem can be solved on the computer. We assume that there are , ,x y zN N N  
number of polynomial modes, i.e. x yN N  is the number of Fourier modes and zN  is 
the number of Chebyshev polynomials in z  direction. Please note that the number of 
degrees of freedom is lesser since all complex coefficients for Fourier modes are subject 
to reality condition, i.e. ( ) ( )*, ,

ˆ ˆ, ,j k j ku z t u z t
−
= . So the total number of degrees of 

freedom is ( )2 1x y zN N N+ . In this case the basis scalar components (13) are 
rewritten as:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2π 2π

2π 2π

2π 2π

, , e ,

, , e ,

, , 2π / / e ,

i jL N kL Nx x x y y
jkl l

i jL N kL Ny x x y y
jkl l

i jL N kL Nz x x y y
jkl x x y y l

w x y z z

w x y z z

w x y z i jL N kL N z

ϕ

ϕ

ψ

+

+

+

 =
 =

 = − +


      (17) 

Since the basis is divergence free and the mean flow through periodic boundaries is 
zero, this implies that the integral of velocity over these boundaries is zero. In this case 
it is straightforward to show that the pressure is eliminated from (1) by projecting 
pressure gradient into the divergence free functional subspace that is formed by the 
span of divergence free basis functions. 

We use the following scalar basis functions for the temperature expand:  
( ) ( ) ( ) ( )2π 2π, , e ,T i j k
jkl lw x y z zχ+=                      (18) 

where ( )lzχ  are constructed such that boundary conditions for temperature are 
satisfied:  

( ) ( ) ( )( ) ( )2

1 1 .
2l l lz T z T z zχ

+
= − + −                  (19) 

With the correction term ( )1 1
2

z −  we satisfy boundary conditions for temperature  

on 1z = ± .  
The cost of the full Bubnov-Galerkin method being applied to Equation (1) is of 
( )( )3

x y zN N N  due to the non-linear term. These multiplication terms become con- 
volution in the functional space thus causing multiplications of tensors rank 3. Such 
computation complexity is very limiting. In order to reduce the computational cost of 
calculations we use two stage transfer from physical space to functional space and use 
Fourier collocations with pseudo-spectral approach in xy  direction. 

First we span the functions in (1) using Discrete Fourier Transfer (DFT) in regular 
grid points, forming the following system (taking into account divergence-free nature 
of basis): 

( ) ( ) ( )( )

( ) ( ) ( )

1
2 T2 2 2 2 2 2 2

1
2 2 2 2 22

Pr ˆ, 4π 0,0, 1 ,

ˆ ˆ ˆ, Pr 4π ,

t jk x x y y zz jk jkjk

t jk x y zz jkjk

B j L N k L N
Ra

B Ra j L k L

θ

θ θ θ−


   ∂ + = − + + ∂ + −    

  ∂ + = − + + ∂  

� � � �

�

u u u u

u

 (20) 
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with B  being a convolution term. All coefficients  
( ) ( )( ) ( )ˆ, diag 1,1, 2π ,x x y yjk jkz t i jL N kL N z t= − +�u u  with û  being DFT coefficients.  
For every ,j k  point we apply Bubnov-Galerkin projection in z  direction:  

( ) ( ) ( )( )

( ) ( ) ( )

1
2 T2 2 2 2 2 2 2

1
2 2 2 2 22

PrM , 4π C 0,0, 1 ,
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   ∂ + = − + + + −    


 ∂ + = − + +  
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where we denote:  
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1
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z
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∫
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( ) ( ) ( )1

1
ˆ , d ,jkl jk lt z t z zθ θ χ

−
= ∫

�
                    (23) 

as projections of DFT basis corrected coefficients to polynomial space and jkM , jkP , 

jkC , jkD  are mass and diffusion matrices for velocities and temperature, respectively 
for every point ,j k . Matrix sizes are z zN N×  and they are formed as:  
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                   (25) 

( )( ) ( ) ( )( )
{ }1,12

, ,x
ab a bp z zχ χ

−
=


                    (26) 

( )( ) ( ) ( )( )
{ }2 1,1

, ,x
ab a bd z zχ χ

−

′ ′= −


                   (27) 

where , 0,1, , 1za b N= −�  and minus sign in diffusion matrices is due to the in- 
tegration by parts and zero boundary conditions. Since these matrices are independent 
of ,j k  indexes, we can apply them for each point ,j k  in z -direction. The mass 
matrices are full since the basis we use is not orthogonal but all matrices are not 
singular. It can be proved by the fact that we are using linear combinations of 
polynomials that form basis in 2 . So the vectors are linear intendant and so the 
matrices are positive-definite, hence, invertible and the system can be solved for 
unknown coefficients ( ) jkltu� , ( ) jkltθ

�
. In order to perform integration we use exact 

symbolic integrals for diffusion and inverse mass matrices that are calculated in 
Wolfram Mathematica and stored for further use in the program. We use Gauss- 
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Chebyshev quadrature in z  direction. This quadrature is exact for polynomials of 
degree 2 1N −  and can be efficiently used. We use it to perform projection from 
domain to image and back for (22), (23) and we find DFT divergence-free coefficients 
at points pz  as  

( ) ( )
( )
( )
( )

1

0
, d ,

z

p l
N

p pjkljk l
l

p l

z

z t t z z

z

ϕ

ϕ

ϕ

−

=

 
 
 =  
 
  

∑u u��                   (28) 

( ) ( ) ( )
1

0

ˆ , d ,
Nz

p pjkljkl l
l

z t t z zθ θ χ
−

=

= ∑
�

                   (29) 

where pz  points are Gauss-Chebyshev quadrature points and [ ]0,1, , 2 1zp N= +� ,  

where [ ] ( )( )2
1 modN N N= + −        so boundary points belong to the boundary. 

The nonlinear (multiplication) term is calculated using pseudo-spectral approach. 
We calculate derivatives in polynomial space, then return to the physical space at 
specific points and calculate multiplication in physical space with computational 
difficulty ( )N . Having known coefficients ( )0 jkl

tu� , ( )0 jkl
tθ
�

 at time 0t  we 
perform the following steps to calculate ( ), jklB u u� �  (the advection term in scalar 
energy equation is calculated analogously). 

1) Calculate derivatives in functional spaces: 
( ) ( )2πx x

x jkl x x jklu ijL N u∂ =� � , ( ) ( )2πy x
y jkl y y jklu ikL N u∂ =� � , ( ) ( )z x

z jk jku u∂ = D1� � , 
where D1  is the differentiation matrix for our basis functions in z  direction.  
2) Increase the size of arrays for u�  and , ,x y z∂ u�  in x  and y  direction by 1 3  

and fill added elements with zeros, so we have arrays with sizes of 3 2 3 2x yN N Nz× × .  
3) Return from functional space to physical space step by step to get ( )0, , ,x y z tu  

and ( ), , 0, , ,x y z x y z t∂ u : 
• use (28) for every 0,1 3 2 xj N= �  and 0,1 3 2 yk N= �  to get ( )0,p jk

z tu� ;  
• Apply inverse DFT for every plane at pz .  

4) Calculate multiplication in physical space at every point to get: 

( ) ( )( ) ( )( ) ( )0 0 0 0, , , , , , , , , , , , , ,B x y z t x y z t x y z t x y z t= ∇u u u u . 

5) Return back to Fourier space using DFT for every plane in pz . Truncate series to 
the size ,x yN N  by removing modes that are padded by zeros earlier to get 

( ) ( )( )0 0 ,
, , , , 0,1p p xj k

B z t z t j N=u u� � �  and 0,1 yk N= � .  
6) Apply (22) using Gauss-Chebyshev quadrature to get ( ) ( )( )0 0 , ,

,
j k l

B t tu u� �  where 
0,1 xj N= � , 0,1 yk N= �  and 0,1 1zl N= −� .  

This leads to no aliasing of frequencies.  
The following approach requires less operations then the exact Bubnov-Galerkin 

method of ( )( )3
x y zN N N  [9]. The most operation-hungry part is the nonlinear term 

calculation using 3/2 padding. Now we assume that FFT can be used for DFT with 
( )2logN N  operation, for example one can use fftw or cufft on GPU. Calculation of 

derivatives is done using ( )( )2
x y zN N N . We need ( )( )2log x y x y zN N N N N  ope- 
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rations to perform DFT, then we need ( )( )2
x y zN N N  operations to get transfer in 

z -direction. Multiplication in physical space requires ( )x y zN N N  operations. And 
return to the image from the domain of the mapping requires the same difficulty as for 
the image to domain transfer. So we get maximum difficulty as  

( )( ) ( )( )( )2
2max ,log x y x y z x y zN N N N N N N N  , and for most practical use (say 

2x y zN N N= = ) the limiting factor would be ( )( )2
x y zN N N  so we assume that 

our method requires ( )( )2
x y zN N N  operations for every time step.  

Explicit Runge-Kutta 4 (RK-4) method that is used to integrate the semi-discrete 
system (21) in time. In order to satisfy stability condition we analyze spectra of the 
linear operator and bounds for the nonlinear part and derive stability condition. A 
necessary condition for stability by the linear change of mapping (by the change of the 
time step) is the location of all discrete spectra of the spacial operator inside the RK-4 
stability region on a complex plane. The discrete Fourier spectra has a standard 
estimate [9] and spectral norm for Chebyshev matrices is used for the estimate. This 
part is beyond the scope of the paper. 

4.2. Finite Element/Volume Method  

We consider another method that is applied in 1Ω  and 2Ω  domains. It uses nodal 
Finite Element approach to reconstruct pressure and Finite Volume/Difference method 
for the reset part of the equations. Finite element method uses values of pressure and 
velocity in vertexes of elements to form matrix equations. Finite volume/difference 
method uses values of velocities in centers of elements to approximate integral/ 
differential operators. So this is a combination of finite element method and finite 
volume method that we call “FEM” for short.  

We start with discretization of Stokes operator:  

,
0,

t p µ∂ +∇ = ∆ +
∇ ⋅ =

u u f
u

                         (30) 

in bounded domain sΩ  with appropriate initial-boundary conditions. We use some 
discretization method that we discuss later and projection method (see [10]) to 
translate (30) into:  

,
0.

t p= − + +
 =

Mu Q Au f
Gu

                        (31) 

Here M  is a mass matrix; Q  is a gradient matrix; A  is a diffusion matrix and 
G  is a divergence matrix. We introduce time slices with ( )l  being l -the time slice 
with time-step t∆  and derive the following system:  

( ) 1 1

N
1

,

0.

l l l l

l

t t p t+ +

+

 − ∆ + ∆ = + ∆

 =

M A u Q Mu f

Gu

���������                 (32) 

Since 1lp +  is unknown on l -th time slice, we split the system as:   
* ,l l lt t pβ= + ∆ − ∆Nu Mu f Q                     (33) 
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and introduce velocity correction vector Cu  and scalar potential function φ :  
* 1,C l++ =u u u  

hence:  

*

0,
,

C

C

t φ+ ∆ =
=

Nu Q
Gu Gu

 

so 1C t φ−= −∆u N Q , and we get correction equation for the potential function φ :  
1 *1 ,tφ− = − ∆GN Q Gu                        (34) 

where matrix 1 S− =GN Q  is a Schur complement. After the solution of (34) we 
correct velocity and pressure functions in such way, that 1 0l+ =Gu :   

1 * 1

1

,
,

l

l l

tN
p p

φ
β φ

+ −

+

 = − ∆


= +

u u Q                        (35) 

where 0 1β≤ ≤  is a parameter. This projection method is another way to write 
Helmholtz-Hodge decomposition for specific type of equations. The whole step of 
solution consists of using three steps (33), (34), (35). In general this results in first order 
of approximation for (30) in time. The stability and consistence of the method depend 
on the discretization. It is known that the discretization must obey Ladijenskaya- 
Babuska-Brezzi (LBB) inf -sup  condition in order to be stable and consistent. In case 
of the provided approximation it means that ( ) { } ( ) { }Ker 0 ,Ker 0= =Q G  (corre- 
sponds to sup  condition) and that ( ) , 0hS C hκ ≤ < +∞ →  (corresponds to inf  
condition), where κ  is a condition number and h  is a discretization parameter (e.g. 
grid size). In general one usually takes T=G Q , chooses mixed finite element ap- 
proximation (for finite element methods) or staggered grid (for finite difference 
approximation) and changes matrix N  to N�  that can be easily inverted, e.g. 

=N E� . Here we use different strategy that is dealing with different approximations for 
different operators. 

Let us introduce rectangular cuboids jklW  that from a 3D tessellation of a rectan- 
gular domain s jj

WΩ =∪ , such that Ø,W W∩ = ≠j k j k , where j  is a multi index 
with j  being a center of W j . We introduce another set of tessellation Uk  that is 
constructed from swapping central nodes and vertexes, thus each vertex of W j  
becomes a center for Uk  and vice versa. 

We define basis functions in an element Qk , where Q  can be W  or U , as 
follows:  

( ) ( )trilinear function , ,
0, .

Q
Q

ψ
 ∈

= 
∉

k
j

k

x j
x

j
                (36) 

Now we use the following expansion in this element space for a scalar function 
( )P x :   

( )
{ }

( ) ( ) ,
Q

P P ψ
∈

= ∑ j
j

x j x                       (37) 

Now we consider set of points j  formed by the centers of W j  or vertexes of Uk .  
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Such elements can be considered as finite volumes, i.e. ( )dj
W

P P= ∫
j

x x . We now  

define the following differential operators: Q  and S  in space of nodal finite 
elements W , A  and G  in space of finite volumes W , we use Laplace operator L  
for the approximation of S  and identity matrix for N�  and M . Define projection 
of nodal operator to central finite volume point as   and projection of central finite 
difference/volume operator to nodes as  . The first operation is performed using (37) 
with :Q W=  and the second operation is an inverse of (37) with :Q U= . In this case 
the scheme can be written as follows:  

* *

*

1 *

1

,
L 1 ,

,
.

l l l

l

l l

t t t p
t

t
p p

β
φ

φ
β φ

+

+




= + ∆ + ∆ − ∆
 = − ∆
 = − ∆ = +

u u f Au Q
Gu

u u Q






                  (38) 

In this work we use compact finite difference scheme of 4-th order to approximate 
A  and G  using method of alternating directions. The approximation of L  and Q  

is done using Bubnov-Galerkin projection (integration over Ω ), e.g. for the second 
equation in (38):   

( ) ( ) ( )*d 1 d .tφ ψ ψ
Ω Ω
∆ = − ∆∫ ∫j jx x x Gu x x                (39) 

Inserting (37) into (39) and doing integration by parts:  

( ) ( ) ( )

( )
,0 ,1

,0 ,1d d , d

                                        1 d ,
r r

rg S g S

t

φ ψ ψ ψ ψ ψ ψ

ψ ψ

Ω ∂Ω ∂Ω

∂Ω

∇ ∇ = + ∇

+ ∆

∫ ∫ ∫

∫

j k j j k j j kj

j kj

x x x n

G u x

� �
 

where ,0g j , ,1g j  are coefficients of expansion for Dirichlet and Neumann boundary 
conditions and ( ) jG u  are coefficients of divergence operator projection into the 
space of finite elements. Other operators are derived analogously.  

It is a straightforward way to check the BBL condition (we don’t consider this in the 
papaer). Trivial kernel of G  and Q  is proved by considering space of finite elements 
and 4-th order compact differences schemes. The condition number of finite element 
approximation can be estimated from the space of finite elements and can be shown 
that it has a marginal bound. Now it is a straightforward way to return to Navier-Stokes 
equations by applying some approximation for the nonlinear term in (38) (defined 
bellow as B ). We use 7-th order WENO scheme that has good spectral properties and 
guaranties TVB behavior of the solution (on each WENO stage we use Runge-Kutta 3rd 
order SSP method [11]). In order to increase the temporal accuracy we also use 
Runge-Kutta 3rd order explicit method [11] for which the projection step (38) is 
applied on every stage. The stability of the method is deduced from CFL condition 
since diffusion is considered in implicit way. The usage of this type of finite elements 
gives one more positive result. There is no artificial boundary layer near wall boundary. 
Equation on φ  requires zero Neumann boundary conditions on the wall, but in this 
FEM setup it just means skipping values of φ  on zero Neumann boundary. The same 
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is true for the pressure gradient approximation. Then the total scheme for (1) is given 
as:  

( )

( ) ( )

( ) ( )

1

1

1
2T* *

*

1 *

1

1
1 12

,

Pr0,0, 1 , , ,

1 ,

,
.

, Pr .

l
l l

l

l l l l l

l

l l

l l l l l

t t t p t t
Ra

t

t
p p

t t Ra

θ
θ

θ β

φ

φ
β φ

θ θ θ θ

+

+

+

+

−+ +

 
= 

 


  = + ∆ − + ∆ − ∆ −∆ ∆   


= − ∆
=  = − ∆ = +

 = − ∆ + ∆

u
u

u u Au Q B u u

L Gu

u u Q

B u A









 (40) 

( )

( )

( )

( )

1

1

1 2
1 1

1 2

1
2 2

1

, ,

3 1, , ,
4 4

1 2 , .
3 3

n n

n n
n n

n n

n n

n n

θ
θ

θ θ
θ θ θ

θ
θ θ

+

+

+

+

 
= 

 
     = = = +     

     
    = +      

u u

u u uu u

u u u



 



           (41) 

4.3. Solution of the Eigenvalue Problem 

We briefly give description of the matrix free eigenvalue solver that is used for the 
problem. More information about this approach can be found in many papers, for 
example [12] [13] [14] [15]. Considering discrete systems (21) and (41). Let us consider 
another discrete systems for small temporal perturbations su  and sθ  formed in the 
vector:  

( )T
.s sθ=v u                             (42) 

Inserting those into discrete systems and linearizing one can gets the following set of 
equations:  

0,t∂ + =v                              (43) 

where  

( )
( )

T

T
1 2

,

,

s sθ=

=

v u
��

  
                           (44) 

where  

( ) ( ) ( )

( )

( )( )

1 1
1

1
2 1 2 2 2 2 2 2 2

T1

, , , : , ,

Pr  4π C

 0,0, 1 ,

s s s s
jk jkjk jk

s
jk x x y y jk jk

s
jk jk

t B B

j L N k L N
Ra

θ

θ

− −

−

−

= +

   − − + +    

− −

u u M u u M u u

M u

M

�� � � � � �

�

�


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( ) ( ) ( )

( ) ( )

1 1
2

1
1 2 2 2 2 22

, , , , : , ,

  Pr 4π D ,

s s s s
jk jkjk jk

s
jk x y jk jk

t B B

Ra j L k L

θ θ θ θ

θ

− −

− −

= +

 − − + + 

u u P u P u

P

� � � �� � � �

�


 

for Fourier-Galerkin system and  

( )
( ) ( )1 2

,

, , , .

Ts s

T s s

θ

θ θ

=

= =

v u

u u   
                     (45) 

for FEM system. Here   stands for linearization of the operator (40). The size of the 
perturbation vector is 4s x y zN N N N=  and is used in the Implicitly Restarted Arnoldi 
(IRA) method. Note that if we are using Fourier method, this vector includes real and 
imaginary parts of Fourier modes that are treated as real values and the size changes to 

( )8 2 1s x y zN N N N= − . The system (43) is used as an operator A  that maps the 
vector (42) as 1n n+ =v Av . These perturbations are automatically divergence-free since 
we are using divergence-free basis for Fourier-Galerkin method. For FEM method these 
perturbations are guaranteed to be divergence-free since we are applying projection 
algorithm with pressure initialized during the projection. There’s no need to introduce 
pressure perturbations in both cases. The algorithm for IRA to find eigenvalues of A  
is based on [16] and goes as follows: 

1) Initialization. Initialize vector v  with different random values. Then normalize 
the vector, so 

2 1=v . Select number of eigenvalues k  that are desired and number 
of additional vectors m  for the implicit procedure, so the dimension of Krylov 
subspace is k m+  and we set variable 0s =  and vector 0=w  which are defined 
later.  

2) Arnoldi Step. We form the Krylov subspace as ( ) ( ) ( ){ }1 2 1span , , , , k m
k m

+ −
+ = v v v v�  

where ( )o o=v A v  and ( ) ( )( ), 0,l o l o= ∀ ≠v v . We use the following process: 
if s  equals to 0 do 

a) =w Av , 
b) ( ),α = w v , 
c) α= −w w v , 
d) Gram-Schmidt process correction: ( ), , ,c c cα α= = − = +w v w w v , until 

2 ε>c , 
e) 0,0 *,0,H Vα= = v , where ( ) ( )m k m kH + × +∈  is an upper Hessenberg matrix and 

( ) ( )N m ksV × +∈ , 
continue 

( )1, , 1j s m k= + + −�  

a) 
2 ,β β= =w w w , 

b) , 1 *,, ,j j jH Vβ− = = =w v w , 
c) , 0, 0= = =w Av h c , 
d) ( )*, 1,jV +=h w , 
e) *, 1jf V += −w w h , 
f) Gram-Schmidt process correction: ( )*, 1 *, 1, , ,j jV V+ += = − = +c w w w c h h c , while 

2 ε>c , 
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g) *, jH = h . 
This precess generates the following decomposition:  

T
1 1, ,j j j j j j jV V H H+ += +A w e                       (46) 

1j+w : the last vector after the application of step 2, 1j m k+ = + . If the last value 

1, 0j jH + = , then vectors in k m+  are linearly dependent and k m+  is invariant under 
the application of A . The process stops with =V VHA  and eigenvectors (eigenvalues) 
of H  are the eigenvectors (eigenvalues) of A . If the process is not stopped (which is 
usually true), then continue to 2. Find eigenvalues of Hessenberg matrix 0 1 1, , , k mλ λ λ + −� , 
sort them in an appropriate order (either maximum real part or maximum magnitude 
in our applications). Perform QR algorithm with shifts for H using polynomials with 
number of shifts q m= : 

1, ,j q= �  

a) ( )jQR H Eλ= − , 
b) jH RQ Eλ= + . 
Set 1s k m q= + − − . Note that at this point q m≠  since some of jλ ∈ . Apply 

shifts: 

*,sQ=h , , 1Q s sQα −= , 1, 1H k m sHα + − −= , 

H Qα α= +w h w , 

:( 1), :( 1) ,a s m k b s m k a bQ δ= + − = + − = , 

V VQ= . 

At this point we have matrices V , H  with additional value 1,j jH +  and let λ  be 
an eigenvalue of H  with associated normalized eigenvector x . We denote V=y x  
as a Ritz vector of A  and Ritz value µ , both associated with k m+ . For these Ritz 
variables we have [16]: 1,2 j j jH xµ +− =Ay y , where jx  is the last component of 
the x  eigenvector. So, while 1,2 > j j jH xµ ε ε+− ⇔ >Ay y , goto 2.  

 In order to find eigenvalues of Jacobi matrix we consider the system (43) with zero 
temporal derivative. So the system (43) is called on every stage of Arnoldi process by 
applying the linearized equations to the vector in Arnoldi step. If we are computing 
eigenvalues of Monodromy matrix then the system is applied as follows. Let the system 
(43) have a periodic solution with period  . Then the system is formed as  

( ) ( ) ( ) ,t t+ =u M u                         (47) 

where ( )M   is a state transition operator or a Monodromy matrix. To find M  in a 
matrix-free way we integrate the linearized system in time for a period  :  

( )( )
( )

0
A , , ,

d , , , d ,
t

t
θ

τ θ τ
+

= −∫ ∫
v

v
u v

v u v
�����������������

 



                    (48) 

so,  

( ) ( )0 0 .= + =v A E v M v                       (49) 

Now we apply (48) for the input vector in Arnoldi step of IRA, while integral is 
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evaluated by applying the selected time stepper. 

4.4. Implementation Details  

Our goal is to perform direct numerical simulation (DNS) of problems and trace 
transition from initial stationary point in the phase space (main solution) to the chaos 
through cascades of bifurcations. In order to detect and clarify bifurcations we use the 
analysis of eigenvalues of Jacobi and Monodromy matrices and phase portraits with 
Poincare sections. The calculation of the whole IRA algorithm and achievement of the 
statistically quasi-periodic solution regimes for relatively high Ra  numbers require 
significant computational power. We use the same idea as in [8] to adapt number of 
harmonics or number of elements for the problem during the analysis of bifurcations. 
The control of the accuracy is done by the analysis of the energy spectrum for the whole 
simulation time. We define the correlation tensor  

( ) ( ) ( ) { }, , , , , 1, 2,3,jl j lR t u t u t j l= + =r x x r                (50) 

and its Fourier transfer  

( ) ( ) { }ˆ , e , d , , 1, 2,3.i
jl jlR t R t j l

∞ −

−∞
= =∫ krk r r                (51) 

For the discrete problem we are using FFT to calculate (51). In order to get the 
energy spectra we integrate over the spherical shell:  

( ) ( ) { }ˆ, , d , , 1, 2,3,jl jlk k
E t k R t j l

=
= =∫ p p�                 (52) 

that becomes a summation for the discrete problem. Then we check, that for [ ]0, tτ ∈ :  

( ) [ ] { }4, , , 1, 2,3,
5jl C

E k k N j l
τ

ε< > ∀ =                 (53) 

with N  being the size of FFT discretization. The last relation (53) in physical 
interpretation means a track of the solution to be in a deep dissipation regime. It is an 
overdiscretization from a standard DNS point of view, however it is essential to obtain 
complex bifurcations in near chaos region. For all calculations we are using 121 10ε −= ⋅ , 
64 64 40× ×  modes for Fourier-Galerkin method and 256 256 128× ×  elements for 
FEM method in 1Ω  domain and 128 128 128× ×  elements in 2Ω  domain. During 
the IRA process we find 6 or 10 leading eigenvalues (i.e. 6, 10k k= = ) and use 94 or 90 
additional Krylov basis vectors, so 94, 90m m= = , and 100m k+ = , thus  

( )dim 100k m sN+ =  and Hessenberg matrix size is 100 100× . 
In order to accelerate computations we are using multiple Graphic Processor Units 

(multiGPU). The GPUs used are k40 NVIDIA GPUs, all programs are implemented on 
C++ with CUDA C. The application of DFTs is done by the CUFFT library on 2 or 4 
GPUs. The matrix vector products are conducted using MAGMA library. The solution 
of the Poisson Equation (39) is carried out using geometric multigrid approach [17]. 
The IRA algorithm is using dot product, matrix-vector operations and matrix matrix 
operations from MAGMA library across multiGPUs, wheres QR routine for the upper 
Hessenberg matrix is taken from LAPACK. The visualization is done using GMSH [18], 



N. M. Evstigneev 
 

512 

Gnuplot and LibreOffice, simple calculations are done in MATLAB. 

5. Benchmarks  

At first we perform the verification of our methods vs. known results. The first 
benchmark is to obtain the neutral curve by applying different crk  as it is done in 
Section 3. For this purpose we consider domain 1Ω  with the following perturbations 
of temperature:  

( ) ( ) ( )1, , 2 , , 2 sin ,
50z z cr xx y L x y L k x Lθ θ= +               (54) 

where crk  is a given critical wave number, and we take Pr 1= . The results for 
numerical methods are brought in Figure 1 with comparison to the linear stability 
analysis. We can see that maximum deviation for FEM ( 64 64 30× ×  elements) method 
is about 11.2% and for FGM is about 6.5% ( 32 32 20× ×  modes). Please note that 
further increase of degrease of freedom did not improve the results much. We are able 
to trace exact points of transition with the application of the IRA solver. The results for 
leading eigenvalues are brought into Table 1. Please note that for both cases we have 
leading eigenvalues of multiplicity two. So the supercritical pitchfork bifurcation is 
observed, that complies with well known data about Rayleigh-Benard convection. In 
physical space we can observe the formation of rolls that run parallel to one of the axis 
x  or y , depending on the direction of perturbation vector in (54). Velocity vectors 

for these rolls are shown in Figure 2. One can observe small amplitude of velocity but 
the amplitude increases with the increase of Ra , with the formation of a mushroom 
type distribution for temperature. 

Velocity vectors and temperature distribution for 2Ω  are shown in Figure 3 for 
4345crRa =  obtained with 64 64 64× ×  elements using FEM. The critical pertur- 

 
Table 1. Leading eigenvalues for the first bifurcation for four critical wave numbers. 

crk  Ra ( )FGMmax Real λ  ( )FEMmax Real λ  

2 1950 −0.27055609 −0.12345012 

2 2000 −0.18726300 0.00919971 

2 2150 0.06261627 − 

3.117 1700 −0.02352221 −0.08692309 

3.117 1750 0.09408884 0.01133009 

4 1950 −0.09077777 −0.19987722 

4 2000 0.06436605 −0.12255887 

4 2100 − 0.03207783 

5.89 3500 −0.00829298 −0.4732132 

5.89 3550 0.014764781 −0.39880464 

5.89 3800 − −0.026761883 

5.89 3850 − 0.0476466692 
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Figure 2. Velocity vectors and temperature distribution in 1Ω  for FGM with 

3.117crk = , using 64 64 40× ×  modes. (a) 1710Ra = . (b) 3000Ra = . 

 

 
Figure 3. Velocity vectors and temperature distribution (with cross section) in 2Ω  for FEM 
with 3.117crk = , using 64 64 64× ×  elements. (a) 4345Ra = . Velocities. (b) 4345Ra = . 
Temperature iso-surfaces and horizontal section. 
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bation was chosen as 2πcrk =  and interpolation in Rayligh number values using 
results from eigenvalue solver give 4344.847crRa =  for this problem. We can check 
these results with data from [4] where 4347crRa =  is presented. One can see that the 
presented eigenvalue solver with numerical methods correctly represents first bifur- 
cation. 

Another benchmark that we are running is a DNS data comparison with data, 
available at [19] and more information can be obtained at [20]. We are not using 
eigenvalue solver since the regimes for this DNS are in turbulent regime and it corre- 
sponds to multiple unstable eignevalues for non stationarity solution. For the DNS ben- 
chmark we are using the same setup as in [19], namely 1Ω  with 7.92, 1x y zL L L= = = . 
Random initial perturbation for temperature is used. For this benchmark we are using 
FGM with 128 128 49× ×  modes and FEM with 256 256 64× ×  elements. Since the 
flow is in deep turbulent regime, we are calculating statistical data: φ —mean 
spacially averaged values; RMSφ —root mean square values; k —total kinetic energy of 
turbulence and —total dissipation of turbulent kinetic energy, that are defined as 
follows:  
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here R  is an averaged Raynolds number taken analogous to [20] for the considered 
problems, ( ), ,x y zφ  is a Reynolds averaged data, ( ), , ,x y z tφ ′  is an fluctuation 
data,   is a period of averaging that is taken equal to [19] as 20 time planes, each 
256 256×  ensembles for FEM method and analytical space integrals for FGM method.  

Instantaneous snapshots of temperature distributions are shown in Figure 4 and 
Figure 5. Note that for the latter distribution the boundary layer is thinner. Com- 
parison of statistical characteristics with available data from [19] is shown in Figure 6. 
It is clear that the statistical data is close to the provided simulation data. Please note, 
that the current results are obtained with higher order methods and, thus can be more 
exact. But in general the distribution is similar and so one can conclude that the 
proposed numerical methods for relatively hight Raylight numbers are correct. The 
leading direction of the flow is determained by the initial perturbations. In order to 
compare results with [19] we used x -dominated perturbations. 
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Figure 4. Instantaneous temperature distribution in 7.92 7.92 1× ×  
domain for air, results from FEM method. (a) 381000,  Pr 0.71Ra = = . 
Temperature iso-surfaces. (b) 381000,  Pr 0.71Ra = = . Temperature 
iso-surfaces with inclined plane cut. 

 

 
Figure 5. Instantaneous temperature distribution in 7.92 7.92 1× ×  
domain for air, results from FEM method. (a) 630000,  Pr 0.71Ra = = . 
Temperature iso-surfaces. (b) 630000,  Pr 0.71Ra = = . Temperature 
iso-surfaces with inclined plane cut. 
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Figure 6. Comparison of statistical data for different Ra . (a) RMS velocities, 381000Ra = . (b) Total kinetic energy and total dissipation 
of turbulent kinetic energy, 381000Ra = . (c) RMS velocities, 630000Ra = . (d) Total kinetic energy and total dissipation of turbulent 
kinetic energy, 630000Ra = . 

6. Bifurcations and Route to Chaos  

Some bifurcations for the problem in 2Ω  were presented in [8] as a survey of the 
results with the main emphasis on the Feigenbaum-Sharkovskiy sequence of cycles. In 
here we give new results for both setups.  

6.1. Bifurcations in Domain with XY Periodicity 

After the first bifurcation that is shown in Benchmarks section the flow stays steady 
that corresponds to the point in the phase space that remains in this point for 

4800Ra <  with gradual increase of velocity amplitude. At around 4832Ra =  for 
FGM and 4844Ra =  for FEM, leading eigenvalue with multiplicity two crosses the 
imaginary axis. This results in another supercritical pitchfork bifurcation, forming 
solution that is symmetrical in another plane. Velocity vectors and temperature 
distribution are shown in Figure 7. We can see that the solution is now rotated π 4  
with the formation of similar rolls.  
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Figure 7. Velocity vectors and temperature distribution in 1Ω  for FGM and leading 
eigenvalues of Jacobi matrix near Andronov-Hopf bifurcation at 4990.37Ra = . (a) 4832Ra = . 
(b) 4832Ra = . (c) Leading Jacobi matrix eigenvalues. 
 

The Andronov-Hopf bifurcation occurs near 4990.37Ra =  for FGM method and 
around 5002.2Ra =  for FEM with the formation of limited cycle in the whole phase 
space. The following process for FGM is depicted in Figure 7. The limited cycle 
increases its amplitude and for 5100=Ra  is shown in Figure 8 alongside with the 
eigenvalues of Monodromy matrix. The corresponding velocity and temperature 
distributions are shown in Figure 9 and trajectories in physical space with the 
magnitude of leading eigenvector are shown in Figure 10. It is clear that one eigenvalue 
is located at the unit cycle at the point ( )1,0+  that corresponds to the limited cycle. It 
is true for both numerical methods, although the convergence of IRA is faster for FGM 
method. Other eigenvalues are situated inside the unit circle and are stable. One can see 
the difference in eigenvalues for FEM and FGM methods, however both methods give 
correct leading eigenvalue. As one can see from the eigenvector, the flow is formed by 
the bending of the rolls with the subsequent oscillation. Although the attractor 
dimension is just one (limited cycle), the flow in physical space is already complicated. 
It can be traced with the stream lines obtained by Lagrangian particle tracers (Figure 
10) that are forming a complected path in the physical space. 

At this point one may observe the effect of multistability. If perturbations of 
magnitude 51 10−⋅  are applied to the system, the solution drifts to another attractor of 
dimension zero, i.e. stable point, temperature and velocity distributions are shown in 
Figure 11. It is clear that a formation of distorted square structures is presented. If we 
trance this solution back by decreasing Ra  we will get the square tile structures. For  
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Figure 8. Cycle projection and ten leading eigenvalues of Monodromy 
matrix for different methods, 5100Ra = . (a) Projection of cycle to three 
dimensional phase subspace. (b) Eigenvalues of Monodromy matrix. 

 
further reference we are not paying attention on multistable solutions near our main 
branch unless they form different scenario of transition to chaos. 

With the further increase of Ra  number we see the increase of amplitude of the 
limited cycle and with the sequential formation of the invariant two dimensional torus. 
It can be expected since complex-conjugate eigenvalues of the Monodromy matrix in 
Figure 12 are closing to the unit circle on the complex plane. In order to obtain these 
results we had to run IRA with the same randomly initialised vector for all values of 
Ra . Secondary Hopf bifurcation occurs at 5893.4Ra =  for FGM and 5943.3Ra =  
for FEM. This leads to the formation of the limited torus in the phase space, whose 
projection into three-dimensional subspace is shown in Figure 12 and physical space 
functions are shown in Figure 13. Please note that in many papers the bifurcation that 
leads to the formation of invariant torus is called Neimark-Sacker bifurcation. This is a  
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Figure 9. Instantaneous velocity vectors and temperature dis- 
tribution in 1Ω  for FGM. (a) 5100Ra = . (b) 5100Ra = . 

 

 
Figure 10. Lagrangian particle movement in 1Ω  and magnitude of leading eigenvector that 

corresponds to maximum magnitude eigenvalue of Monodromy matrix, located at 1,0+  on the 
complex plane for FGM. (a) Lagrangian particle movement. (b) Modulus of the leading 
eigenvector for velocities. 
 
misuse of the term, since Neimark-Sacker bifurcation occurs in generic dynamical 
systems generated by iterated maps, see [21], p. 113. Since we consider discrete system  
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Figure 11. Multistable solution for 5100Ra =  at 1Ω  for FGM. (a) 5100Ra =  temperature 
isosurfaces. (b) 5100Ra =  velocity distribution. 
 

 
(a) 

 
Figure 12. Leading eigenvalues of Monodromy matrix near second Hopf bifurcation as functions 
of Ra  and 2D invariant torus in phase subspace. (a) Evolution of Monodromy matrix leading 
eigenvalues. (b) Projection of invariant 2D torus into three-dimensional phase subspace. 
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Figure 13. Temperature and velocity distributions in 1Ω  for 6000Ra =  that coresponds to 
the invariant torus in the phase space. (a) Velocity vectors. (b) Temperature isosurfaces. 
 
that approximates continuous one and use high order methods we assume that the 
behavior of our discrete system is close to the continuous one at least as long as the 
estimate (53) holds. So we use the term secondary Hopf bifurcations for such 
bifurcations that have simple complex conjugate eigenvalue with zero real part at the 
critical point in parameter space and lead to the increase of the attractor dimension by 
one.  

With the increase of the Ra  we can observe the formation of the 2D invariant torus 
with period two that can be traced through the analysis of Poincare sections only. The 
period doubling bifurcation takes place at around 7180 7195Ra = −  (for both FGM 
and FEM) on the second frequency (the corresponding eigenvalue crosses unit circle at 
point ( )1,0− ). Results of the phase space projection and Poincare section are shown in 
Figure 14. With the further increase of Ra  a resonant torus is formed it can be 
observed on the same figure in the Poincare section for 7421.5623Ra =  using FGM. 
Such exact value was chosen in order to perform eigenvalue analysis (was found using 
quasi-Newton method). The period during integration   in (48) was defined by the 
return map in the Poincare section. Please note that the calculation of these eigenvalues 
took about a month on a 5GPU cluster. Corresponding eigenvalues are presented in 
Figure 15. Two pure real eigenvalues have magnitude close to unity (0.999 and 0.997 
and we assume that these eigenvalues are of magnitude one) and are located at the 
( )1,0+  point on the unit circle. This is another way of saying that the system has two 
zero Lyapunov exponents and all other exponents are negative (inside the unit circle on 
the complex plane). This corresponds to the phase-lock of three frequencies: two are 
connected through period doubling and another was irrational to them both. It is 
interesting that there are two more eigenvalues are closing the point ( )1,0−  that can 
mean a possibility of period doubling bifurcation. However with the increase of Ra , 
after the phase-lock, the system continuous to maintain the same attractor (2D two 
period torus with increasing magnitude) and suffers anther phase-lock (with another 
frequency of the period doubling) at about 8350Ra =  (see Figure 15). Again, two 
pure real eigenvalues are of unit magnitude (1.019 and 0.998) correspond to zero 
Lyapunov exponents. However there are more eigenvalues closing to the unit circle in  
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Figure 14. Invariant 2D torus period 2 and Poincare section for it with close resonant torus. (a) 
Projection to the three dimensional phase subset, 7300Ra = . (b) Poincare section using plane 

0.03x = − , 7300Ra =  and 7421.5623Ra = . 
 
this case. 

From this point the solution branches dramatically. The first branch is presented by 
the solutions with no perturbation introduced. In this case the solution undergoes the 
formation of hyperbolic attractor on one of the torus cycles starting from 8420Ra = . 
Please note that we present data only from FGM here since FEM was not used for this 
branch. Evolution of return maps is shown in Figure 16. One can see that the onset of 
chaos emerges very fast in parameter space through local hyperbolicity. With this the 
attractor dimension remains bounded between 2 and 3. This can be stated since the  
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Figure 15. Leading eigenvalues for resonant 2D torus period two in two cases of phase 
locking. (a) Leading eigenvalues of the resonant torus, 7421.5623Ra = . (b) Leading 
eigenvalues of the resonant torus, 8350.0712Ra = . 

 
second Poincare section (Poincare slice) is void. In order to justify the fact of local 
hyperbolicity let us consider a zoom-in of Poincare section for 8377Ra =  and 
construct series of Lameray diagram. In Figure 17 we show a part of Poincare section 
(we selected the one that is closer to the straight line located at  
0.255 0.267, 0.07 0.055z yu u< < − < < −  in Figure 16) that was rotated in such way 
that the image of the mapping is of minimal width. Then for this data we construct  
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Figure 16. Transition to chaos through hyperbolic attractor on a 2D invariant torus period two. 
(a) Poincare sections for different 8351Ra =  (resonance), 8377Ra = , 8381Ra = , 8382Ra = , 

8383Ra =  (chaos). (b) Projection into three planes of a 3D Poincare section for 8381Ra = . 
 
Lameray diagram by considering mapping 1n nU U +→ , where U  is zu  data in 
selected Poincare section part. One can see that the iteration map has neither cyclic 
behavior (as can be exacted in case of finite number of period doubling bifurcations) 
nor convergence. If we take more data the points on middle figure (Figure 16) will  
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Figure 17. Analysis of Poincare section fragment for 

8377Ra = . (a) Rotation of Poincare section fragment. (b) 
Lameray diagram for mapping 1n nU U +→ . (c) Action of 
Lameray mapping. 
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form a fractal set with infinitely many close inclusions. Examples of such maps for 
ODEs are constructed in [22]. However we may assume another scenario of fast and 
multiple period doubling bifurcations with the formation of singular Feigenbaum 
attractor in the Poincare section. This can be implied through the analysis of some 
leading eigenvalues that are located closer to the ( )1,0−  point for resonance case, see 
Figure 15. But for this case (close to the resonance) the IRA algorithm filed to converge 
so we cannot justify this scenario. We are unable to reveal any localized structures for 

8382Ra >  in the phase space for this branch.  
Another branch is observed if small perturbations (of 510−  magnitude) were 

introduced at 8350Ra = . In this case the system turns itself to another torus solution 
that further undergoes secondary Hopf bifurcation with the formation of a 3D invariant 
torus at around 8527Ra =  for FGM and 8590Ra =  for FEM. First and second 
Poincare sections are shown in Figure 18 that were obtained using FGM. 

This 3D invariant torus remains stable for the whole calculation time (up to 60 mln 
time steps) and for 8617.7Ra =  (8654 for FEM) we can observe a possible formation 
of a 4D invariant torus, see dynamics of its formation in Figure 19 for 8618Ra = , 

8618.5Ra = . Please note that these results were obtained on FGM with increased 
spacial resolution up to 256 256 150× × . One can see on the spectra of the signal 
(Figure 18) that there are more frequencies in the low wavenumber region for 4D torus 
regime. This possibly can be explained by the reverse energy cascade pumping from 
high wavenumbers due to the decrease of diffusion. The solution becomes chaotic for 

8619Ra > . Thus an initial stage of Landau-Hopf scenario is found in this branch with 
the formation of attractor dimension at least four.  

Another branch can be found by the application of the symmetric initial conditions 
for 2π ,crk k k∈ ∈� . We are using 2πcrk =  and first bifurcation takes place at 

3687.76Ra = . In this case the flow is formed by roll structures (Figure 20) through the 
first supercritical pitchfork bifurcation that remain in the same direction without the 
second pitchfork bifurcation. This branch can be traced only by FGM because FEM 
drops to one of the “tori” solutions with distorted roll structures that were discussed 
above. A a consequence a solution tends to preserve symmetry and this branch is 
developing through bifurcations of limited cycles. The amplitude of velocity grows with 
the increase of Ra  and at 7610.3858Ra =  the solution has an Andronov-Hopf 
bifurcation that leads to the formation of the limited cycle. 

Eigenvalues of the Jacobi matrix, Monodromy matrix and cycle projection into phase 
subspace are shown in Figure 21. Monodromy matrix has one real eigenvalue at 
( )1,0+  on the complex plane that corresponds to one zero Lyapunov exponent, thus 
forming a limited cycle in the solution space since all other eigenvalues are inside a unit 
circle. One can see that two more eigenvalues are approaching ( )1,0−  point that 
indicates period doubling bifurcation. It takes palace at 8556.07=Ra  with the 
formation of limited cycle period two. The full bifurcation diagram is presented in 
Figure 22, the idea of its construction is taken from [6]. We will not stop on detail 
analysis of every solution and only point out that further increase of Ra  leads to the  
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Figure 18. Transition to chaos through the Landau-Hopf scenario. (a) Phase 
subspace and Poincare sections for 8350Ra = . (b) Poincare section for 

8590Ra = . (c) Time series spectra for 8616 8618Ra = → . 
 
development of full Feigenbaum-Sharkovsky inverse and direct cascades. However, due 
to multistability we observe formations of cascade threads. For example, at around  
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Figure 19. Transition to chaos through the Landau-Hopf scenario-formation of 4D torus. (a) 
Second Poincare sections for 8590Ra =  that corresponds to stable 3D invariant torus. (b) 
Second Poincare section for 8618Ra =  and 8618.5Ra = . 
 

8900Ra =  we have another multistable solution that has cycle period two. Another 
multistable solutions are observed at 9025Ra =  and 9435Ra =  that are presented 
by cycles. At some points the solution has an effect of intermittency (for example at  
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Figure 20. Roll structures for symmetric branch, stationary solution. (a) Velocity for symmetric 
branch, 5000Ra = . (b) Temperature for symmetric branch, 5000Ra = . 
 

9185Ra =  and 9435Ra = ). Example of such intermittency is presented in Figure 23 
along with cycle period three from Sharkovsky cascade and its Monodromy matrix 
eigenvalues. Finally the system emerges into chaos through singular attractor and from 

9550Ra >  we are unable to detect any regular structures in the phase space. 

6.2. Bifurcations in Bounded Cubic Domain 

We are only discussing results here that were not mentioned in [8]. This subsection is 
focused on eigenvalues since we were unable to perform eigenvalue analysis in our 
previous papers due to computational limitations. All results are obtained with FEM.  

 There were three series of experiments conducted in [8] for various Pr  numbers. 
Each series resulted in different scenarios of transition to chaos. As a matter of fact, this 
was not only due to Pr  change, but also due to the symmetries in the system. At first, 
all scenarios have a common initial stage-supercritical pitchfork bifurcation. The first 
one was found in Section 5. The Rayleigh number of all bifurcations is higher compared 
to periodic domain due to the wall stabilization effect. If the initial perturbations are 
given as discussed in Benchmark Section 5 (dominated along one of the axis), then the 
flow develops a symmetrical solution in one plane, see Figure 24. 

Another set of initial conditions may lead to other symmetries. For example, corner 
structures are formed if an initial condition are taken with constant perturbation of 
magnitude   in the form:  

( )
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2 2
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                (55) 

where 1
2π

 is taken to have equal area. Results for 130000Ra =  are presented in  

Figure 25. These solutions are symmetric relative to planes: ,    and   1z x y x y∀ = = − . 
The direction of symmetry is selected only by initial conditions. Further increase of 

Ra  number leads to the increase of amplitude of velocities. Finally, the solution can 
either go through supercritical pitchfork bifurcation or through Andronov-Hopf bifur-  
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Figure 21. Jacobi and Monodromy matrix eigenvalues and projection of the limited cycle. (a) 
Leading eigenvalues of Jacobi matrix for different Ra . (b) Limited cycle projection into phase 
subspace, 7650Ra = . (c) Leading eigenvalues of Monodromy matrix, 7650Ra = . 
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Figure 22. Bifurcation Diagram for symmetric branch. ( )Pro j U  is a projection of middle plane section to z -axis. Two points indicate 

a cycle, four-cycle period 2, discrete set of points-singular Feigenbaum or Sharkovsky cycle, line-chaos. 
 
cation without the pitchfork (for example see Figure 26). Solutions are asymmetric in 

2Ω  in the first case and this leads to the multiple invariant tori bifurcations, see [8]. In 
the second case the solutions are symmetric relative to a plane (e.g. 1 2x =  in Figure 
24) and this leads to bifurcations of limited cycles with the formation of singular 
attractors. It was noticed in [8] that the solution may become asymmetric while on a 
cycle cascade which leads to chaotic solution through subcritical pitchfork bifurcation. 
It can be seen by the analysis of the Monodromy matrix eigenvalues in Figure 26. 
Eigenvalues closer to ( )1,0−  point are responsible for possible future period doubling 
bifurcations, but an eigenvalue closer to the leading one at ( )1,0+  can be responsible 
for secondary pitchfork bifurcation.  

We present an example of a symmetric singular attractor in Figure 27 for  
376370Ra = . Note that Poincare section of the attractor is perfectly symmetrical in 

yz  plane, but asymmetric in xz  plane (in this particular case the section is 
symmetric relative to a central point). Another example is the formation of a singular 
attractor from Sharkovsky cascade cycle of period 3 that is shown in Figure 28. We are 
able to analyze eigenvalues of Monodromy matrix for the cycle period 3 (C3) for 

308565Ra =  and for a small deviation from the parameter value. One can see that for 
C3 all eigenvalues are inside the unit circle except for one at ( )1,0+  point. With the 
increase of Ra  we can observe that seven leading eigenvalues out of ten are escaping 
the unit circle through the point ( )1,0− . Please note that these seven eigenvalues are 
scaled down to fit on graph. Maximum magnitude of the first eigenvalue is 23. This 
justifies the fact that the singular cycle (shown in Figure 28) is developing through 
series of period doubling bifurcations. After these singular cycles we are unable to 
detect any structures in the phase space. 

7. Discussion  

There are more questions to discuss that are not touched here. The problem of inter-  
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Figure 23. Intermittency and Sharkovsky cycle period three. (a) Inter- 
mittency at 9095Ra = . (b) Projection of limited cycle period three, 

9095Ra = . (c) Monodromy matrix eigenvalues for 9095Ra = . 
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Figure 24. Symmetrical solutions in plane 1 2x =  for 130000Ra = . (a) Temperature dis- 
tribution. (b) Sections of temperature distribution. (c) Sections of velocity magnitude dis- 
tribution. 
 

 
Figure 25. Symmetry solutions for modified velocity initial conditions at 130000Ra = . (a) 
Temperature distribution. (b) Sections of temperature distribution. (c) Sections of velocity 
magnitude distribution. 
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Figure 26. Eigenvalues of Jacobi matrix for pitchfork and Hopf bifurcations and Monodromy 
matrix for 150250Ra = . (a) Hopf bifurcation at 150208.58Ra = . (b) Pitchfork bifurcation at 

150197.31Ra = . (c) Monodromy matrix eigenvalues. 
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Figure 27. Singular attractor phase subspace projection and Poincare 
sections for 376370Ra = . (a) Cycle projection into 2D phase subspace. (b) 
Poincare section using velocity. (c) Poincare section using velocity and curl. 
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Figure 28. Cycle period 3 and singular attractor phase subspace projections, Poincare section of 
the singular attractor and eigenvalues of Monodromy matrix. (a) Cycle period 3 projection into 
2D phase subspace for 308565Ra = . (b) Singular attractor projection into 2D phase subspace 
for 308672Ra = . (c) Poincare section of the singular attractor. (d) Evolution of Monodromy 
matrix eigenvalues. 
 
mittency was only confirmed but not discussed in detail. It is a future work to confirm 
the ideas about the cubic mapping ( ) 3

1 1 , 1 1n n nx r x x r+ = − + − − < < , to describe 
intermittency, as suggested in [7]. The dependence on Pr  was not investigated, how- 
ever it is known, see [7], that the route to turbulence depends on it and intermittency 
emerges more for high Pr  (spacial instabilities are more elaborated in this case). The 
emergence of a 4D torus in Landau-Hopf scenario is still a question. It can be 
confirmed by the author’s new idea (to be published soon) of constructing an ε -net of 
splines over the attractor and tracking its evolution on the attractor. If the structure in 
question is a torus and its mapping in phase space is diffeomorphic, then the ε -net 
will converge. But it requires enormous amount of computational power and time. 
Another question is the automatization of the process of bifurcation detection and 
eigenvalue analysis as it was suggested in [12] [23]. Another question is the emergence 
of traveling waves for periodic problem and explicit study of it’s influence on 
bifurcation scenarios. All these questions are topics for further research. 

8. Conclusions 

In this paper, we present results for laminar-turbulent transition in Rayleigh-Benard 
convection from the nonlinear dynamics point of view. In order to analyze simple 
bifurcations, we use Implicitly Restarted Arnoldi eigenvalue solver implemented on top 
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of Navier-Stokes solvers. All methods are extended to MultiGPU architecture for 
acceleration.  

We show that there are many routes to turbulence in 3D Rayleigh-Benard convection 
problem. If the flow is bounded only from one direction, then the onset of turbulence 
emerges for small Ra  numbers. For all bounded domain, the typical values of Ra  
number are 30 - 50 times higher. In all cases, the initial stage is analogous to 2D 
Rayleigh-Benard convection with the emergence of pitchfork bifurcation followed by 
Andronov-Hopf bifurcation, see [6]. However, the scenario is different from here on. 
There is more symmetry in 3D problem and symmetry groups may become generators 
for Hopf bifurcations. It was studied in [24] on an ABC flow. If the symmetry is 
preserved exactly (that can only be achieved numerically by the application of high 
order methods of quasi-spectral accuracy and detailed discretization), then the system 
undergoes bifurcations of limited cycles. In this case, we confirm the existence of 
multiple Figenbaum-Sharkovsky sequences of cycle periods with direct and inverse 
directions, see bifurcation diagram in Figure 22. We also observed multistability and 
existence of intermittency. Multistability can be explained by the neutral curve in 
Figure 1, since for high Rayleigh numbers there are many possible attracting sets. 
Intermittent solutions are only confirmed for limited cycles. If the symmetry is broken, 
then an invariant torus emerges through the secondary Hopf bifurcation. It was 
confirmed by the analysis of Monodromy matrix eigenvalues with the emergence of 
complex conjugate eigenvalue with magnitude greater than unity. At this point, the 
solution may vary and be continuous either through Landau-Hopf scenario of a N-d 
tori cascade or through the formation of resonant torus with further phase-locking and 
possible local hyperbolicity. We also show how the mapping to itself of the Poincare 
section in the singular torus works using Lameray diagram. All these “tori” routes lead 
to chaos much faster than that is for cycle route. It was noted in [6], that there are 
chaotic attractors and stationary points coexisting for 2D case after the development of 
chaotic solution for high Ra  numbers. We are unable to confirm this yet for the 
considered 3D cases. However, it seems likely in 3D as well, due to multistability. But in 
3D case, the basis of attraction of these point attractors is smaller and, hence, it is more 
difficult to find this kind of system behavior. 
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