Some Edge Product Cordial Graphs in the Context of Duplication of Some Graph Elements

Udayan M. Prajapati¹, Prakruti D. Shah²

¹St. Xavier’s College, Ahmedabad, India
²Shankersinh Vaghela Bapu Institute of Technology, Gandhinagar, India
Email: udayan64@yahoo.com, prakrutishah29@gmail.com

Abstract

For a graph $G = (V(G), E(G))$, a function $f : E(G) \rightarrow \{0, 1\}$ is called an edge product cordial labeling of G, if the induced vertex labeling function is defined by the product of the labels of the incident edges as such that the number of edges with label 1 and the number of edges with label 0 differ by at most 1 and the number of vertices with label 1 and the number of vertices with label 0 differ by at most 1. In this paper, we show that the graphs obtained by duplication of a vertex, duplication of a vertex by an edge or duplication of an edge by a vertex in a crown graph are edge product cordial. Moreover, we show that the graph obtained by duplication of each of the vertices of degree three by an edge in a gear graph is edge product cordial. We also show that the graph obtained by duplication of each of the pendent vertices by a new vertex in a helm graph is edge product cordial.

Keywords

Graph Labeling, Edge Product Cordial Labeling, Duplication of a Vertex

1. Introduction

We begin with a simple, finite, undirected graph $G = (V(G), E(G))$ where $V(G)$ and $E(G)$ denote the vertex set and the edge set respectively. For all other terminology, we follow Gross [1]. We will provide a brief summary of definitions and other information which are necessary for the present investigations.

Definition 1. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition. If the domain of the mapping is the set of vertices, edges or both then the labeling is called a vertex labeling, an edge labeling or a total labeling.
Definition 2. For a graph G, an edge labeling function is defined as $f : E(G) \rightarrow \{0, 1\}$ and the induced vertex labeling function $f^* : V(G) \rightarrow \{0, 1\}$ is given by $f^*(v) = f(e) f(e_1) f(e_2) \cdots f(e_k)$ if e, e_1, e_2, \cdots, e_k are the edges incident with the vertex v.

We denote the number of vertices of G having label i under f^* by v_i and the number of edges of G having label i under f by e_i for $i = 0, 1$.

The function f is called an edge product cordial labeling of G if $|v_0 - v_1| \leq 1$ and $|e_0 - e_1| \leq 1$. A graph G is called edge product cordial if it admits edge product cordial labeling.

The concept of edge product cordial labeling was introduced by Vaidya and Barasara [2] in which they proved that C_n for n odd, trees of order greater than 2, unicyclic graphs of odd order, crowns, armed crowns, helms, closed helms, webs, flowers graph are edge product cordial. They also proved that wheel and gear for even are not edge product cordial. They also [3] proved that T_n, DT_n for odd, Q_n for odd, DQ_n for odd are edge product cordial labeling. They also proved that DT_n for even, Q_n for even, DQ_n for even, DF_n are not edge product cordial labeling.

Definition 3. The graph $W_n = C_n + K_1$ is called wheel graph, the vertex corresponding to K_1 is called apex vertex and vertices corresponding to C_n are called rim vertices.

Definition 4. The helm H_n is the graph obtained from a wheel W_n by attaching a pendant edge at each vertex of the n-cycle.

Definition 5. A gear graph is obtained from the wheel graph W_n by adding a vertex between every pair of adjacent vertices of the n-cycle.

Definition 6. The crown $C_n \odot K_1$ is obtained by joining a single pendant edge to each vertex of C_n.

Definition 7. The neighborhood of a vertex v of a graph is the set of all vertices adjacent to v. It is denoted by $N(v)$.

Definition 8. Duplication of a vertex of the graph G is the graph G' obtained from G by adding a new vertex v' to G such that $N(v') = N(v)$.

Definition 9. Duplication of a vertex v_k by a new edge $e = v_kv'_k$ in a graph G produces a new graph G' such that $N(v'_k) = \{v_k, v'_k\}$ and $N(v_k) = \{v_k, v'_k\}$.

The concept of duplication of vertex by edge was introduced by Vaidya and Barasara [4].

Definition 10. Duplication of an edge $e = uv$ by a new vertex w in a graph G produces a new graph G' such that $N(w) = \{u, v\}$.

The concept of duplication of edge by vertex was introduced by Vaidya and Dani [5].

2. Main Results

Theorem 1. The graph obtained by duplication of an arbitrary vertex of the cycle in a crown graph is an edge product cordial graph.

Proof. Let C_n be a cycle with consecutive vertices v_1, v_2, \cdots, v_n and edges $e_i = v_i v_{i+1}$ for each $i \in \{1, 2, 3, \cdots, n\}$. Let u_i be a new vertex adjacent to v_i with $e'_i = u_i v_i$ for each $i \in \{1, 2, 3, \cdots, n\}$. Resulting graph is a crown graph G_i.
Let G be the graph obtained by duplication of the vertex v_n by a new vertex v' of G_i such that $e_1'' = v'v_1$, $e_2'' = v'v_{n-1}$ and $e_3'' = v'u_n$.

Thus $|V'(G)| = 2n + 1$ and $|E(G)| = 2n + 3$.

Now for $n = 3$ and $n = 4$ Figure 1 shows that the graphs are edge product cordial as follows:

Case 1: When n is odd. For $n \geq 5$, define $f : E(G) \to \{0,1\}$ as follows:

\[
\begin{align*}
 f(e) &= \begin{cases}
 1, & \text{if } e = e_i, \text{ for } 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor; \\
 0, & \text{if } e = e_i, \text{ for } \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n; \\
 1, & \text{if } e = e_i', \text{ for } 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor; \\
 0, & \text{if } e = e_i', \text{ for } \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n; \\
 0, & \text{if } e = e_i'', \text{ for } i = 1, 2, 3.
 \end{cases}
\end{align*}
\]

In the view of above labeling pattern we have,

$v_{f_i}(1) = v_{f_i}(0) - 1 = n$ and $e_{f_i}(1) = e_{f_i}(0) - 1 = n + 1$.

Case 2: When n is even. For $n \geq 6$, define $f : E(G) \to \{0,1\}$ as follows:

\[
\begin{align*}
 f(e) &= \begin{cases}
 1, & \text{if } e = e_i, \text{ for } 1 \leq i \leq \frac{n}{2} + 1; \\
 0, & \text{if } e = e_i, \text{ for } \frac{n}{2} + 2 \leq i \leq n; \\
 1, & \text{if } e = e_i', \text{ for } 1 \leq i \leq \frac{n}{2} + 1; \\
 0, & \text{if } e = e_i', \text{ for } \frac{n}{2} + 2 \leq i \leq n; \\
 0, & \text{if } e = e_i'', \text{ for } i = 1, 2, 3.
 \end{cases}
\end{align*}
\]

\[\text{Figure 1. } n = 3 \text{ and } n = 4.\]
In the view of the above labeling pattern we have,

\[v_f(0) = v_f(1) - 1 = n \quad \text{and} \quad e_f(0) = e_f(1) - 1 = n + 1. \]

Thus, from both the cases we have \(|v_f(0) - v_f(1)| \leq 1 \) and \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, graph \(G \) admits edge product cordial labeling. Thus, \(G \) is an edge product cordial graph.

Illustration 1. The graph obtained by duplication of an arbitrary vertex of the cycle \(C_n \) in a crown graph is an edge product cordial graph as shown in Figure 2 as follows:

![Figure 2](image)

\(n = 9 \) and \(n = 8 \).

Theorem 2. The graph obtained by duplication of an arbitrary vertex of the cycle by a new edge in a crown graph is edge product cordial graph.

Proof. Let \(C_n \) be a cycle with consecutive vertices \(v_1, v_2, \ldots, v_n \) and edges \(e_i = v_i v_{i+1} \) for each \(i \in \{1, 2, \ldots, n\} \). Let \(u_i \) be a new vertex adjacent to \(v_i \) with \(e_i = u_i v_i \) for each \(i \in \{1, 2, \ldots, n\} \). Resulting graph is a crown graph \(G \).

Let \(G \) be the graph obtained by duplication of the vertex \(v_n \) by an edge \(e''_i = v'v'' \) of \(G \) such that \(e''_i = v'v'' \) and \(e''_i = v''v_n \). Thus \(|V(G)| = 2n + 2 \) and \(|E(G)| = 2n + 3 \).

Define \(f : E(G) \to \{0, 1\} \) as follows:

\[f(e) = \begin{cases}
1, & \text{if } e = e_i \text{ for } i = 1, 2; \\
0, & \text{if } e = e_i \text{ for } 3 \leq i \leq n; \\
1, & \text{if } e = e'_i \text{ for } i \in \{1, 2, \ldots, n\}; \\
0, & \text{if } e = e''_i \text{ for } i = 1, 2, 3.
\]

In the view of the above labeling pattern we have, \(v_f(0) = v_f(1) = n + 1 \) and
Thus, we have \(|v_j(0) - v_j(1)| \leq 1 \) and \(|e_j(0) - e_j(1)| \leq 1 \). Hence, graph \(G \) admits edge product cordial labeling. Thus, \(G \) is an edge product cordial graph.

Illustration 2. The graph obtained by duplication of an arbitrary vertex of the cycle \(C_n \) by a new edge in a crown graph is edge product cordial graph as shown in Figure 3.

Theorem 3. The graph obtained by duplication of an arbitrary edge of the cycle \(C_n \) by a new vertex in a crown graph is edge product cordial.

Proof. Let \(C_n \) be a cycle with the consecutive vertices \(v_1, v_2, \ldots, v_n \) and edges \(e_i = v_{i, i+1} \) for each \(i \in \{1, 2, \ldots, n\} \). Let \(u_i \) be a new vertex adjacent to \(v_i \) with \(e'_i = u_i v_i \) for each \(i \in \{1, 2, \ldots, n\} \). Resulting graph is a crown graph \(G_i \).

Let \(G \) be the graph obtained by duplication of an edge \(e_i = v_i v_{i+1} \) by a vertex \(v' \) in \(G_i \) such that \(e'_i = v' v_i \) and \(e''_i = v' v_{i+1} \). Thus \(V'(G) = 2n + 1 \) and \(|E(G)| = 2n + 2 \).

Define \(f : E(G) \to \{0, 1\} \) as follows:

\[
f(e) = \begin{cases}
1, & \text{if } e = e_j \text{, for } i = 1; \\
0, & \text{if } e = e_j \text{, for } 2 \leq i \leq n; \\
1, & \text{if } e = e'_i \text{, for } i \in \{1, 2, \ldots, n\}; \\
0, & \text{if } e = e''_i \text{, for } i = 1, 2.
\end{cases}
\]

In the view of above labeling pattern we have, \(v_j(0) - 1 = v_j(1) = n \) and \(e_j(0) = e_j(1) = n + 1 \). Thus, we have \(|v_j(0) - v_j(1)| \leq 1 \) and \(|e_j(0) - e_j(1)| \leq 1 \).

Hence, graph \(G \) admits edge product cordial labeling. Thus, \(G \) is an edge product cordial graph.
Illustration 3. The graph obtained by duplication of an arbitrary edge of the cycle C_n by a new vertex in a crown graph is edge product cordial graph as shown in Figure 4.

Figure 4. $n = 5$.

Theorem 4. The graph obtained by duplication of each pendant vertex by a new vertex in a crown graph is edge product cordial graph.

Proof. Let C_n be a cycle with consecutive vertices v_1, v_2, \ldots, v_n and edges $e_i = v_i v_{i+1}$ for each $i \in \{1, 2, \ldots, n\}$. Let u_i be a new vertex adjacent to v_i with $e'_i = u_i v_i$ for each $i \in \{1, 2, \ldots, n\}$. Resulting graph is a crown graph G.

Let G be the graph obtained by duplication of each pendant vertex u_i by a new vertex v'_i of G such that $e''_i = v'_i v_i$ for $i \in \{1, 2, \ldots, n\}$. Thus $|V(G)| = 3n$ and $|E(G)| = 3n$.

Case 1: When n is odd, define $f : E(G) \rightarrow \{0, 1\}$ as follows:

$$f(e) = \begin{cases} 0, & \text{if } e = e_i, \text{ for } i \in \{1, 2, \ldots, n\}; \\ 1, & \text{if } e = e'_i, \text{ for } i \in \{1, 2, \ldots, n\}; \\ 1, & \text{if } e = e''_i, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor; \\ 0, & \text{if } e = e''_i, \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n. \end{cases}$$

In the view of above labeling pattern we have,
\[v_f(0) = v_f(1) - 1 = \left\lfloor \frac{3n}{2} \right\rfloor \quad \text{and} \quad e_f(0) = e_f(1) = \frac{3n}{2}. \]

Case 2: When \(n \) is even, define \(f : E(G) \to \{0,1\} \) as follows:

\[f(e) = \begin{cases} 0, & \text{if } e = e_i, \text{ for } i \in \{1,2,\ldots,n\}; \\
1, & \text{if } e = e'_i, \text{ for } i \in \{1,2,\ldots,n\}; \\
1, & \text{if } e = e''_i, 1 \leq i \leq \frac{n}{2}; \\
0, & \text{if } e = e''_i, \frac{n}{2} + 1 \leq i \leq n. \end{cases} \]

In the view of above labeling pattern we have, \(v_f(0) = v_f(1) = \frac{3n}{2} \) and \(e_f(0) = e_f(1) = \frac{3n}{2} \).

Thus, from both the cases we have \(|v_f(0) - v_f(1)| \leq 1 \) and \(|e_f(0) - e_f(1)| \leq 1 \). Hence, graph \(G \) admits edge product cordial labeling. Thus, \(G \) is an edge product cordial graph.

Illustration 4. The graph obtained by duplication of each pendent vertex by a new vertex in a crown graph is edge product cordial graph as shown in Figure 5 as follows:

![Figure 5](image)

Figure 5. \(n = 9 \) and \(n = 6 \).

Theorem 5. The graph obtained by duplication of each of the vertices of degree three by an edge in a gear graph is an edge product cordial graph.

Proof. Let \(W_n \) be the wheel graph with apex vertex \(v \) and consecutive rim vertices \(v_1, v_2, \ldots, v_n \). To obtained the gear graph \(G_s \) subdivide each of the rim edges
$v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1$ of the wheel graph by the vertices u_1, u_2, \ldots, u_n respectively such that $e_i = v_iv_i$, $e_i = v_ju_i$ and $e_i = u_jv_i$ for $i \in \{1, 2, \ldots, n\}$.

Let G be the graph obtained from G_n by duplication of each vertex v_i by an edge $f_i = v_i'v_i''$ such that $f_i' = v_i'v_i$ and $f_i'' = v_i''v_i$ for $i \in \{1, 2, \ldots, n\}$. Thus $\left| V(G) \right| = 4n + 1$ and $\left| E(G) \right| = 6n$.

Define $f : E(G) \rightarrow \{0, 1\}$ as follows:

$$f(e) = \begin{cases} 0, & \text{if } e = e_i, \text{ for } i \in \{1, 2, 3, \ldots, n\} \\ 0, & \text{if } e = e_i, \text{ for } i \in \{1, 2, 3, \ldots, n\} \\ 0, & \text{if } e = e_i, \text{ for } i \in \{1, 2, 3, \ldots, n\} \\ 1, & \text{if } e = f_i, \text{ for } i \in \{1, 2, 3, \ldots, n\} \\ 1, & \text{if } e = f_i', \text{ for } i \in \{1, 2, 3, \ldots, n\} \\ 1, & \text{if } e = f_i'', \text{ for } i \in \{1, 2, 3, \ldots, n\}. \end{cases}$$

In the view of the above labeling pattern we have, $v_f(0) - v_f(1) = 2n$ and $e_f(0) = e_f(1) = 3n$. Thus, we have $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$. Hence, graph G admits edge product cordial labeling. Thus, G is edge product cordial graph.

Illustration 5. The graph obtained by duplication of each vertex of degree three by an edge in a gear graph is an edge product cordial graph as shown in Figure 6.

![Figure 6](image)
Theorem 6. The graph obtained by duplication of each of the pendent vertices by a new vertex in a helm graph is edge product cordial graph.

Proof. Let v be the apex vertex and v_1, v_2, \ldots, v_n be the consecutive rim vertices of the wheel W_n with edges $e_i = v_i v_{i+1}$ and $e'_i = v_i v_{i+1}$ for $i \in \{1, 2, \ldots, n\}$. Let u_i be a new vertex adjacent to v_i with edges $e^*_i = u_i v_i$ for $i \in \{1, 2, \ldots, n\}$. Resulting graph is helm graph H_n.

Let G be the graph obtained from H_n by duplication of each pendent vertex u_i by a new vertex v'_i such that $f_i = v'_i v_i$ for $i \in \{1, 2, \ldots, n\}$. Thus $|V(G)| = 3n + 1$ and $|E(G)| = 4n$.

Case 1: When n is odd, define $f : E(G) \to \{0, 1\}$ as follows:

$$f(e) = \begin{cases}
1, & \text{if } e = e_i, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor; \\
0, & \text{if } e = e_i, \left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n; \\
0, & \text{if } e = e'_i, \text{ for } i \in \{1, 2, \ldots, n\}; \\
1, & \text{if } e = e^*_i, 1 \leq i \leq n-1; \\
0, & \text{if } e = e^*_i, \text{ for } i = n; \\
1, & \text{if } e = f_i, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor + 2; \\
0, & \text{if } e = f_i, \left\lceil \frac{n}{2} \right\rceil + 3 \leq i \leq n.
\end{cases}$$

In the view of above labeling pattern we have, $v'_f(0) = v'_f(1) = \left\lfloor \frac{3n}{2} \right\rfloor$ and $e'_f(0) = e'_f(1) = 2n$.

Case 2: When n is even, define $f : E(G) \to \{0, 1\}$ as follows:

$$f(e) = \begin{cases}
1, & \text{if } e = e_i, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor - 1; \\
0, & \text{if } e = e_i, \left\lceil \frac{n}{2} \right\rceil \leq i \leq n; \\
0, & \text{if } e = e'_i, \text{ for } i \in \{1, 2, \ldots, n\}; \\
1, & \text{if } e = e^*_i, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor + 1; \\
0, & \text{if } e = e^*_i, \left\lceil \frac{n}{2} \right\rceil + 2 \leq i \leq n; \\
1, & \text{if } e = f_i, \text{ for } i \in \{1, 2, \ldots, n\}.
\end{cases}$$

In the view of above labeling pattern we have, $v'_f(0) = v'_f(1) - 1 = \left\lfloor \frac{3n}{2} \right\rfloor$ and $e'_f(0) = e'_f(1) = 2n$.

Thus, from both the cases we have $|v'_f(0) - v'_f(1)| \leq 1$ and $|e'_f(0) - e'_f(1)| \leq 1$. Hence, graph G admits edge product cordial labeling. Thus, G is an edge product cordial graph. \qed
Illustration 6. The graph obtained by duplication of each pendent vertex by a new vertex in a helm graph is edge product cordial graph as shown in Figure 7.

Figure 7. \(n = 5 \) and \(n = 4 \).

3. Conclusion

We have derived six results for edge product cordial related to crown graph, gear graph and helm graph in the context of duplication of various graph elements. Similar problem can be discussed for other graph family for edge product cordial labeling.

Acknowledgements

The authors are highly thankful to the anonymous referee for valuable comments and constructive suggestions. The First author is thankful to the University Grant Commission, India for supporting him with Minor Research Project under No. F. 47-903/ 14 (WRO) dated 11th March, 2015.

References

