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Abstract 
We consider the problem of population estimation using capture-recapture data, where capture 
probabilities can vary between sampling occasions and behavioural responses. The original model 
is not identifiable without further restrictions. The novelty of this article is to expand the current 
research practice by developing a hierarchical Bayesian approach with the assumption that the 
odds of recapture bears a constant relationship to the odds of initial capture. A real-data example 
of deer mice population is given to illustrate the proposed method. Three simulation studies are 
developed to inspect the performance of the proposed Bayesian estimates. Compared with the 
maximum likelihood estimates discussed in Chao et al. (2000), the hierarchical Bayesian estimate 
provides reasonably better population estimation with less mean square error; moreover, it is 
sturdy to underline relationship between the initial and re-capture probabilities. The sensitivity 
study shows that the proposed Bayesian approach is robust to the choice of hyper-parameters. 
The third simulation study reveals that both relative bias and relative RMSE approach zero as 
population size increases. A R-package is developed and used in both data example and simulation. 
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1. Introduction 
The capture-recapture sampling methods were originally designed to estimate wildlife populations. They are 
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now widely applied to numerous areas, such as biology and ecology for estimating animal and plant populations, 
sociology and demography for estimating the size of the population at risks, official statistics for census under-
count procedures, economics and finance in credit scoring and fraud detection, and so on. Varieties of methods 
have been developed to analyse these models, such as maximum likelihood [1]-[6], moment methods based on 
sample coverage [7]-[9], martingales [10]-[12], and Bayesian methods [13]-[23], and so forth. With the rapid 
growth in both methodology and application, the literature on capture-recapture analysis is tremendously mas-
sive. For a comprehensive literature review on capture-recapture models, see [24]-[29]. 

In this paper, we focus on inferences for the closed population capture-recapture experiment with capture 
probabilities being assumed to vary with time (or sampling occasion) and behavioral response. This model was 
originally proposed by Pollock in his doctoral dissertation (1974), and was referred to as the model tbM  in the 
literature, where the subscript t denotes the time (or sampling occasions) and b denotes the behavioral response; 
see Otis et al. [5]. The behavioral response means that animals change their behavior after their initial captures. 
Animals might become “trap-happy” if being caught is rewarding (getting food from a baited trap, for example) 
or “trap-shy” if being caught is traumatic (having a plastic tag stapled through the ear, for example). The model 

tbM  assumes that on a given sampling occasion all unmarked animals have one probability of capture and all 
marked animals have another probability of capture, and it assumes that these probabilities vary from one sam-
pling occasion to another. 

The model tbM  is important in practice because animals often exhibit a behavioural response to capture. 
This model has been selected as the most likely model in some population-estimation studies obw78, pnbh90. 
The original tbM  model is not identifiable without further restrictions on the parameters because the number of 
unknown parameters is more than that of the minimal sufficient statistics. In order to make the parameters es-
timable, one may assume that at least two of the capture probabilities are equal. However, there is no biological 
justification for making such an assumption [5]. Tanaka [30] [31] suggested a regression procedure, which had 
serious problems of interpretation [32]. Another assumption considered by Otis et al. [5] is that the ratio of the 
recapture probability to the initial capture probability is a constant. Chao et al. [2] derived the unconditional 
MLE (UMLE), the conditional MLE (CMLE) and the maximum quasi-likelihood (MQLE) estimators under this 
assumption without putting a minimal constraint on the constant ratio to ensure that neither initial nor recapture 
probabilities exceed 1.0. Under the same constant ratio assumption and with the minimal constraint of the con-
stant ratio embedding in the MCMC, Lee and Chen [20] and Lee et al. [21] derived Bayes estimate by applying 
Beta prior to the initial capture probability and Uniform prior on the constant ratio. The results show that the 
performance of the estimate often depends on the choice of the hyper-parameters in the prior distributions. [19] 
proposed a Bayesian analysis of all eight closed population capture-recapture models within a logistic regression 
frame work. The method was illustrated through two real data samples, and the results are compared with those 
from MARK, which is a free software for capture-recapture data using classical MLE approach. Unfortunately, 
neither data set was determined to be suitable to the model tbM , and the merit of the method with the model 

tbM  remains undiscovered. Also, there is no discussion about the performance of the Bayes estimates with dif-
ferent possible of capture probabilities and/or different population sizes. Regarding the prior specification, [19] 
performs a limited prior sensitivity analysis in the second example and concludes that the different prior speci-
fication has relatively little influence on the final estimation. However, in the same example, it also points out 
that “the prior specified on the individual variance component appeared to be somewhat restrictive in this case, 
with values supported by the data having relatively small prior mass”. Therefore, the choice of the hyper-para- 
meter remains ambiguous. We are thus motivated to explore more reasonable restrictions to deal with the 
non-identification, and to find more robust population estimation of the model tbM  in the Bayesian framework 
with more objective prior distribution, and the results are compared to the state-of-art MLE as proposed in [2]. 

R is a free software programming language and software environment for statistical computing and graphics. 
The R language is widely used among statisticians and data miners for developing statistical software and data 
analysis. In this paper, a R-package named sbmtb is created and used within the data analysis and simulation 
studies. 

In this paper, we assume that the odds ratio of recapture probability and initial probability is a constant, as 
was initially proposed by Wang [22] in her doctoral dissertation; hierarchical prior distributions with vague in-
formation are assigned to the unknown parameters after logistic transformation; and Markov chain Monte Carlo 
(MCMC) methods are used to implement the Bayesian computation. The MCMC methods allow us to construct 
an ergodic Markov chain with stationary posterior distribution and, furthermore, to obtain the posterior quanti-
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ties of the parameters of interest. Full conditional distributions are used in the MCMC methods to obtain ap-
proximations of the posterior distributions and Bayes estimates of the posterior quantities of unknown parame- 
ters. 

Otis et al. [5] provides an interesting data set on the deer mice study that was also used by Chao et al. [2] Al-
together, there are 110 distinct mice caught out of 283 captures in 5 consecutive days. This same data set is used 
here to illustrate the proposed Bayesian approach of population estimation. 

Simulation studies are conducted to confirm the findings in the example, and to examine the performance of 
the proposed Bayesian approach. Compared with the state-of-the-art maximum likelihood estimates derived by 
Chao et al. [2], the proposed Bayesian estimates provide a relative comparable population estimation with 
smaller standard error and mean square error, especially when the overall capture probability is low. In addition, 
the Bayesian estimate relies little on the underlying relationship between initial and recapture probabilities. An 
intensive prior sensitivity study shows that the proposed Bayesian inference remains robust with different values 
of prior distributions. The third simulation study shows some of the asymptotic properties of the proposed Bayes 
estimate such that both relative bias and mean square error fade away as the population size increases. 

In Section 2.1, we briefly review the problem of non-identifiability and propose a novel restriction, in which 
the odds ratio of recapture probability and initial probability is a constant. In Section 2.2, we apply the hierar-
chical prior to the unknown parameters in the model, and put forward a objective approach to determine the hy-
per-parameters in the prior distributions. In Section 2.3, we derive full conditional posterior distributions of the 
unknown parameters for the MCMC algorithm. In Section 3, we use a real data example to illustrate the pro-
posed Bayesian hierarchical estimation approach. In Section 4, we conduct simulation studies to examine the 
performance of the proposed Bayesian approaches. In Section 5, we conclude and give remarks. 

2. Bayesian Analysis of Model tbM  
2.1. Likelihood Function 
We assume that the population size is N, and there are k sampling occasions. On the thj  sampling occasion, let 

0jp  denote the initial capture probability, or the probability of an unmarked animal being captured on the thj  
sampling occasion, and 1jp  be the recapture probability, or the probability of a marked animal being captured. 
The likelihood proposed by [5] for the model tbM  is 

( ) ( ) ( ){ } ( ){ }1
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!

j j jj j
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where ( )0 10 0, , kp p ′=p  , ( )1 21 1, , kp p ′=p  , ju  is the number of unmarked animals being captured on the 
thj  sampling occasion, jm  is the number of marked animals being recaptured on the thj  sampling occasion,  

1
1

j

j j
l
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=

= ∑  is the total number of marked animals in the population when the ( )1 thj +  sample is taken, and  

1kM +  is the number of distinct animals being captured during the experiment period. In this model, N, 0p  and 
1p  are the 2k unknown parameters. The likelihood Function (1) is over-parameterized because there is a total of 

2k unknown parameters, but the minimal sufficient statistic is ( )1 2, , , , ,k ku u m m  , which has dimensions of 
2 1k − . Therefore, the model is non-identifiable with more parameters than data values unless some restrictions 
are made to the parameters. 

We propose a restriction based on the odds of initial capture and recapture, as is initially discussed in [22] 
(unpublished doctoral dissertation). Odds (in favor of an event) is defined as the ratio of the probability that the 
event will happen to the probability that the event will not happen. It is an expression of relative probabilities, 
which other research studies have found to be more convenient to use than probabilities. We assume that the 
odds of recapture bears a constant relationship to the odds of initial capture, i.e., 
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This assumption says that on a given sampling occasion, the odds of recapture is proportional to that of the in-
itial capture. In a “trap happy” situation, the proportion r is greater than 1.0, and in a “trap shy” situation, r is 
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less than 1.0. When there is no behavioural response, 1.0r = . 
Comparing the proposed constraint with the constant ratio constraint, which presumes that 1 0j jp pθ= , we 

found that the proposed constant odds ratio assumption is more convenient and practical because there is no 
need for another layer of constraint on the constant ratio to ensure that neither initial capture nor recapture 
probabilities exceed 1.0. The constant odds ratio r can be allowed to range from 0 to ∞ , naturally. Apply logis-
tic transformations to (2), and let 

( )logc r=  
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The Equation (2) then becomes 

1 0 ,       2, ,j jc j kη η= + =                                 (3) 

with ( )0 ,jη ∈ −∞ ∞ , 1, 2, ,j k=  , ( )1 ,jη ∈ −∞ ∞ , 2,3, ,j k=  , and ( ),c∈ −∞ ∞ . In a “trap happy” situa-
tion, 0c > . On the contrary, in a “trap shy” situation, 0c < . When there is no behavioral response, 0c = . In 
addition, all parameters now range from −∞  to ∞ . It is worth mentioning that Equation (3) is similar to the 
model tbM  in [19] but the parameters here bear more meaningful practical interpretation. 

Let 1 0M =  and 1 0m =  then the likelihood Function (1) can be written as 

( ) ( )
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where j j jn m u= +  is the number of subjects caught in the thj  sampling occasion. Denote ( )10 0, , kη η= η , 
and (4) is the likelihood function of ( ), ,N cη . In this likelihood function, there are 2k +  unknown parameters, 
and the number of minimal sufficient statistics is 2 1k − . If 2 1 2k k− ≥ + , i.e., 3k ≥ , all unknown parameters 
are estimable by the capture history data. 

2.2. Priors 
We apply Bayesian approaches to the re-parametrized likelihood Function (4) to estimate the population size N 
with the hierarchical prior. For 0jη , a Normal distribution prior is applied in the first stage, i.e., 

( )
. . .

0 0 0, ,  1, ,
i i d

j N j kη µ δ =                                (5) 

In the second stage, another Normal distribution prior is applied to 0µ , and an Inverse Gamma distribution 
prior is used for 0δ , i.e., 

( )2
0 0 0,Nµ ν τ                                    (6) 

and 
( )0 0 0IG ,a aδ                                     (7) 

where 0ν , 0τ , and 0a  are predetermined hyper-parameters. 
The prior distribution of c  is assumed to be normal, i.e., 

( )1 1, c N µ δ                                     (8) 

where 1µ  and 1δ  are further assumed to have the following distributions. 

( )2
1 1 1,Nµ ν τ                                    (9) 
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and 
( )1 1 1IG ,a aδ                                     (10) 

where 1ν , 1τ , and 1a  are predetermined hyper-parameters. 
The hyper-parameters are chosen using vague information as follows. If the initial capture probability is as-

sumed to be between 10 l−  and 1 10 l−− , with 1l ≥ , then the range of sη′  will be roughly between l−  and 
l . By applying the 3σ  or empirical rule, the expected value of the standard deviation of sη′  is around 3l , 
namely the expected value of 0δ  is about 2 9l . Note that 0δ  is assumed to have a ( )0 0IG ,a a  with a mean 
of ( )0 0 1a a − . Let ( ) 2

0 0 1 9a a l− =  then we have ( )2 2
0 9a l l= − . It is adequate in practice to presume that 

0jp  ranging between 0.0001 and 0.9999, which results in 0'j sη  varying from −4 to +4. Thus, it is sufficient to 
assume the mean 0µ  has a standard normal distribution with 0 0ν =  and 0 1τ = , and the expected standard 
deviation is about 1.33, which indicates 0a  is about 2. With similar arguments, we set 1 0ν = , 1 1τ = , and 

1 2a = . 
For the prior distribution of N, the Poisson-Gamma type of hierarchical prior is a popular choice in the litera-

ture [33]-[37]. In the first stage, the unknown population size N is assumed to have a Poisson distribution with 
mean λ , i.e., 

( )PoisN λ                                      (11) 

In the second stage, λ  is assumed to have a Gamma distribution with hyper-parameters 1α  and 1β , i.e., 

( )1 1Gamma ,λ α β                                   (12) 

The marginal prior distribution of N , which is obtained by integrating over λ , is 
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In the situation where little information about λ  is available, a vague prior distribution is desired. When 
1 0α →  and 1 0β → , the prior distribution of λ  satisfies ( ) 1π λ λ→  and the marginal prior of N satisfies 
( ) 1N Nπ → . Notice that ( ) 1N Nπ ∝  is an improper prior. The propriety of using this prior needs to be stu-

died. In later discussion, we choose 1α  and ( )1 0β >  close to 0, e.g., 2
1 10α −=  and 4

1 10β −= . 

2.3. Bayesian Computation 
The population size N is the parameter of interest. Under the square error loss function, the posterior mean is the 
Bayesian estimator. However, the closed form expression of the posterior distribution of N is not easy to achieve. 
Therefore, we will use Markov chain Monte Carlo (MCMC) methods to obtain numerical solutions. In order to 
implement the MCMC procedure, it is necessary to have the full conditional posterior distributions, which are 
the conditional distributions of one parameter given all the other unknown parameters and data. 

The full conditional posterior distributions of ( )0 0, , , , ,N c µ δ λη  given capture history X  are as follows: 
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The conditional distributions of c  and η  do not have common statistical distribution forms. Gilk [38] pro-
posed an adaptive-reject method to sample from a log-concave density up to a normalizing constant. It can be 
shown that the conditional density functions [ ]0 0 0, , , , , ,j jN cη µ δ λ−

 
 Xη , 1, ,j k=   are all log-concave, and  

the conditional density function 0 0, , , , ,c N µ δ λ  Xη  is log-concave. 

3. Real Data Examples 
Otis et al. [5] provides an interesting data set of deer mice. The data were collected by S. Hoffman (pers. comm.) 
in mid-July 1974. Trapping was on 5 consecutive mornings, and 110 distinct mice were caught. It is assumed 
that there exists time and behavioural response of capture. The summary statistics are presented in Table 1. This 
data set is also used in Chao et al. [2], Lee and Chen [20], Lee et al. [5]. 

We use a Gibbs sampler in the R-package to implement the Bayesian computation. The burn-in stage is 15,000 
iterations. The samples from the next 10,000 iterations are taken to construct the approximate posterior distribu-
tion of N. The Bayesian estimate of the population size N is ˆ 160BN = , with a standard error of 34.20. The three 
types of maximum likelihood estimates in Chao et al. [2] are UMLE

ˆ 161N = , CMLE
ˆ 173N = , and MQLE

ˆ 152N = , 
with standard errors 42.79, 45.25 and 29.94, respectively. Lee and Chen [20] and Lee et al. [5] obtained similar 
results as Chao et al. [2] by adjusting the values of hyper-parameters with a trial-and-error method. 

The Bayesian estimate is very similar to the UMLE with a smaller standard error. It is also smaller than the 
CMLE, with a smaller standard error and is greater than the QMLE with a slightly greater standard error. The 
Bayesian estimates of initial capture probabilities are also computed as 1ˆ 0.2406p = , 2ˆ 0.2558p = , 3ˆ 0.2119p = , 

4ˆ 0.2301p = , 5ˆ 0.2118p = , and ˆ 1.7917c = . The initial capture probabilities are between 0.20 and 0.25, with 
overall catchability, which is the probability that a subject being captured at least once, around 0.73. As con-
cluded by Chao et al. [2], when the overall catchability is high, the UMLE is preferable to the other two MLE 
estimates. Our Bayesian estimate of the deer mice population size is mostly close to the UMLE with a smaller 
standard error; hence, it is more desirable than the later one. 

It is worth noting that the estimated behavioural effect ˆ 1.7917c =  is greater than 0, which implies animals 
have a trap-happy response. This is consistent with the data since there are more recaptures than the initial cap-
tures on most sampling occasions. 
 

Table 1. Summary data of deer mice example. 

 Time j 1 2 3 4 5 

Had been caught Mj 0 37 68 77 98 

Newly caught uj 37 31 9 21 12 

Marked caught mj 0 23 49 44 57 

Total caught nj 37 54 58 65 69 
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4. Simulation Studies 
Chao et al. [2] reports a simulation study with the true population size of 400 and 8 different initial capture 
probabilities, with the recapture probabilities being calculated as 1 01.5j jp p= . Here, we use the same true pop-
ulation size and the initial capture and recapture probabilities as in Chao et al. [2]. Together with the overall 
catchability, the values of the initial capture probabilities and recapture probabilities are listed in Table 2. 

Several frequentist quantities are considered, such as bias, relative bias (which is the ratio of bias to the true 
population size), root mean square error (RMSE), and relative RMSE (which is the ratio of RMSE to the true 
population size) of Bayesian estimates of the population size. Suppose ˆ

BN  is a Bayesian estimate of the popu-
lation size N . The frequentist bias is the expected deviation between the estimate and the true value, i.e., 
( )ˆ

BE N N− . Though unbiasness is an attractive property, it does not take into consideration the variation asso-
ciated with the estimator. The MSE is the frequentist expected squared deviation between the true value and the 
estimate, i.e., ( )2ˆ

BE N N− . It can be theoretically decomposed into a sum of the squared bias and variance of 
the estimator. Ideally, we would like to have an estimator with small bias and variance. However, it is also 
common in practice to trade off some increase in bias for a larger decrease in the variance and vice-versa so that 
a relatively smaller MSE can be achieved. 

In the simulation, we generate capture histories 1000 times under each set of true parameters. The results of 
bias, relative biases (in parenthesis), RMSE, and relative RMSE (in parenthesis) are listed in Table 3. When the 
mean catchability is relatively low (cases 1 - 4), in terms of bias and relative bias, Bayesian estimates are very 
close to the two preferred MLE’s (CMLE and MQLE) in Chao et al. [2]; while, Bayesian estimates consistently 
have smaller RMSE’s than the three MLE’s. In case 3, the bias of the Bayesian estimate is slightly greater than 
the MQLE with about 4% difference; however, there is about 10% of drop in RMSE when using the Bayesian 
estimate. As previously mentioned, when it comes down to practice, it is not uncommon to trade off some in-
crease in bias for a larger decrease in the variance. Therefore, we would prefer the Bayesian estimate to the 
MLE’s in these cases. When there is a sufficient number of captures (cases 5 - 8), according to Chao et al. [2], 
the UMLE is preferable to the other two estimators. Compared with the UMLE in these cases, the Bayesian ap-
proach yields comparable estimates in cases 5 and 8 with less RMSE. In case 7, the Bayesian estimate has a 
slightly larger bias than the UMLE, with a difference of less than 3%, but the RMSE dropped more than 3%. In 
case 6, the Bayesian estimate has a slightly larger bias with similar RMSE than the UMLE. Given the fact that 
the Bayesian estimates always provide a smaller RMSE than the three MLE’s with comparable or slightly larger 
bias, we would conclude that the proposed Bayesian approach provides reasonably better estimation than the 
three MLE’s. 

It is worth mentioning that the simulated data was based on the constant ratio of initial and re-capture proba-
bilities as in Chao et al. [2] rather than the constant odds ratio as we proposed. The conclusion that Bayesian es-
timates still outperform the MLE’s, to a certain extent, indicates that the former one is robust to the constraints 
between the initial and recapture probabilities. 

An usual difficulty of the Bayesian analysis is the need to specify prior distributions when little information is 
available for guidance. Here, we will examine how the proposed Bayesian inference is influenced by the choice 

 
Table 2. Capture probabilities and behavioural effect parameter in simulation study I. 

Cases Initial Capture Probabilities Overall Catchability 

1 0.17 0.15 0.12 0.1 0.12 0.5083 

2 0.12 0.16 0.2 0.12 0.16 0.5629 

3 0.2 0.17 0.25 0.15 0.12 0.6275 

4 0.2 0.2 0.15 0.24 0.24 0.6858 

5 0.3 0.25 0.15 0.2 0.3 0.7501 

6 0.23 0.28 0.35 0.31 0.25 0.8135 

7 0.38 0.22 0.34 0.3 0.44 0.8748 

8 0.45 0.4 0.4 0.4 0.45 0.9347 
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Table 3. Comparison of bayesian estimations with MLE’s. 

Case Estimator N̂  Bias (%) RMSE (%) Case Estimator N̂  Bias (%) RMSE (%) 

1 

BAYES 332 −68 (−17.00) 87.4 (21.85) 

5 

BAYES 393 −7 (−1.75) 41.5 (10.38) 

UMLE 305 −95 (−23.75) 111.5 (27.88) UMLE 400 0 (0.00) 63.9 (15.98) 

CMLE 344 −56 (−14.00) 101.2 (25.30) CMLE 417 17 (4.25) 79.9 (19.98) 

MQLE 337 −63 (−15.75) 101.6 (25.40) MQLE 413 13 (3.25) 75.4 (18.85) 

2 

BAYES 373 −27 (−6.75) 61.5 (15.38) 

6 

BAYES 413 13 (3.25) 40.8 (10.20) 

UMLE 354 −46 (−11.50) 90.3 (22.58) UMLE 403 3 (0.75) 38.2 (9.55) 

CMLE 387 −13 (−3.25) 103.7 (25.93) CMLE 409 9 (2.25) 42.4 (10.60) 

MQLE 381 −19 (−4.75) 99.4 (24.85) MQLE 407 7 (1.75) 41 (10.25) 

3 

BAYES 384 −16 (−4.00) 55.5 (13.88) 

7 

BAYES 389 −11 (−2.75) 19.2 (4.80) 

UMLE 382 −18 (−4.50) 78.7 (19.68) UMLE 401 1 (0.25) 29.3 (7.33) 

CMLE 407 7 (1.75) 99 (24.75) CMLE 406 6 (1.50) 33.3 (8.33) 

MQLE 402 2 (0.50) 95.2 (23.80) MQLE 405 5 (1.25) 32.3 (8.08) 

4 

BAYES 397 −3 (−0.75) 50.9 (12.73) 

8 

BAYES 399 −1 (−0.25) 11.3 (2.83) 

UMLE 390 −10 (−2.50) 70.5 (17.63) UMLE 400 0 (0.00) 11.6 (2.90) 

CMLE 411 11 (2.75) 87.4 (21.85) CMLE 402 2 (0.50) 12.4 (3.10) 

MQLE 406 6 (1.50) 83.2 (20.80) MQLE 401 1 (0.25) 12.1 (3.03) 

 
of different values of the hyper-parameters of the prior distribution. As described in Section 2.2, the presumed 
range of the capture probability is utilized to determine the value of hyper-parameters 0a  and 1a . A sensitivity 
study is carried out with 5, 6,7, 8l = , and 0 1 1.56, 1.33, 1.23, 1.16a a= = , correspondingly and respectively. 
Resulting Bayesian estimates are listed in Table 4, which shows that the proposed Bayesian estimate is robust 
with the choices of the presumed range of the capture probability. When initial capture probability is low (case 
1), the discrepancy of Bayesian population estimates with various hyper-parameters is less than 2.5%. The dif-
ference decreases as the initial capture probability rises. That means the impact of the prior declines as data in-
formation accumulates. When the initial capture probability is high (case 8), Bayesian inferences of population 
sizes under different hyper-parameters are almost identical to each other. 

The third simulation study examines the performance of the Bayesian estimation with different population 
sizes from 100 to 1000. We use the initial capture probabilities in cases 1, 2, and 8 in Table 2, representing low, 
medium low, and high capture probabilities, respectively. The behavioural effect parameter c  is set to be −1 
for a trap shy situation, and 1 for a trap happy one. In each simulation case, we generate the capture histories 
1000 times. The resulting relative biases and relative RMSE are shown in Figure 1. The plot indicates that rela-
tive biases of Bayesian population estimates declines as initial catchability and/or population size increases. 
When initial capture probabilities are low, the Bayesian approach produces population estimates with negative 
biases. When initial capture probabilities are medium low, the Bayesian approach underestimates the population, 
but the relative biases approach zero very quickly as the population size increases. When initial capture proba-
bilities are high, the Bayesian estimate slightly overestimates the population size, and relative biases are very 
close to zero even with small population sizes. Also, the Bayesian approach produces smaller biases in trap 
happy situations than in trap shy ones. It is worth pointing out that, as listed in Table 2, the overall initial cat-
chabilty in case 2 is just a little more than that of case 1. Therefore, we would say that, in most cases, the relative 
bias of the Bayesian estimate approaches zero as population size increases. Figure 1 also shows that relative 
RMSE drops off as the population size and/or catchability increases. 
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Table 4. Sensitivity of the bayes estimation to the specification of the prior probability distributions. 

l = 5, a0 = a1 = 1:56 l = 6, a0 = a1 = 1:33 

Case N̂  Bias SE RMSE Case N̂  Bias SE RMSE 

1 336.4354 −63.5646 58.7231 86.5183 1 328.7168 −71.2832 51.402 87.8682 

2 384.0752 −15.9248 62.1371 64.1152 2 372.0497 −27.9503 53.8409 60.6396 

3 392.1499 −7.8501 59.608 60.0931 3 381.1063 −18.8937 51.9437 55.2488 

4 403.6953 3.6953 55.9828 56.0766 4 395.609 −4.391 50.1618 50.3287 

5 395.9274 −4.0726 44.2326 44.3976 5 391.6046 −8.3954 40.3873 41.2309 

6 415.0872 15.0872 40.3744 43.0823 6 411.8829 11.8829 38.2033 39.9904 

7 389.5922 −10.4078 16.0508 19.123 7 389.195 −10.805 15.8764 19.1978 

8 399.3953 −0.6047 11.2934 11.3039 8 399.1141 −0.8859 11.0794 11.1092 

l = 7, a0 = a1 = 1:23 l = 8, a0 = a1 = 1:16 

Case N̂  Bias SE RMSE Case N̂  Bias SE RMSE 

1 331.5863 −68.4137 54.5113 87.4582 1 322.7735 −77.2265 47.549 90.6784 

2 373.246 −26.754 55.3933 61.4909 2 369.6802 −30.3198 57.003 64.5398 

3 384.2773 −15.7227 53.2808 55.5267 3 377.7821 −22.2179 54.2179 58.5686 

4 397.3269 −2.6731 50.8611 50.9059 4 394.9889 −5.0111 51.897 52.1125 

5 393.0034 −6.9966 40.9209 41.4945 5 390.513 −9.487 41.3206 42.3756 

6 413.6375 13.6375 38.5416 40.8651 6 411.8151 11.8151 39.0769 40.8053 

7 389.3894 −10.6106 16.0042 19.1954 7 388.9316 −11.0684 15.8458 19.3222 

8 399.4645 −0.5355 11.3242 11.3312 8 399.0427 −0.9573 11.2079 11.2431 

5. Conclusions and Remarks 
In this paper, we propose a Bayesian hierarchical approach to estimate the population size of model tbM  with a 
new relationship between recapture probability and initial capture probability base on odds (in favour of capture). 
The capture-recapture model tbM  has wide applications in practical population estimation studies. However, 
the original model proposed by Otis et al. [5] is over parametrized and has an identifiability problem without 
further constraint on the recapture probability. One common assumption in literature is that the ratio of recapture 
probability and initial capture probability is a constant. Under this condition, Chao et al. [2] proposed three 
types of MLE’s. The major problem with the MLEs is that no constraint is applied to the constant ratio to ensure 
that the resulting estimated initial capture and recapture probabilities remain between 0 and 1. Lee et al. [21] 
proposed Bayesian approach, which constrained the constant ratio in MCMC to ensure neither initial capture nor 
recapture probabilities exceed 1.0. However, no systematic method was discussed for the choice of prior distri-
bution other than a trial-and-error method, and the estimate is sensitive to the value of the hyper-parameters. [19] 
proposed a Bayesian analysis of all eight closed population capture-recapture models within a logistic regression 
frame work. However, the usefulness of the method with the model tbM  remains unknown. 

We were inspired to propose a new constraint so that the odds ratio of recapture probability and initial capture 
probability remains a constant and to analyse the model tbM  using a hierarchical Bayesian methodology with 
vague prior information. The benefit of the constant odds ratio assumption is that it is handier and “true-to-life”, 
because there is no need for an extra constraint on the constant ratio to ensure that both initial capture and re-
capture probabilities are larger than 1.0. The constant odds ratio can naturally vary from −∞  to ∞ . Moreover, 
the simulation results show that the proposed Bayesian method provides comparatively better population esti-
mation than the MLE’s, and it is robust to the constraints on the capture probabilities. The sensitivity study 
shows that the proposed Bayesian estimate is robust to the choice of the hyper-parameters of the prior distribu-
tion. Also, the relative bias and RMSE of the proposed Bayesian population estimate approaches zero as the true 
population size grows in the usual course of application. 
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Figure 1. Relative bias and RMSE of bayesian population estimations. 
 

Note that the findings here are mostly based on simulation results. It would be interesting to examine the 
theoretical bias and MSE of the Bayesian estimate under the hierarchical prior distribution studied in this paper. 
We’ll continue studying more complex models such as bhM , tbhM , and open population models. 

Author’s Contribution 
A R-package named sbmtb is created and used within the data analysis and simulation studies in the paper. The 
detailed help manual is in the Appendix. The R-package is available via e-mail request to Xiaoyin Wang at 
xwang@towson.edu. 
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