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Abstract 
The dynamics of unsteady magnetohydrodynamic convective fluid flow with radiation and ther-
mophoresis of particles past a vertical porous plate moving through a binary mixture in an opti-
cally thin environment is investigated. The approximate form of the radiative heat flux is consi-
dered as the fourth power of temperature. Chemical reaction that occurs as the chemically react-
ing fluid flow through binary mixture is accounted for in energy and species concentration equa-
tions. Exponential space dependent heat source is introduced to generate additional heat energy 
across the fluid domain. The corresponding influence of heat energy is properly accounted for. It is 
assumed that viscosity and thermal conductivity vary as a linear function of temperature. The go-
verning boundary layer equations are converted to nonlinear ordinary differential equations us-
ing similarity variables. A novel method of obtaining root finding starting with three guesses in 
shooting techniques is presented. The corresponding nonlinear coupled ordinary differential eq-
uations is solved numerically by shooting technique along with quadratic interpolation scheme. 
Graphical results of the dimensionless velocity, temperature and concentration distributions are 
shown for certain pertinent parameters controlling the fluid flow. The quadratic interpolation 
method is found to produce better estimated values of ( )′ 0f , ( )′ 0−θ , ( )′ 0−φ  which satisfy the 
degree of accuracy and proportional to the physical quantities. 
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1. Introduction 
In August 1904, Ludwig Prandtl presented a comprehensive report on aerodynamic boundary layer at Interna-
tional Congress of Mathematicians, Heidelberg, Germany. Since then, the study of thin layer formed on a ver-
tical surface as fluid flows over a surface has received great attention because of its application in industry and 
engineering processes. Boundary layer flow past a surface moving through binary mixture is of important type 
of flow occurring in a number of engineering processes (i.e. chemical and petroleum). In industry, a familiar 
example of a binary mixture of fluids is an emulsion. Typical example of emulsion is oil dispersed within water 
or water within oil. A familiar example shows up when mixture of oil and water after shaken together is sub-
jected to flow along a vertical heated surface due to buoyancy and pressure gradient. An emulsion is a dispersion 
(droplets) of one liquid in another immiscible liquid. Extensive reviews of this theory and its application can be 
found in Al-Sharif et al. [1] and Wang et al. [2]. By means of this model, Makinde et al. [3] carried out a re-
search on unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving 
through a binary mixture using the classical Boussinesq approximation. They assumed constant fluid viscosity 
within the boundary layer formed on vertical surface. The effects of increasing magnitude of suction/injection, 
wall temperature, Damkohler number and radiation parameter over velocity, temperature and concentration pro-
files are reported extensively. Their idea was then followed and extended by Makinde and Olanrewaju [4]; 
hence, they introduced thermo-diffusion (Soret), Diffuso-thermal (Dufour) effects and reported the correspond-
ing effects while Sastry and Murti [5] followed another direction by assuming that the fluid in question is electr-
ically conducting and reported the effect of magnetic field parameter. 

According to Somasundaran [6], thermophoresis in liquid mixtures was first observed and reported by Carl 
Ludwig in 1856 and that of gas mixtures was first observed and reported by John Tyndall in 1870. Thermopho-
resis has many applications most especially as a method used to separate different polymer particles in field flow 
fractionation as reported by Giddings et al. [7]. The term thermophoresis often applies to aerosol mixtures but 
may also refer to the phenomenon in all phases of matter like liquid and gas (fluid). This phenomenon can be 
observed in mixtures of mobile particles where different particles exhibit different responses to the force of 
temperature gradient. A common example of thermophoresis is the blackening of the glass globe of a kerosene 
lantern; the temperature gradient established between the flame and the globe drives the carbon particles pro-
duced in the combustion process towards the globe where they deposit [8]. This contribution to the body of 
knowledge attracted Chamkha and Isaa [9] to study effects of heat generation/absorption and thermophoresis on 
hydromagnetic flow with heat and mass transfer over a flat surface. Animasaun [10] presented the effects of 
thermophoretic parameter on non-darcian MHD dissipative Casson fluid flow along linearly stretching vertical 
surface with migration of colloidal particles in response to macroscopic temperature. Recently, Fagbade et al. 
[11] employed SHAM to solve dimensionless governing equations which corresponds to a problem of Darcy- 
Forcheimer mixed convection flow in the presence of magnetic field and thermophoresis. Extensive studies on 
dynamics of MHD fluid flow past continuously moving semi-infinite surface with large suction, classical heat 
generation; radiation effects on MHD flow, unsteady MHD convection flow of polar fluids and effects of space 
and temperature internal heat source can be found in [12]-[19]. 

Numerical solutions are of particular interest due to the fact that exact solutions do not exist in closed form for 
most engineering and scientific problems. A commonly used numerical method for the solution of two point 
boundary value problems is the shooting method. Shooting method is a classical and special methodology for 
solving boundary value problems of differential equations. Numerous strong nonlinear boundary-value ordinary 
differential equations arise in engineering and science. Shooting method has been adopted to solve several kinds 
of B.V.P. in published articles. The basic idea behind the proposed numerical method can be introduced as 
theoretical approach to solve System of Ordinary Differential Equations (Boundary Value Problem) based on 
conversion of B.V.P. to I.V.P. by using method of superposition introduced by Na [20]; to obtain better estimate 
of ( )0f ′ , ( )0θ ′  and ( )0φ′  which satisfy the boundary conditions at infinity by starting with three guesses, 
and finally to solve the I.V.P. using the initial conditions together with the better estimate. Through literature re-
view, it is noticed that in all the studies on chemically reacting fluid flow past a surface moving through binary 
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mixture, thermo-physical properties of the fluid are treated as constant function of temperature. However, it is 
known that these properties may change with temperature, most especially when Engineer introduces heat ener-
gy to enhance the transport phenomena. To accurately predict the dynamics of the flow and heat transfer rates, it 
is necessary to account for the variation in viscosity and thermal conductivity. This present paper is an extension 
of [3]-[5] by considering the Arrhenius kinetics, thermophoresis and thermal radiation in an unsteady MHD 
convective flow with temperature dependent viscosity and thermal conductivity over a moving plate through a 
binary mixture with suction at the plate surface. The governing equations are converted to ordinary differential 
equations by applying the similarity transformation. Numerical solutions of the reduced nonlinear similarity eq-
uations are then obtained by adopting Runge-Kutta Gill scheme along with the shooting method and the qua-
dratic interpolation. The results of the numerical solution are then presented graphically for difference values of 
the various parameters. 

2. Governing Equations of the Flow 
An unsteady one-dimensional hydrodynamic convective flow of a viscous incompressible, electrically conduct-
ing and chemically reacting fluid flow past a porous vertical heated surface moving through a binary mixture is 
considered. The flow is assumed to be in the x-direction, which is taken along the semi-infinite plate and y-axis 
is normal to it. Since the surface is of infinite length in x-direction, therefore all the physical quantities (i.e. ve-
locity, temperature and species concentration) are assumed to be independent of x. A uniform magnetic field 

oB  is applied in the direction perpendicular to the surface. The fluid is assumed to be slightly conducting, and 
the magnetic Reynolds number 1reM  ; hence, the induced magnetic field is negligible in comparison with the 
applied magnetic field. It is further assumed that there is no applied voltage, so that electric field is absent. The 
fluid is assumed to be optically thin with absorption coefficient 1α  . Following Cheng [21], the approximate 
form of the radiative heat flux equation ( )rq y∂ ∂  is taken as the fourth power of temperature in the energy 
balance equation. It is assumed that heat and mass is transferred by free convection in the boundary layer over a 
vertical flat plate of constant temperature ( wT ) and concentration ( wC ) which is embedded in a fluid-saturated 
porous medium of ambient temperature ( T∞ ) and concentration ( C∞ ) where wT T∞>  and wC C∞>  respec-
tively. This formulation is based on the notion that just as temperature gradient constitutes the driving potential 
for heat transfer, species concentration gradient in a mixture provides the driving potential for mass transfer [22]. 
The effect of thermophoresis is usually prescribed by means of the average velocity, which a particle will ac-
quire when exposed to a temperature gradient [10] [23]. In boundary layer flow, the temperature gradient in the 
horizontal y-direction is very much larger than in the vertical x-direction, and therefore only the thermophoretic 
velocity in y-direction is considered [3]. In view of this, the component of thermophoretic velocity along the 
plate is negligible compared to the component of its velocity normal to the surface. Considering the mathemati-
cal model introduced by [4] [5] which is an extension of [3] together with all assumptions stated above along 
with classical Boussinesq’s approximation; the governing equations for continuity, momentum, energy, and spe-
cies diffusion in laminar incompressible boundary layer flow can be written as follows: 
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Equations (1)-(4) are subject to boundary conditions 

( ) ( ) ( )0 : ,0 0, ,0 , ,0 ,w wt u y T y T C y C≤ = = =                           (5) 

( ) ( ) ( )0 : 0, , 0, , 0, ,o w wt u t U T t T C t C> = = =                           (6) 
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( ) ( ) ( )0 : , 0, , , ,t u t T t T C t C∞ ∞> ∞ → ∞ → ∞ →                         (7) 

where oU  is the plate characteristic velocity. From the continuity Equation (1), it is worth noticing that velocity 
component (v) is either constant or a function of time. Following [24], velocity component along y-axis is con-
sidered as 

,v c tϑ= −                                        (8) 

where 0c >  and 0c <  are known as suction and injection respectively. In the energy Equation (3), the rela-
tionship between the activation energy and the rate at which a reaction proceeds is accounted for by using 

( ) ( )Δ , Exp .n
A A r A GQ H R R K E R T C= − = −                           (9) 

In Equations (3), (4) and (9), it is very important to state that the frequency factor for the chemical reaction is 
n

rK C . In this present study, it is worth mentioning that exponential space dependent internal heat source is in-
troduced to increase the temperature of the fluid and to positively influence buoyancy. This concept can be 
traced to the idea of Crepeau and Clarksean [25], El-Aziz and Salem [26] [27] and Animasaun et al. [28]. The 
increase of temperature may also leads to a local increase in the transport phenomena by reducing the viscosity 
across the momentum boundary layer and so the heat transfer rate at the wall may also be affected greatly. In 
[3]-[5], fluid viscosity and thermal conductivity have been assumed to be constant function of temperature 
within the boundary layer. However, it is known that physical properties of the fluid may change significantly 
when expose to space dependent internal generated temperature or thermal stratification [29]. For lubricating 
fluids, heat generated by the internal friction and the corresponding rise in temperature affect the viscosity of the 
fluid and so the fluid viscosity can no longer be assumed constant. In order to account for the variation in ther-
mo-physical properties of the fluid as it flows past a vertical heated surface moving through a binary mixture; 
classical Boussinesq’s approximation is adopted such that temperature of the wall/surface is greater than tem-
perature of the fluid at free stream. In order to invoke this assumption, it is valid to consider the mathematical 
model of temperature dependent viscosity model used in [31] [32] which was developed using the experimental 
data of Batchlor [30] together with the mathematical model of temperature dependent thermal conductivity 
model of Charraudeau [33] as 

( ) ( ) ( ) ( )* *andwT a b T T T a T Tµ µ κ κ δ ∞ = + − = + −                      (9) 

where *µ  and *κ  are the constant value of the coefficient of viscosity and thermal conductivity at the free 
stream respectively. A case where 1a =  is considered in this work and ( ), 0b δ > . The thermophoretic veloc-
ity parameter in Equation (4) was given in [8] and later by Tsai [34] as 
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Thk  is the thermophoretic coefficient which ranges in values from, 0.2 to 1.2 as indicated by Batchelor and 
Shen [35] and properly defined using the theory [8] as, 
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, ,s m tC C C  are constants, fluidκ  is the thermal conductivity of the fluids, diff.Pκ  is the thermal conductivity of 
the diffused particles, uC  is the Cunningham correction factor, nK  is the Knudsen number. Substituting all 
into dimensional governing Equations (1)-(4) we have 
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Considering the following dimensionless variables 

( )

( )

0

* 2*
*

2 4
1

*

, , , , , ,
2

44tg 4tg, , , , , ,

Δ 4
, , 4 , , 4 e .

A

G

w w
w w

o P

o
r c P w w

o o
E

R T nP A
r a a r

P P G

T C tQu y T Cf
U T T C C Ct

t B
G G M C T bT

U b U b

H C C T Eh P R t D tK C
C T C T T R

η η θ θ φ φ χ
ρϑ

σβ β γ κ ρ λ δ ξ
ρ

µ σαϑ ω
ρ γ ρκ

∞

∞ ∞ ∞ ∞

−
∞ −∞

∞
∞ ∞ ∞

= = = = = = =

= = = = = =

−
= = = = = =

         (15) 

Using (15), the following dimensionless non-linear ordinary differential equations are obtain 
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The dimensionless boundary conditions of the above problem are  

( ) ( ) ( ) ( ) ( )0 1, 0 1 , 0 1 ,w wf θ θ φ φ= = > = >                        (19) 

( ) ( ) ( )0, 1, 1f θ φ∞ → ∞ → ∞ →                            (20) 

where aD  is Damköhler number, aR  is the radiation parameter, ω  is the activation energy parameter, rG  
is the modified thermal Grashof number, cG  is the modified solutal Grashof number, χ  is the heat source 
parameter, rK  is the chemical reaction rate, rP  is the Prandtl number, cS  is known as Schmidt number, τ  
is known as thermophoretic parameter and M is the magnetic field parameter. Also, other quantities of physical 
interest in this problem are the local skin friction fC , local Nusselt number uN  and Sherwood numbers hS  
which are defined by Makinde [3] as 
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And from that we can easily compute the results of the local skin friction, local Nusselt number and local 
Sherwood number. 
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3. Numerical Procedure 
Following process for the step-by-step integration of differential equations in Gill [36], the MATLAB Code 
(m-file) for solving system of O.D.E. using Runge-Kutta Gill can be found under Appendix I. In this code, 
( ),:y i  denotes ( ),1f i , ( ), 2iθ  and ( ), 2iφ . The initial guess values are a, b and c. Runge Kutta Gill is also a 

fourth order Runge Kutta method with Local truncation error of ( )5O h  and global truncation error ( )4O h . 
Delin and Zheng [37], formulated a general formula of fourth Order Runge Kutta Method. Using a Lemma, they 
obtained the general method which is dependent on a parameter “t”. Five different fourth order Runge Kutta was 
obtained using the formula with t = 2 (the general scheme yielded classical Runge Kutta), t = 4 (the general 
scheme yielded England Runge Kutta Method) and when t = 1, 3 and 5 three other fourth Order Runge Kutta 
methods was also obtained. It was reported that numerical calculations using all these formulas have almost the 
same accuracy as the classical RK4. When we used 2 2t = + , Runge Kutta Gill was obtained. There are two 
types of error involved in a Runge Kutta as an approximation method of Ordinary differential equations. They 
are Round off error and Truncation error. Runge-Kutta Gill method is selected because it reduces (minimize) 
round off error and this numerical scheme is one of the most widely used fourth order methods because it re-
duces the amount of storage required in the solution of a large number of simultaneous first order differential 
equations. According to Finlayson [38], Order analysis, Consistency analysis and Stability analysis shows that 
Runge Kutta Gill is also of order four, stable and consistent. Considering system of second order ordinary diffe-
rential equations (boundary value problem) as in (16)-(20), shooting method can be explained as follows. Let 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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o o

f F f f f f f f
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F f f
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θ η η θ η φ η η θ η φ η θ η θ θ η θ

φ η η θ η φ η η θ η φ η φ η φ φ η φ

∞

∞

∞

′′ ′ ′ ′= = =  
′′ ′ ′ ′= = =  
′′ ′ ′ ′= = =  

     (22) 

represent the boundary value problem. Let ( );f aη , ( );bθ η  and ( );cφ η  denote the solution of the corres-
ponding initial value problem after using method of superposition to reduce B.V.P. to I.V.P. as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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0 , , , , , , , subject to and ,
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F f f c
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′′ ′ ′ ′ ′= = =  
′′ ′ ′ ′ ′= = =  
′′ ′ ′ ′ ′= = =  

     (23) 

Next step is to find a, b, c which must satisfy tolerance and conditions at infinity ( ) 1f fη∞ = , ( ) 1θ η θ∞ =  
and ( ) 1φ η φ∞ = . We may define the function ( )1F a , ( )2F b  and ( )3F c  as  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 3 1; , ; , ; .F a f a f F b b F c cη θ η θ φ η φ∞ ∞ ∞= − = − = −                 (24) 

If ( )1F a  in Equation (24) has a root “a”; certainly, the solution ( );f aη  of the corresponding I.V.P. is also 
a solution of the B.V.P. in Equation (22). Also applicable to ( )2F b  and ( )3F c . In addition, if the boundary 
value problem in Equation (22) has a solution ( )f η , ( )θ η  and ( )φ η , then ( )f η , ( )θ η  and ( )φ η  are 
also the unique solution ( );f aη , ( );bθ η  and ( );cφ η  of the initial value problem where 

( ) ( ) ( ), , .o o oa f b cη θ η φ η′ ′ ′= = =                             (25) 

Thus, “a” is a root of F1, “b” is a root of F2 and “c” is a root of F3. In this study, the m-file (“Animasaun OJFD”) 
that contains the system of first order can be found under Appendix II. In the code, ( )1f y= , ( )2f y′ = , 

( )3yθ = , ( )4yθ ′ = , ( )5yφ =  and ( )6yφ′ = . Using shooting method to solve nonlinear ordinary differen-
tial equation(s), zero finding problem for the function (Root finding) is a critical problem. It is very important to 
state that the two m-files must be in the same directory (folder) and patched to the command window of 
MATLAB. This problem is related to how to improve the solution (i.e. to get better estimate(s) of a, b and c that 
satisfy the B.V.P. and also meet up to our desirable degree of accuracy when compare to the condition(s) at in-
finity). Most researchers prefer to use Newton’s method, or Secant method namely linear interpolation. In this 
research, quadratic interpolation which resembles Muller’s method is adopted. This new approach is based on 
locally approximating the nonlinear function ( )f x  by a quadratic function ( )g x  and the root of the qua-
dratic function ( )g x  is taken as an improved approximation to the root of the nonlinear function ( )f x . The 
procedure is applied repetitively to convergence. Animasaun [39] stated that three initial approximations W, X, 
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and Y which may or may not bracket the root are required to start the algorithm (see Table 1). The only differ-
ence between this new approach and the Secant method is that ( )g x  is a quadratic function while ( )g x  is a 
linear function in the Secant method. General procedure for fitting a polynomial to a set of equally spaced or 
unequally spaced data. The nth polynomial is 

( ) 1 2 3
0 1 2 3 .n

n nP x a a x a x a x a x= + + + + +                         (22) 

When 1n = , we shall obtain linear polynomial of the form ( ) 1
1 0 1 .P x a a x= +  

When 2n = , we shall obtain Quadratic Polynomial of the form 

( ) 1 2
2 0 1 2 .P x a a x a x= + +                                 (23) 

Using ( ) 1 2
2 0 1 2P x a a x a x= + + , when iW  is guessed, set ix R=  

2
0 1 2 .i iiW a a R a R= + +  

When iX  is guessed, set ix S=  
2

0 1 2 .i iiX a a S a S= + +  

Lastly, when iX  is guessed, set ix T=  
2

0 1 2 .i iiY a a T a T= + +  

Solving for a0, a1 and a2 simultaneously and then substitute into (23) to obtain 

( )

( )( )

2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2

2 2

2 2

2

2

i i i i

i i i i i

i i

i i i i i i i i i i i

i i i i i i

i i i i i i

i i i i i i i

i i i i

i i i

i i

i i i i i i i

i i i i

S Y R T R X S R Y R T X TS W W T S
P x

S T ST R T R S R T R S

Y S S W R X Y R W T XT
x

S T T S S R R T R

T X Y S R Y R X W T W S
S T S T R T

 − − + + −
=  

− + − − + 
 − + − + − +
 − − + − 

− + − + + −
+

− + 2 2
2

2 .
i ii i i i

x
R S R T R S

 
 

− − + 

 

Finally leads to 

( ) ( )2 for 1: .nu p P p i N= =                                (24) 

The procedure is continued till the result of ( )nu p  at N satisfy the desired degree of accuracy. Details can 
be found in [39]. It is worth mentioning that the convergence rate of the new approach of finding roots while 
shooting is faster than the rate of the secant method. Generally speaking, the secant method is specified because 
of its simplicity, even though its convergence rate is slightly smaller than the convergence rate of the new de-
signed method which can be called Muller. The BVP cannot be solved on an infinite interval, and it would be 
impractical to solve it on a very large finite interval. In this research, the author imposed the infinite boundary 
conditions at a finite point of 3η = . To integrate the corresponding IVP, ( )0f ′ , ( )0θ ′  and ( )0φ′  are re-
quire but no such values exist after the non-dimensionalization of the boundary conditions (19) and (20). The 
suitable guess values for ( )0W f ′= , ( )0X θ ′=  and ( )0Y φ′=  are chosen and integration is carried out us-
ing the command under Appendix III. The calculated values for ( )3f η = , ( )3θ η =  and ( )3φ η =  are 
compared with that of boundary condition (20). Adjustment of ( )0W f ′= , ( )0X θ ′=  and ( )0Y φ′=  were 
carried out for better approximation for the solution of Equation (24). Care has been taken to shoot in steps; 
shoots are improved in stages and round off error is avoided by computing with 15 decimal places. Values of 

( )0W f ′= , ( )0X θ ′=  and ( )0Y φ′=  together with conditions in (19) are solved using Runge Kutta Gill  
 
Table 1. Guess values for quadratic interpolation. 

Corresponding values at the boundary = x ( )3 if Rη = =  ( )3 iSθ η = =  ( )3 iTφ η = =  p 

Guess values ( )f x=  ia W=  ib X=  ic Y=  ( )nu p  
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method with h = 0.01. To improve the solutions, quadratic interpolation (Muller’s method) is adopted. The 
above procedure is repeated until we get the results up to the desired degree of accuracy 10−5. The numerical 
solution described above is first written in 27 steps of Algorithm and implemented in a MATLAB environment 
together with Microsoft Excel software for proper analysis and extraction of data. 

4. Results and Discussion 
Numerical computations are carried out for the present problem by employing the similarity solution for ( )f η , 
( )θ η  and ( )φ η  against η  with variations of parameters controlling the fluid dynamics in the flow regime. 

The values of Schmidt number for hydrogen 0.22cS =  at 25˚C and one atmospheric pressure is considered in 
the analysis of the solution. It should be mentioned here that 0aD >  indicates an increase in the destructive 
chemical reaction rate, while 0aD <  corresponds to an increase in generative chemical reaction rate. The val-
ue of the Prandtl number is chosen to be 0.71rP = , which represents air at 25˚C and one atmospheric pressure. 
When modified local thermal Grashof number 0rG >  this corresponds to cooling of the surface and when 

0rG <  this corresponds to heating of the surface. In addition, when modified local solutal Grashof number 
0cG >  this indicates that the chemical species concentration in the free stream region is less than the concen-

tration at the surface/wall and when 0cG <  this indicates that the chemical species concentration in the free 
stream region is greater than the concentration at the surface/wall. From Table 2, it is observed that the conver-
gence rate of linear interpolation (secant method) is slightly smaller than the convergence rate of the new tech-
nique (quadratic interpolation) method which can be referred to as Muller. This result is in good agreement with 
a related result in Hoffman [40]. According to the result, both linear interpolation (Secant Method) and quadratic 
interpolation (Muller’s method) are adopted to solve nonlinear problem (Four-bar linkage problem), it was re-
ported that the convergence rate of Muller’s method is 1.84, which is faster than the 1.62 rate of the secant me-
thod and slower than the 2.0 rate of Newton’s method. Generally speaking, the secant method is preferred be-
cause of its simplicity even though its convergence rate is 1.62. In order to check the computational method for 
numerical accuracy, the author compares a special case of this present study with the numerical data published 
in Table 8 of Sastry and Murti [5]. As shown in Table 2 below, the results obtained are in good agreement. It is 
important to remark that due to the kind of fluid under consideration, using 1ξ > , 1λ >  the state of the fluid 
can not be changed from liquid to gas. 

Figure 1 illustrates the influence of temperature dependent variable fluid viscosity and thermal conductivity 
on the fluid as it flows vertically upward past a moving surface through binary mixture in the presence of space 
dependent heat source. When modified buoyancy parameters ( ), 0r cG G < , it is observed that as (ξ and λ) in-
creases, the velocity asymptotically decreases near the vertical wall to a point near free stream and satisfies 
boundary condition. It is also seen that the velocity profile when ( )5ξ λ= =  greatly over shoot downward and 
tends to have negative values of velocity within 0.5 2η≤ < . This result implies that, at a constant value of (b 
and δ) and 1r cG G= = − , increase in ( wbTξ =  and wTλ δ= ) generates heat energy which can never subdue  
 

Table 2. Comparison of the values of Cf with Sastry and Murti [2] using ( 0ξ λ τ χ= = = = , 0.1r r
w

G Gξ
θ
 

= = 
 

, 

0.1c c
w

G Gξ
φ
 

= = 
 

, 0.1aD = , 0.1ω = , 0.1w wθ φ= = , 0.1aR = , 0.71rP = , 0.22cS = , 1h n= = . 

 ( )0 0.1f c′ =  in Sastry  
and Murti [5] 

Using shooting method along  
with quadratic interpolation 

present ( )0 0.1f c′ =  

Using shooting method along  
with linear interpolation 
present ( )0 0.1f c′ =  

5M =  −2.635097137 −2.635097136618 −2.6314758242887 

10M =  −3.475594470 −3.4755944595667 −3.4738132412511 

 ( )0 0.1f c′ =  ( )0f ′  when 0.1c = −  ( )0f ′  when 0.1c = −  

5M =  −2.418368678 −2.418368675767 −2.418388801774 

10M =  −3.265944783 −3.265944783052 −3.265943456084 
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(a)                                                        (b) 

Figure 1. Effects of variable thermo-physical properties on (a) velocity profiles and (b) temperature profiles when Gr = Gc 
= −1. 

 
corresponding influence of cooling of the fluid at the surface. This account for a drastic increase in the viscosity 
of the fluid as it flows (see Figure 1(a)). It is worth mentioning that at a constant value of space heat source pa-
rameters ( 0.5χ = , 1g = ), as (ξ and λ) increases, the corresponding increase in heat energy tends to increase the 
temperature within the fluid domain. This account for the increase in temperature in the fluid domain as it flows 
(see Figure 1(b)). This also account for the decrease in the local skin friction coefficient ( )0f ′  as magnitude 
of (ξ and λ) increases (see Figure 4). In order to further unravel the dynamic of fluid as it flows past a moving 
surface through binary mixture when variable thermo-physical properties is considered, a case where 

0.1r cG G= =  is investigated. 
It is observed that as (ξ and λ) increases, the velocity profiles decreases near the vertical wall ( )0 0.2η≤ ≤  

and increases significantly thereafter as 3η →  (see Figure 2(a)). This result is true since the rate of cooling of 
the surface has been reduced. This result also account for negligible increase of local skin friction coefficient 

( )0f ′  with an increase in (ξ and λ) (see Figure 4). It is further observed that the temperature profiles increases 
with an increase in (ξ and λ). As the fluid rises along the vertical surface, it becomes cooled by the surface in the 
process. Due to this, influence of increasing (ξ and λ) is subdued near the wall. Few distances away from the 
wall, influence of increasing variable thermo-physical parameters (i.e. temperature dependent viscosity and 
thermal conductivity) enhances the transport phenomena. The variations of ( )f η′  known as velocity profiles 
along η  with different values of (ξ and λ) are plotted in Figure 3 when 1r cG G= = . It is seen that the increase 
of both (ξ and λ) leads to significant increase of velocity profiles at all points within 0 2.5η≤ < . When the fluid 
heats up, it’s molecules become excited and begin to move. The energy of this movement is enough to overcome 
the forces that bind the molecules together, allowing the fluid to move faster and decreasing its viscosity; hence, 
the velocity increases significantly from the wall 0η =  to a point near the free stream with an increase in the 
magnitude of (ξ and λ). This account for the reason why local skin friction coefficient ( )0f ′  is an increasing 
function of (ξ and λ) as shown in Figure 4. 

Figure 5(a) represents the velocity profiles for different values of magnetic field parameter (M). It is observed 
that velocity profile is a decreasing function of M. The magnetic field parameter represents the importance of 
magnetic field on the fluid as it flows vertically upward past a surface moving through binary mixture. The 
presence of transverse magnetic field sets in Lorentz force, which results in retarding force on the velocity field 
and therefore as magnetic field parameter increases, so does the retarding force. This account for the decrease in 
the velocity profiles. When variable thermo-physical properties are properly accounted for (i.e. 2ξ λ= = ), it is 
observed that ( )0f ′  which is related to skin friction coefficient decreases with magnetic field parameter (M) 
and increases with buoyancy parameters (Gr and Gc) (see Figure 5(b)). Figure 6(a) depicts the velocity profiles 
for different values of suction parameter. It is observed that the momentum boundary layer thickness and veloc-
ity distribution decreases with increase in suction (c > 0). This is in agreement with the usual fact that suction 
stabilize the boundary layer growth, as reported by (Makinde and Olanrewaju [4]; Alam and Rahman [41]). 
Wall suction removes the low-momentum fluid and delays both transition and separation. The effect of suction  
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(a)                                                        (b) 

Figure 2. Effects of variable thermo-physical properties on (a) velocity profiles and (b) temperature profiles when Gr = Gc 
= 0.1. 

 

    
(a)                                                        (b) 

Figure 3. Effects of variable thermo-physical properties on (a) velocity profiles and (b) temperature profiles when Gr = Gc 
= 1. 

 

 
Figure 4. Variation of Skin friction coefficient for different 
values of variable thermo-physical properties (viscosity and 
thermal conductivity) together with Gr and Gc. 
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(a)                                                        (b) 

Figure 5. (a) Effects of magnetic field parameter on velocity; (b) Variation of skin friction coefficient for different values 
of magnetic field parameter against buoyancy parameters (Gr and Gc). 

 

    
(a)                                                        (b) 

Figure 6. Effects of Suction parameter on (a) velocity profiles and (b) temperature profiles when variable thermo-physical 
properties are accounted for (i.e. ξ = λ = 2). 

 
parameter on the fluid temperature is highlighted in Figure 6(b). It is observed that the fluid temperature de-
creases near the wall and increases negligibly far from the wall. As the flow develops along a vertical surface 
moving through binary mixture, one way of dealing with boundary layer transition (flow separation) is to suck 
the thin boundary layer through the vertical porous surface. As this method reduces drag, heat energy escaped 
away from the flow regime; hence the temperature reduces as magnitude of suction increases. 

As we all know in thermal science that heat energy migrates from region of high temperature to region of low 
temperature, this account for the reason why temperature profiles over shoot downward towards the region of 
low heat energy within the fluid domain as shown in Figure 6(b). The effect of suction parameter on the chem-
ical species concentration in the boundary is depicted in Figure 7(a). From this figure, it is seen that the species 
concentration within the boundary layer decreases with an increase in the magnitude of c. Figure 7(b) displays 
the effect of τ over concentration profile when 1.5ξ = , 1.5λ = , 0.22cS = ; it is observed that solutal boundary 
layer decreases with an increasing values of parameter𝜏𝜏. This can be interpreted as follows; when all the small 
particles are suspended in the fluid domain and temperature gradient exists, all the particles experienced a force 
which pushes the particles towards the free stream (area of low heat energy). In particular, the effect of increas-
ing the thermophoretic parameter τ is limited to decreasing the concentration profiles. This is true only for small 
values of Schmidt number for which the Brownian diffusion effect is large compared to the convection effect. 
The thermophoretic parameter is expected to alter the concentration boundary layer significantly. The effect of 
increasing τ in this research where ( )0 2φ = , ( )3 1φ =  is in good agreement with that of [31] where ( )0 1φ = , 
( )4 0φ′ =  in which concentration profiles decreases with an increase in thermophoretic parameter. 
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(a)                                                        (b) 

Figure 7. (a) Effects of Suction parameter “c” and (b) Effects of thermophoretic parameter “τ” on concentration profiles 
when variable thermo-physical properties are accounted for (i.e. ξ = λ = 2). 

5. Concluding Remarks 
In this paper, effects of thermo-physical properties on unsteady convective flow with thermophoresis of particles, 
chemical reaction and radiative heat transfer past a porous vertical plate moving through a binary mixture are 
investigated. Quadratic interpolation technique is introduced with the fourth order Runge-Kutta Gill scheme to 
form shooting method. The following conclusions can be drawn as a result of the computation and analysis: 

1) Velocity increases with increasing value of ξ when ( ), 0r cG G  ; velocity decreases with increasing val-
ues of ξ when ( ), 0r cG G  . The two effects exist when 0.1r cG G= = . 

2) Within the boundary layer of the problem considered, the effect of increasing suction (c > 0) leads to de-
crease of velocity, temperature (near the wall only) and concentration profiles. 

3) Increase in thermophoretic parameter (τ) leads to significant decrease in concentration profiles. 
4) Local skin friction coefficient is a decreasing function of magnetic field parameter at all values of buoyan-

cy parameter within ( )1 , 1r cG G− ≤ ≤ . When variable thermo-physical properties are accounted for in transport 
phenomena of fluid flow along a vertical surface moving through binary mixture in the presence of exponential 
heat source, Grashof number related to thermal and solutal is an important yard stick to control skin friction drag 
which arises from the friction of the fluid against the skin of the vertical surface that is moving through binary 
mixture. The convergence rate of the new approach (Quadratic Interpolation) of finding roots while shooting is 
faster than the rate of the secant method (Linear Interpolation). 
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Appendix I 
function [eta,y] = Rungekgill(t0,tf,y0,f,n) 
m = sqrt(2);  
h = (t0 − tf)/n;  % In this study, t0 = 0 and tf = 3 
t = linspace(t0,tf,n+1); % To discretize the independent variable “η” 
y(1,:) = y0;   % y0 is known as initial conditions in column vector 
for i = 1: n;   % here n = 300, implies that stepsize h = 0.01 

k1 = h*feval(f,t(i),y(i,:)); 
k2 = h*feval(f,t(i)+(h/2),y(i,:)+(k1/2)); 
k3 = h*feval(f,t(i)+(h/2),y(i,:)+(m-1)*(k1/2)+(m-1)*(k2/m)); 
k4 = h*feval(f,t(i)+h,y(i,:)-(k2/m)+(m+1)*k3/m); 

y(i+1,:) = y(i,:)+(k1)/6+((k2)*(2-m))/6+((k3)*(2+m))/6+(k4)/6; 
end 

Appendix II 
function dy = AnimasaunOJFD(eta,y) 
xi = 2; lamda = 2; c = 2.5; Gr = 1; Gc = 1; Da = 0.1; omega = 0.1; thetaw = 2; phiw = 2; 
Ra = 0.5; M = 1; Pr = 0.71; Sc = 0.22; tau = 4; h = 1; n = 1; chi = 0.5; g = 1; 
dy(1) = y(2); 
dy(2) = ((xi/thetaw)*y(4)*y(2)-2*(eta+c)*y(2)-Gr*(xi/thetaw)*(y(3)-1)-Gc*(xi/phiw)*(y(5)-1)+M*y(1))/ 
(1+ xi - (y(3)*xi)/thetaw); 
dy(3) = y(4); 
dy(4) =(-(lamda/thetaw)*y(4)*y(4) - 2*Pr*(eta+c)*y(4) - (exp(omega - (omega/y(3))))*Da*Pr*h*(y(5))^n +  
Ra*Pr*y(3)*y(3)*y(3)*y(3)- 4*chi*(y(3)-1 )*exp(-g*eta))/(1+((lamda*y(3))/thetaw)-(lamda/thetaw)) ; 
dy(5) = y(6); 
dy(6) = - Sc*2* (eta+c)*y(6)+(exp(omega-(omega/y(3))))*Da*Sc*(y(5))^n+Sc*(tau/thetaw)*y(4)*y(6) +   
Sc*(tau/thetaw)*(y(5)-1)*((-(lamda/thetaw)*y(4)*y(4)-2*Pr*(eta+c)*y(4)-(exp(omega-(omega/   
y(3))))*Da*Pr*h*(y(5))^n+Ra*Pr*y(3)*y(3)*y(3)*y(3)- 4*chi*(y(3)-1 )*exp(-g*eta))/(1 +   
((lamda*y(3))/thetaw)-(lamda/thetaw))); 

Appendix III 
Them-files “Rungekgill”and “AnimasaunOJFD” must be in the same folder, and then patch with MATLAB 
command window.Lastly, paste the command below on Command window. 
>>[eta,y]=Rungekgill(0,3,[1;a;2;b;2;c],'AnimasaunOJFD',300) % Assign values for a, b and c. 
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