Genetic and Metabolic Determinants of Plasminogen Activator Inhibitor 1 (PAI-1) in Tunisian Type 2 Diabetes Patients

Mohamed Moustapha1*, Molka Chadli-Chaieb2, Touhami Mahjoub3, Larbi Chaieb2

1Internal Medicine Department, Hospital Cheikh Zayed, Nouakchott, Mauritania
2Endocrinology Department, CHU Farhat Hachad Sousse, Sousse, Tunisia
3Research Unit of Biology, Genetics of Cancers, Haematological and Autoimmune Diseases, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia

Email: *ouldhayani@gmail.com

Abstract

Background: PAI-1 (plasminogen activator inhibitor-1) is a powerful regulator of fibrinolysis and plasma level is high in type 2 diabetes and cardio-vascular disease, which is determined by genetic polymorphisms in PAI-1 gene and environmental factors. The aim of the study was to examine the determinants of plasma PAI-1 Ag level among type 2 diabetes patients.

Methods: 491 Tunisian type 2 diabetes patients had clinical evaluation (weight, high, BMI, Waist Circumference), laboratory investigations including FBG, Hb1Ac, cholesterol, triglyceride; HDL-cholesterol was done; plasma PAI-1 antigen level was done with ELISA; −675 4G/5G and −844 G/A polymorphisms of PAI-1 gene was done by PCR-ASA and PCR-RFLP respectively.

Results: The mean age for our patients was 58.3 ± 10.5 years; sex-ratio = 0.92; mean PAI-1 level was 34.6 ± 21.3 ng/ml. We didn’t find correlation between PAI-1 level and BMI, but we have found significant correlation between PAI-1 and waist circumference (p = 0.032), most enhanced in men (P = 0.002), T2D patients who have FBG > 11 mmol/l had PAI-1 Ag level higher than those who have FBG < 11 mmol/l (P = 0.034), but no difference found between T2D with high Hb1Ac > 8% and those with Hb1Ac < 8%, significant correlation was seen between PAI-1 level and LDL-cholesterol (P = 0.05), high correlation between PAI-1 Ag level and −675 4G/5G polymorphism genotype was seen, 4G/4G carriers had the highest PAI-1 level, 4G/5G had intermediary level and 5G/5G had the lowest level (P < 0.001). No correlation was seen between PAI-1 Ag level and −844G/A polymorphism genotypes. Using multiple variable linear regression analysis, the independent factor associated with plasma PAI-1 level was −675 4G/5G polymorphism (regression coefficient β = 4.6, P
Conclusion: the present study identifies −675 4G/5G not −844 G/A polymorphism of PAI gene as the principal determinant of plasma PAI-1 level in Tunisian T2D patients, the android fat distribution, dyslipidemia and hyperglycemia play a modest role in this variation.

Keywords
Plasminogen Activator Inhibitor 1, Polymorphism, PCR, Type 2 Diabetes Mellitus, Metabolic Syndrome X

1. Introduction

Most patients with type 2 diabetes (T2D) die from complication of atherosclerosis [1].

PAI-1 (plasminogen activator inhibitor-1) is a major regulator of fibrinolysis [2], plasma PAI-1 Antigen (PAI-1Ag) level is increased in type 2 diabetes patients [3] [4] and that may explain excess risk of cardiovascular disease. It also elevated in coronary artery disease patients [5] and its plasma level is determined by genetic [6] and environmental factors [7].

The PAI-1 gene has been localized to q21.3-q22 of chromosome 7 [8]. Several polymorphisms within the PAI-1 gene influence PAI-1 levels [9]. The most known polymorphism which influences PAI-1 level is −675 4G/5G insertion-deletion mutation-of PAI-1 promotor gene [6] and another single nucleotide polymorphism is −844 G/A [10] [11] [12].

Environmental factors, like obesity and metabolic syndrome features also plays a role in Plasma PAI-1 variation in type 2 diabetes patients and in non diabetics [7] [13]. The aim of this study was to examine the determinants of plasma PAI-1Ag level among adult patients with type 2 diabetes in Tunisia.

2. Patients and Methods

This was a cross sectional study involving 491 type 2 diabetic patients recruited from the outpatient’s endocrinology department at Farhat-Hachad hospital in Sousse-Tunisia during 2005-2006 period, written informed consent was obtained from participants, the study was approved by hospital ethic comity, inclusion criteria was: known type 2 diabetes, exclusion criteria were: cancer, coagulation disorders, pregnancy, end stage chronic kidney disease, all patients had clinical examination including (weight, height, BMI, Waist Circumference (WC)), laboratory investigations (Fasting blood glucose (FBG), Hb1Ac, cholesterol, triglyceride, HDL-cholesterol,) LDL was calculated by Fridewald formula(LDL (mmol/l) = total cholesterol –HDL-TG/2.26), after clear write consent plasma PAI-1 antigen level was done with ELISA, −675 4G/5G. PAI-1 gene promoter polymorphism genotyping was done by PCR-ASA(allele specific amplification) using common primer for 2 alleles in 5’P side and 2 specific primers for 2 alleles in 3’OH side and −844 G/A polymorphism genotyping was done by PCR-RFLP.
(restriction fragment length polymorphism) using 2 specific primers for 2 alleles and DNA was digested with restriction enzyme, allelic frequency was calculated with hardy-Weinberg law \((p + q)^2 = p^2 + 2pq + q^2 = 1\), with \(p = n_1 + n_2/2n\) and \(q = n_3 + n_2/2n\), \(n\) = number total of patients, \(n_1 = 4G/4G\) carriers, \(n_2 = 4G/5G\), and \(n_3 = 5G/5G\), \(P\) = allele 4G frequency, \(q\) = 5G frequency. The same procedure was made with −844 G/A, and statistical analyses was performed using SPSS version 10.0 software.

3. Results

The mean age of our T2D population was 58.3 ± 10.5 years, male/female-ratio = 0.92, mean PAI-1 level was 34.6 ± 21.3 ng/ml.

Table 1 shows PAI-1Ag level was not correlated with BMI, but was significantly correlated with waist circumference \((P = 0.032)\), this correlation was most evidenced in men \((P = 0.002)\) (Table 2).

No significant difference found in PAI-1 Ag level between type 2 diabetes patients with hypertension and T2D without hypertension (Table 3).

In multivariate analysis, we found significant relationship between PAI-1 level and LDL-cholesterol \((P = 0.05)\) (Figure 1).

T2D patients who have FBG > 11 mmol/l had PAI-1 Ag level higher than those who have FBG < 11 mmol/l \((P = 0.034)\), but no difference found between T2D with high Hb1Ac > 8% and those with Hb1Ac < 8% (Table 4).

The Table 5 shows high correlation between PAI-1 Ag level and -675 4G/5G polymorphism genotypes, 4G/4G carriers had the highest PAI-1 level, 4G/5G had intermediary level and 5G/5G had the lowest level \((P < 0.001)\), No correlation was seen between PAI-1 Ag level and −844G/A polymorphism genotypes.

Using multiple variable linear regression analysis, the independent factor associated with plasma PAI-1 level was −675 4G/5G polymorphism (regression coefficient \(\beta = 4.6, P < 0.05\)).

Table 1. PAI-1 Ag level in diabetics in function of BMI (kg/m²).

<table>
<thead>
<tr>
<th>PAI-1 (ng/ml)</th>
<th>BMI < 25</th>
<th>25 < BMI < 30</th>
<th>BMI > 30</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.1 ± 21.4</td>
<td>35 ± 20.6</td>
<td>34.7 ± 22</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>(11 - 88.9)</td>
<td>(11 - 92)</td>
<td>(10 - 111)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD: Standard Deviation; \(P\): P-Value; NS: Non Significant.

Table 2. Mean PAI-1 Ag level in type 2 diabetes patients in function of WC (cm) and sex.

<table>
<thead>
<tr>
<th>WC (cm)</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI-1 Ag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mean ± SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WC < 102 cm</td>
<td>29.7 ± 17.7 ng/ml</td>
<td>44.3 ± 22.3 ng/ml</td>
</tr>
<tr>
<td>WC > 102 cm</td>
<td>45.0 ± 22.3 ng/ml</td>
<td>35.3 ± 22.4 ng/ml</td>
</tr>
<tr>
<td>WC < 88 cm</td>
<td>35.3 ± 22.4 ng/ml</td>
<td>33.5 ± 18.4 ng/ml</td>
</tr>
<tr>
<td>WC > 88 cm</td>
<td>33.5 ± 18.4 ng/ml</td>
<td></td>
</tr>
<tr>
<td>(P)</td>
<td><0.001</td>
<td>NS</td>
</tr>
</tbody>
</table>

SD: Standard Deviation; \(P\): P-Value; NS: Non Significant.
Figure 1. Mean PAI-1-Ag in relation to LDL in T2D patients.

Table 3. Mean PAI-1 Ag level in T2D patients in function of hypertension.

<table>
<thead>
<tr>
<th>PAI-1 (ng/ml)</th>
<th>T2D with hypertension (n = 197)</th>
<th>T2D without hypertension (n = 294)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD (range)</td>
<td>33.7 ± 21.7 (11 - 92)</td>
<td>35.3 ± 20.9 (10 - 111)</td>
<td>NS</td>
</tr>
</tbody>
</table>

SD: Standard Deviation; P: P-Value; NS: Non Significant.

Table 4. Mean PAI-1 Ag in T2D in function of FBG (fast blood glucose) and Hb1Ac.

<table>
<thead>
<tr>
<th>PAI-1 (ng/ml)</th>
<th>FBG</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><11 mmol/l</td>
<td>>11 mmol/l</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>32.2 ± 20.6</td>
<td>36.5 ± 21.5</td>
</tr>
<tr>
<td>Hb1Ac <8%</td>
<td>35.4 ± 21.2</td>
<td>34 ± 21.3</td>
</tr>
<tr>
<td>Hb1Ac >8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD: Standard Deviation; P: P-Value; NS: Non Significant.

Table 5. Correlation between PAI-1 –Ag level and -675 4G/5G and -844G/A genotypes in T2D patients.

<table>
<thead>
<tr>
<th>Génotype</th>
<th>PAI-1 (ng/ml)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD (range)</td>
<td></td>
</tr>
<tr>
<td>4G/4G</td>
<td>59.4 ± 18.7 (31 - 111)</td>
<td><0.001</td>
</tr>
<tr>
<td>4G/5G</td>
<td>35.2 ± 20.6 (11 - 89.6)</td>
<td></td>
</tr>
<tr>
<td>5G/5G</td>
<td>23 ± 11.4 (10 - 56)</td>
<td><0.001</td>
</tr>
<tr>
<td>A/A</td>
<td>34.8 ± 21.7 (11 - 111)</td>
<td></td>
</tr>
<tr>
<td>G/A</td>
<td>35.8 ± 21.8 (10 - 89)</td>
<td>NS</td>
</tr>
<tr>
<td>G/G</td>
<td>32.7 ± 20 (11 - 89.6)</td>
<td></td>
</tr>
</tbody>
</table>

P: P-Value; NS: Non Significant.
4. Discussion

PAI-1 level is increased in type 2 diabetic patients [3] [8] [14] [15] [16] in comparison with non diabetic.

In IRAS (insulin resistance atherosclerosis study) [17] high level of PAI-1 was a predictor of type 2 diabetes incidence, in multiple regression analyses, PAI-1 level still significantly linked to type 2 diabetes incidence. In the same study high PAI-1 level was linked to diabetes incidence. [18], In Health, Aging and Body Composition Study [19] similar results were found.

In Framingham Offspring Study [20], high PAI-1 level was a risk factor of type 2 diabetes with relative risk (RR) of 1.4 for people who have PAI-1 level in upper normal range, this risk is independent of obesity and classical risk factors. In Strong Heart Study [21], relationship between PAI-1 level and diabetes incidence was found but this relationship become non-significant after adjustment with other variables (age, sex, BMI, BP, triglyceride, CRP, fibrinogen and insulin), antidiabetic drug vildagliptin decrease PAI-1 level [22].

A recent metanalysis [23] shows moderate association between PAI-1 and T2D independent of established diabetes risk factors.

In our study mean PAI-1 Ag level was 34.6 ± 21.4 ng/ml. we didn’t have control group due to financial limits (cost of dosage) and the comparison with other studies is difficult because measurements methods are different and non-standardized.

The PAI-1 level is correlated to insulin resistance markers (BMI, Waist circumference, glucose level and insulin) [4] [24].

In our study we didn’t find a positive correlation between BMI and PAI-1 but we found correlation between PAI-1 and WC which was most evident in men.

We had found correlation between PAI-1 and LDL cholesterol, LDL and VLDL cholesterol stimulate PAI-1 gene expression in vitro [8], that may explain this correlation.

The patients who have FBG > 11 mmol/l have PAI-1 level more than patients who have FBG < 11 mmol/l.

Glucose stimulate PAI-1 gene expression in vitro and that may explain relationship between PAI-1 and diabetes [8], but this relationship is largely explained by metabolic syndrome.

Some studies found that PAI-1 level is linked to android fat distribution and endocrines and metabolic features of metabolic syndrome [4] [5] [25].

People who have Metabolic syndrome with or without diabetes had elevated PAI-1 level [3] [24] improvement of metabolic syndrome with weight loss decrease PAI-1 level [13].

Some studies had found higher PAI-1 level in people with hypertension [26].

In our study, we didn’t find significant difference between mean PAI-1 level of diabetic patients who have hypertension and diabetics without hypertension.

Pronounced elevations of PAI-1 antigen levels were seen in 4G carriers of −675 4G/5G polymorphism of T2D patients in a large number of studies, [4] as
well as non-diabetic and in different ethnic populations like Tunisians [27] [28] [29].

The most significant variation in PAI-1 expression resides in the PAI-1 4G/5G alleles. Unlike the 5G allele that binds a transcription repressor, resulting in low PAI-1 expression, the 4G allele does not bind a transcription repressor, thus conferring a “high PAI-1 expressor” nature to the allele I [30].

Martinez-Calatrava [31], had found that 4G allele is the principal determinant of PAI-1 level in study of 631 persons, independent of metabolic disorders.

These results are in agreements with our study who shown that −675 4G/5G polymorphism not metabolic disorders was the principal determinant of PAI-1 level. Another study show metabolic syndrome components explain only 12% of PAI-1variability in T2D patients [4].

4G allele has been shown as a risk factor in cardio vascular disease in some studies [32] not others [6], some studies show 4G as a risk factor of diabetes [33] [34], some studies show 4G allele association with obesity [35] [36] and metabolic syndrome [37] [38].

About second polymorphism −844 G/A, we don’t found relationship between this polymorphism and PAI-1 level, this results is in agreement with the literature [11] [12] [27].

A Mexican study revealed a relationship between −844 G/A and metabolic syndrome [39]. Another study revealed an association with cardio-vascular disease and dyslipidemia [40].

5. Conclusion

The present study identifies −675 4G/5G not −844 G/A polymorphism of PAI gene as the principal determinant of plasma PAI-1 level in adult type 2 diabetes patients in Tunisia, and the android fat distribution, dyslipidemia and hyperglycemia play a modest role in this variation.

Conflicts of Interest

All authors declare no conflicts of interest.

Author’s Participation

All authors had participated actively in manuscript realization.

References

Annals of Medicine, 32, 78-84.

drome Components on Plasma PAI-1 Concentrations Is Modified by the PAI-1 4G/5G Genotype and Ethnicity. *Atherosclerosis, 196*, 155-163. https://doi.org/10.1016/j.atherosclerosis.2007.03.024

[27] Ezzidi, I., Mitiroua, N., Chaieb, M., Kacem, M., Mahjoub, T., et al. (2009) Diabetic Retinopathy, PAI-1 4G/5G and -844G/A Polymorphisms, and Changes in Circulat-

