On Tate’s Proof of a Theorem of Dedekind

Shiv Gupta

Department of Mathematics, West Chester University, West Chester, PA, USA
Email: sguptai@wcupa.edu

Abstract
In this note we give a complete proof of a theorem of Dedekind.

Keywords
Galois Group of a Polynomial

1. Introduction
In this note we give a complete proof of the following theorem of Dedekind. Our proof is a somewhat detailed version of the one given in Basic Algebra by Jacobson, Volume I, [1] and we shall keep the notations used in that proof.

Theorem 1 Let \(f(x) \in \mathbb{Z}[x] \) be square-free monic polynomial of degree \(n \) and \(p \) be a prime such that \(p \) does not divide the discriminant of \(f(x) \). Let \(G \subset S_n \) be the Galois group of \(f(x) \) over the field \(\mathbb{Q} \) of rational numbers. Suppose that \(f_p = \overline{f} = f(\mod p) \in \mathbb{Z}_p[x] \) factors as:
\[
f_p = \overline{f} = \prod_{i=1}^{r} \overline{f}_i
\]
where \(\overline{f}_i \) are distinct monic irreducible polynomials in \(\mathbb{Z}_p[x] \), degree \(\deg(\overline{f}_i) = d_i \), \(1 \leq i \leq r \), and \(d_1 + d_2 + \cdots + d_r = n \).

Then there exists an automorphism \(\sigma \in G \) which when considered as a permutation on the zeros of \(f(x) \) is a product of disjoint cycles of lengths \(d_1, d_2, \ldots, d_r \).

2. Preliminary Results
We shall assume that the reader is familiar with the following well-known results.

1) Let \(\mathbb{F} \) be a field and \(f(x) \in \mathbb{F}[x] \) be a polynomial of degree \(n \geq 2 \). Then any two splitting fields of \(f(x) \) are isomorphic.

2) A finitely generated Abelian group is direct sum of (finitely many) cyclic...
groups. (This is the fundamental theorem of finitely generated Abelian groups).

3) A system of n homogeneous equation in $m > n$ variables has a non-trivial solutions.

4) Let E/F be an algebraic extension. Then any subring of E containing F is a subfield of E. **Proof:** Let K be a ring such that $F \subset K \subset E$. Let $\alpha \in K - F$. As α is algebraic over F, $F(\alpha) = F[\alpha]$. So $\alpha^{-1} \in F(\alpha) \subset K$.

5) (Dedekind’s Independence Theorem). Distinct characters of a monoid (a set with associative binary operation with an identity element) into a field are linearly independent. That is if $\chi_1, \chi_2, \cdots, \chi_n$ are distinct characters of a monoid into a field F, then the only elements $a_i \in F$, $1 \leq i \leq n$, such that

$$a_1\chi_1(h)+a_2\chi_2(h)+\cdots+a_n\chi_n(h)=0$$

for all $h \in H$ are $a_i = 0$, $1 \leq i \leq n$.

6) Let p be a prime and $GF(p^m)$ be a finite field with p^m elements. Then the group Aut($GF(p^m)$) = $\langle \sigma \rangle$ is cyclic of order m and the generating automorphism σ maps $\alpha \in GF(p^m)$ to α^p.

7) If R is a commutative ring with identity and M is a maximal ideal of R then R/M is a field.

8) Let $\sigma, \eta \in S_n$. Then σ and $\eta^{-1}\sigma\eta$ have same cyclic structure.

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $n \geq 1$, and p a prime number. Then $f_p(x) \in \mathbb{Z}_p[x]$ will denote the polynomial obtained by reducing the coefficients of $f(x)$ modulo p.

Theorem 2 Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree $n \geq 1$ and p be a prime number which does not divide the discriminant of $f(x)$. Let E be a splitting field of $f(x)$ over \mathbb{Q}. Let E_p be a splitting field of $f_p(x)$ over $\mathbb{Z}_p = \mathbb{Z}/(p)$. Let

$$f(x) = (x - r_1)(x - r_2)\cdots(x - r_n), \quad r_i \in E \subset \mathbb{C}, 1 \leq i \leq n$$

$$R = \{r_1, r_2, \cdots, r_n\},$$

$$R_p = \overline{\{r_1, r_2, \cdots, r_n\}} \subset E_p$$

where $\overline{r_i}$, $1 \leq i \leq n$ are the roots of $f_p(x) \in \mathbb{Z}_p[x]$ and

$$\mathbb{E} = \mathbb{Q}(r_1, r_2, \cdots, r_n), \quad \mathbb{E}_p = \mathbb{Z}_p(\overline{r_1}, \overline{r_2}, \cdots, \overline{r_n})$$

Let $D = \mathbb{Z}[r_1, r_2, \cdots, r_n]$ be the subring generated by the roots of r_1, r_2, \cdots, r_n of $f(x)$ in \mathbb{C}. Then

2) There exists a homomorphism ψ of D onto E_p.

2) Any such homomorphism ψ gives a bijection of the set R of the roots of $f(x)$ in E onto the set R_p of the roots of the $f_p(x)$ in E_p.

2) If ψ and ψ' are two such homomorphisms then there exist $\sigma \in Aut(E/\mathbb{Q}) = Gal(f(x))$, such that $\psi' = \psi \cdot \sigma$. (Note that the restriction of σ to D is an automorphism of D).

Proof 1) One has that:

$$E = \mathbb{Q}(r_1, r_2, \cdots, r_n) = \mathbb{Q}[r_1, r_2, \cdots, r_n]$$
We claim that $D = \mathbb{Z}[r_1, r_2, \ldots, r_n]$ is a finitely generated (additive) Abelian group. Since each r_i is a root of the monic polynomial $f(x) \in \mathbb{Z}[x]$ of degree n any positive power of $r_i, 1 \leq i \leq n$ can be expressed as an integral linear combination of $1, r_i, r_i^2, \ldots, r_i^{n-1}$. It follows that

$$D = \sum_{0 \leq i \leq n-1} \mathbb{Z}[r_i, r_i^2, \ldots, r_i^n].$$

Therefore D is a finitely generated (additive) Abelian group generated by at most n^2 elements. By the Fundamental Theorem for Finitely Generated Abelian Groups D is a direct sum of finitely many cyclic groups. Since $D \subset \mathbb{C}$, none of these cyclic groups is finite. So D is a direct sum of finitely many infinite cyclic groups. Let $\{u_1, u_2, \ldots, u_N\}$ be a set consisting of an independent generating system of D. We have

$$D = \mathbb{Z}[u_1] \oplus \mathbb{Z}[u_2] \oplus \cdots \oplus \mathbb{Z}[u_N], \quad N \leq n^2.$$

We claim that $\{u_1, u_2, \ldots, u_N\}$ is a basis of \mathbb{E} / \mathbb{Q}. Obviously $\{u_1, u_2, \ldots, u_N\}$ is linearly independent over \mathbb{Q}. Let $\mathbb{Q}D = \sum_{i \in \mathbb{Q}} \mathbb{Q}u_i$. Then $\mathbb{Q}D$ is a ring and $\mathbb{Q} \subset \mathbb{Q}D \subset \mathbb{E}$ therefore $\mathbb{Q}D$ is a field. Since $r_i \in D$ for $1 \leq i \leq n$, by (4) $\mathbb{Q}D = \mathbb{E}$ and $\{u_1, u_2, \ldots, u_N\}$ is a basis of \mathbb{E} / \mathbb{Q}. As $D = \mathbb{Z}[u_1] \oplus \mathbb{Z}[u_2] \oplus \cdots \oplus \mathbb{Z}[u_N],$

$$pD = \mathbb{Z}(pu_1) \oplus \mathbb{Z}(pu_2) \oplus \cdots \oplus \mathbb{Z}(pu_N)$$

is an ideal of D and

$$D/pD = \left\{a_1u_1 + a_2u_2 + \cdots + a_Nu_N : 0 \leq a_i \leq p-1\right\}.$$

Therefore the D/pD is finite of order p^N. Let M be a maximal ideal of D containing pD. That is $pD \subset M \subset D$ and D/M is a finite field of characteristic p and so it has a subfield isomorphic to $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ which we will identify as \mathbb{Z}_p in what follows. As

$$D/M \approx D/pD \quad M/pD$$

the order of D/M is p^m, $1 \leq m \leq N$. Consider the canonical epimorphism

$$\nu : D \rightarrow D/M$$

whose kernel is M and $p\mathbb{Z} \subset M$. Therefore $\nu(\mathbb{Z}_p) = \mathbb{Z}_p$. We note that as $D = \mathbb{Z}[r_1, r_2, \ldots, r_n]$ we have for $1 \leq i \leq n$

$$\nu(r_i) = r_i + M = \bar{r_i}, \quad \nu(D) = \mathbb{Z}_p[\bar{r_1}, \bar{r_2}, \ldots, \bar{r_n}]$$

As ν is an epimorphism we have

$$\nu(D) = D/M = \mathbb{Z}_p[\bar{r_1}, \bar{r_2}, \ldots, \bar{r_n}]$$

is a splitting field of $f_p(x)$ over \mathbb{Z}_p. As both D/M and \mathbb{E}_p are splitting fields of $f_p(x)$ over \mathbb{Z}_p they are isomorphic. Let

$$\phi : D/M \rightarrow \mathbb{E}_p$$

be such an isomorphism. Then $\psi = \phi \cdot \nu$ is a homomorphism of D onto \mathbb{E}_p.

DOI: 10.4236/ojdm.2018.83007 75 Open Journal of Discrete Mathematics
2) Let \(\psi : D \to \mathbb{E}_p \) be a homomorphism. So \(\psi(1) = 1 \). As \(\mathbb{Z} \subset D \), and \(\mathbb{E}_p \) has characteristic \(p \), \(\psi(p) = 0 \), so \(\psi(\mathbb{Z}) = \mathbb{Z}_p \subset \mathbb{E}_p \). \(\psi \) can be extended to a homomorphism of the polynomial rings \(D[x] \to \mathbb{E}_p[x] \). Under this mapping \(f(x) \to f_p(x) \).

\[
\psi(f(x)) = f_p(x) = (x - \psi(r_1))(x - \psi(r_2)) \ldots (x - \psi(r_n)),
\]

\(\psi(r_i), 1 \leq i \leq n \) are the roots of the \(f_p(x) \) in \(\mathbb{E}_p \), and therefore the restriction of \(\psi \) to \(R \)

\[
\psi_R : \{r_1, r_2, \ldots, r_n\} \to \{\overline{r_1}, \overline{r_2}, \ldots, \overline{r_n}\}
\]
is a bijection of the set \(R \) of roots of \(f(x) \) in \(\mathbb{E} \) to the set \(R_p \) of the roots of \(f_p(x) \) in \(\mathbb{E}_p \).

3) We have seen that given a homomorphism \(\psi : D \to \mathbb{E}_p \), and \(\sigma \in \text{Gal}(f) = \text{Aut}(\mathbb{E}/\mathbb{Q}) \), \(\psi' = \psi \cdot \sigma \) is also a homomorphism from \(D \) to \(\mathbb{E}_p \). We note that the restriction of \(\sigma \in \text{Aut}(\mathbb{E}/\mathbb{Q}) \) to \(D = \mathbb{Z}[r_1, r_2, \ldots, r_n] \) is also an automorphism of the ring \(D \). Since \(\mathbb{E} = \mathbb{Q} \), the group \(\text{Aut}(\mathbb{E}/\mathbb{Q}) \) has order \(N \). Let

\[
\text{Aut}(\mathbb{E}/\mathbb{Q}) = \{\sigma_1, \sigma_2, \ldots, \sigma_N\}
\]

So given a non-trivial homomorphism \(\psi : D \to \mathbb{E}_p \), we get \(N \) distinct homomorphisms \(\psi_j = \psi \cdot \sigma_j \), \(1 \leq j \leq N \), from \(D \) to \(\mathbb{E}_p \). We claim that these are all the homomorphisms from \(D \) to \(\mathbb{E}_p \). Suppose that there is a homomorphism from \(D \) to \(\mathbb{E}_p \) which is different from \(\psi_j \), \(1 \leq j \leq N \). Let us denote it by \(\psi_{N+1} \). By Dedekind Independence Theorem the set

\[
\{\psi_1, \psi_2, \ldots, \psi_N, \psi_{N+1}\}
\]

of \(N+1 \) homomorphisms from \(D \) to \(\mathbb{E}_p \) is linearly independent over the field \(\mathbb{E}_p \).

Consider the following system of \(N \) homogeneous equations in \(N+1 \) variables \(\{x_1, x_2, \ldots, x_N, x_{N+1}\} \),

\[
\sum_{i=1}^{N+1} x_i \psi_i(u_j) = 0, \quad 1 \leq j \leq N.
\]

Since there are more variables than the equations this system of equations has a non-trivial solution. Let this non-trivial solution be \(x_i = a_i \in \mathbb{E}_p \), \(1 \leq i \leq N+1 \). So we have

\[
\sum_{j=1}^{N+1} a_{N+1} \psi_{N+1}(u_j) = 0, \quad 1 \leq j \leq N.
\]

Let \(y \in D = \mathbb{Z}_u_1 \oplus \mathbb{Z}_u_2 \oplus \cdots \oplus \mathbb{Z}_u_N \). So \(y = n_1u_1 + n_2u_2 + \cdots + n_Nu_N \), \(n_k \in \mathbb{Z} \), \(1 \leq k \leq N \). Then for \(1 \leq i \leq N+1 \) we have

\[
\psi_i(y) = n_1\psi_i(u_1) + n_2\psi_i(u_2) + \cdots + n_N\psi_i(u_N) = \sum_{j=1}^{N+1} n_j \psi_i(u_j)
\]

where \(n_j = n_j + p \). We shall show that

\[
\sum_{j=1}^{N+1} a_{N+1} \psi_{N+1}(y) = 0,
\]
which will contradict the linear independence of \(\{ \psi_1, \psi_2, \ldots, \psi_n, \psi_{N+1} \} \) over \(E_p \).

\[
\sum_{i=1}^{i=N+1} a_i \psi_i(y) = \sum_{i=1}^{i=N} \sum_{j=1}^{j=N} n_{ij}^2 \psi_i(u_j) = \sum_{i=1}^{i=N+1} a_i \left(\sum_{j=1}^{j=N} n_{ij}^2 \psi_i(u_j) \right) = n_1 \sum_{i=1}^{i=N+1} a_i \psi_i(u_i) + n_2 \sum_{i=1}^{i=N+1} a_i \psi_i(u_2) + \cdots + n_N \sum_{i=1}^{i=N+1} a_i \psi_i(u_N) = 0.
\]

3. Proof of the Main Theorem

Since the field \(E_p \) has order \(p^n \), the group \(Aut(E_p) \) has order \(m \) and \(\pi: E_p \to E_p \), where \(\pi(a) = a^p \) for all \(a \in E_p \), is the generating automorphism of \(Aut(E_p) \). So if \(\psi: D \to E_p \) is any homomorphism then so is \(\pi \cdot \psi \). Since \(\psi \) and \(\pi \cdot \psi \) are two homomorphisms from \(D \) to \(E_p \) there exist \(\sigma \in Aut(E_p) \) such that \(\pi \cdot \psi = \psi \cdot \sigma \) or \(\psi^{-1} \cdot \psi = \sigma \). This proves that the action on \(\sigma \) on \(\{ \tau_1, \tau_2, \ldots, \tau_n \} \) is similar to the action of \(\pi \) on \(\{ \tau_1, \tau_2, \ldots, \tau_n \} \). Note: In the following diagram the mapping

\[
D \xrightarrow{\sigma} D
\]

is the restriction of \(\sigma \in Aut(E_p) \) to \(D \) and we are only concerned with the effect of the mappings \(\sigma \), \(\psi \) and \(\pi \) on \(\{ \tau_1, \tau_2, \ldots, \tau_n \} \) and \(\{ \tau_1, \tau_2, \ldots, \tau_n \} \).

Clearly

\[
\{ \tau_1, \tau_2, \ldots, \tau_n \} \xrightarrow{\sigma} \{ \tau_1, \tau_2, \ldots, \tau_n \} \\
\{ \tau_1, \tau_2, \ldots, \tau_n \} \xrightarrow{\psi} \{ \tau_1, \tau_2, \ldots, \tau_n \} \\
\{ \tau_1, \tau_2, \ldots, \tau_n \} \xrightarrow{\pi} \{ \tau_1, \tau_2, \ldots, \tau_n \} \\
D \xrightarrow{\sigma} D \\
E_p \xrightarrow{\pi} E_p
\]

As \(\psi^{-1} \cdot \pi \cdot \psi = \sigma \) and \(\psi \cdot \sigma \cdot \psi^{-1} = \pi \) the effect of \(\sigma \) on \(\{ \tau_1, \tau_2, \ldots, \tau_n \} \) is similar to the effect of \(\pi \) on \(\{ \tau_1, \tau_2, \ldots, \tau_n \} \). This is further illustrated by the following:

\[
\sigma(\tau_1) = r_j \Rightarrow \pi(\tau_1) = \tau_j \\
\tau_1 \xrightarrow{\psi^{-1}} \tau_j \xrightarrow{\sigma} r_j \xrightarrow{\psi} \tau_j \\
\pi(\tau_1) = \tau_j \Rightarrow \sigma(\tau_1) = r_j \\
\tau_1 \xrightarrow{\psi} \tau_j \xrightarrow{\sigma} \tau_j \xrightarrow{\psi^{-1}} \tau_j
\]
References