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Abstract 
G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the maximum 
number of maximal independent sets in connected graphs which contain at most two 
cycles. In this paper, we give an alternative proof to determine the largest number of 
maximal independent sets among all connected graphs of order n ≥ 12, which 
contain at most two cycles. We also characterize the extremal graph achieving this 
maximum value. 
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1. Introduction 

Let ( ),G V E=  be a simple undirected graph. An independent set is a subset S of V 
such that no two vertices in S are adjacent. A maximal independent set is an 
independent set that is not a proper subset of any other independent set. The set of all 
maximal independent sets of a graph G is denoted by ( )MI G  and its cardinality by 

( )mi G . 
The problem of determining the largest value of ( )mi G  in a general graph of order 

n and those graphs achieving the largest number was proposed by Erdös and Moser, 
and solved by Moon and Moser [2]. It was then extensively studied for various classes 
of graphs in the literature, including trees, forests, (connected) graphs with at most one 
cycle, bipartite graphs, connected graphs, k-connected graphs, (connected) triangle-free 
graphs; for a survey see [3]. Recently, Jin and Li [4] determined the second largest 
number of maximal independent sets among all graphs of order n. 
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There are results on independent sets in graphs from a different point of view. The  
Fibonacci number of a graph is the number of independent vertex subsets. The concept 
of the Fibonacci number of a graph was introduced in [5] and discussed in several 
papers [6] [7]. In addition, Jou and Chang [8] showed a linear-time algorithm for 
counting the number of maximal independent sets in a tree. 

Jou and Chang [9] determined the largest number of maximal independent sets 
among all graphs and connected graphs of order n, which contain at most one cycle. 
Later B. E. Sagan and V. R. Vatter [10] found the largest number of maximal 
independent sets among all graphs of order n, which contain at most r cycles. In 2012, 
Jou [11] settled the second largest number of maximal independent sets in graphs with 
at most one cycle. G. C. Ying, Y. Y. Meng, B. E. Sagan, and V. R. Vatter [1] found the 
maximum number of maximal independent sets in connected graphs which contain at 
most two cycles. In this paper, we give an alternative proof to determine the largest 
number of maximal independent sets among all connected graphs of order 12n ≥ , 
which contain at most two cycles. We also characterize the extremal graph achieving 
this maximum value. 

For a graph ( ),G V E= , the cardinality of ( )V G  is called the order, and it is 
denoted by G . The neighborhood ( )N x  of a vertex ( )x V G∈  is the set of vertices 
adjacent to x in G and the closed neighborhood [ ]N x  is { } ( )x N x∪ . The degree of x 
is the cardinality of ( )N x , and it is denoted by ( )deg x . A vertex x is said to be a leaf 
if ( )deg 1x = . For a set ( )A V G⊆ , the deletion of A from G is the graph G A−  
obtained from G by removing all vertices in A and their incident edges. Two graphs 1G  
and 2G  are disjoint if ( ) ( )1 2V G V G∩ =∅ . The union of two disjoint graphs 1G  
and 2G  is the graph 1 2G G∪  with vertex set ( ) ( ) ( )1 2 1 2V G G V G V G∪ = ∪  and 
edge set ( ) ( ) ( )1 2 1 2E G G E G E G∪ = ∪ . If a graph G is isomorphic to another graph H, 
we denote G H= . Denote nK  a complete graph of order n and nC  a cycle of order 
n. The join of two disjoint graphs 1G  and 2G  is the graph 1 2G G+  with vertex set 
( ) ( ) ( )1 2 1 2V G G V G V G∪ = ∪  and edge set  
( ) ( ) ( ) ( ) ( ){ }1 2 1 2 1 2:  and E G G E G E G uv u V G v V G∪ = ∪ ∪ ∈ ∈ . The star-product of 

two disjoint graphs 1G  and 2G  is the graph 1 2G G×  with vertex set  
( ) ( ) ( )1 2 1 2V G G V G V G∪ = ∪  and edge set ( ) ( ) ( ) { }1 2 1 2 1 2E G G E G E G v v∪ = ∪ ∪ , 

where iv  is a vertex with maximum degree in iG  for 1, 2i = . 

2. Preliminary 

The following results are needed. 
Lemma 1. ([12] [13]) For any vertex x in a graph G, the following hold.  
1) ( ) ( ) ( [ ])Gmi G mi G x mi G N x≤ − + − .  
2) If x is a leaf adjacent to y, then ( ) [ ]( ) [ ]( )G Gmi G mi G N x mi G N y= − + − .  
Lemma 2. ([13]) If G is the union of two disjoint graphs 1G  and 2G , then 
( ) ( ) ( )1 2mi G mi G mi G= .  

Lemma 3. Let , ,a b n  be integers such that 0
2
na b< < <  and let ( ) 2 2x n xf x −= + .  

Then ( ) ( ) ( ){ }max ,f x f a f b≤ .  
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Proof. The derivative of ( )f x  is  

( ) ( ) ( ) ( ) ( )2 ln 2 2 ln 2 ln 2 2 2 .x n x x n xf x − − ′ = − = −   

So ( ) 0f x′ <  for any ,
2
nx a ∈ 

 
 and ( ) 0f x′ >  for any ,

2
nx b ∈ 

 
. Then ( )f x  

is decreasing on ,
2
na 

 
 

 and ( )f x  is increasing on ,
2
n b 

 
 

. Hence  

( ) ( ) ( ){ }max ,f x f a f b≤ .                                               □ 
Theorem 1. ([9]) If T is a tree with 1n ≥  vertices, then ( ) ( )mi G t n≤ , where  

( )
1

2

2
2

2 , if is odd;

2 1, if is even.

n

n

n
t n

n

−

−


= 
 +

 

Furthermore, ( ) ( )mi T t n=  if and only if ( )T T n∈ , where  

( )

11, , if is odd;
2

2 42, ) or 4, , if is even,
2 2

nB n
T n

n nB B n

 − 
   = 

− −           

 

where ( ),B i j  is the set of batons, which are the graphs obtained from a basic path P 
of 1i ≥  vertices by attaching 0j ≥  paths of length two to the endpoints of P in all 
possible ways (see Figure 1).  

Theorem 2. ([9]) If F is a forest with 1n ≥  vertices, then ( ) ( )mi G f n≤ , where  

( )
1

2

2

2 , if is odd ;

2 , if is even.

n

n

n
f n

n

−
= 



 

Furthermore, ( ) ( )mi F f n=  if and only if ( )F F n∈ , where  

( )
2

2

1 21, , if is odd ;
2

, if is even,
2

n sB sP n
F n

n P n

 − − ∪   = 



 

 

 
Figure 1. The baton ( ),B i j  with 1 2j j j= + . 



M.-J. Jou, J.-J. Lin 
 

230 

where 10
2

ns −
≤ ≤ .  

Theorem 3. ([9]) If G is a graph of order 2n ≥  vertices with at most one cycle, then 
( ) ( ),1mi G g n≤ , where  

( )
2

3
2

2 , if is even;
,1

3 2 , if is odd.

n

n

n
g n

n
−


= 
 ⋅

 

Furthermore, ( ) ( ),1mi G g n=  if and only if ( ),1G G n= , where  

( )
2

3 2

, if is even;
2,1

3 , if is odd.
2

n K n
G n

nK K n


=  − ∪


 

Theorem 4. ([11]) If G is a graph of order 4n ≥  with at most one cycle such that 
( ),1G G n≠ , then ( ) ( ),1mi G g n′≤ , where  

( )
4

2

5
2

3 2 , if 4 is even;
,1

5 2 , if 5 is odd.

n

n

n
g n

n

−

−


⋅ ≥′ = 

 ⋅ ≥

 

Furthermore, ( ) ( ),1mi G g n′=  if and only if ( ),1G G n′∈ , where  

( )
( ) ( ) ( )

( )

4 2 3 2 2

5 2 2

4 2 2, 2 3 or 2 ,1 , if 4 is even 2 ;
2 2 2,1

5 5or 5,1 , if 5 is odd.
2 2

n n s n sP P C T s P C s P n s
G n

n nC P C P n

− − − ∪ ∪ − ∪ ∪ ≥ ≥′ =  − − ∪ ∪ ≥


 

Theorem 5. ([9]) If H is a connected graph of order 3n ≥  with at most one cycle, 
then ,1)()( nhHmi ≤ , where  

( )
1

2

4
2

2 1, if 3 is odd;
,1

3 2 , if 4 is even.

n

n

n
h n

n

−

−


+ ≥= 

 ⋅ ≥

 

Furthermore, ( ) ( ),1mi H h n=  if and only if ( ),1H H n∈  (see Figure 2), where  

( )
3 2 5

1 3 2 4

3 or , if 3 is odd;
2,1

4 or , if 4 is even.
2

nK K C n
H n

nK K K P n

− ∗ ≥=  −  ∗ ∪ ≥   

 

 

 
Figure 2. The extremal graphs ( ),1H n  for 3n ≥ . 
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3. The Alternative Proof 

In this section, we give an alternative proof to determine the largest number of maximal 
independent sets among all connected graphs of order 12n ≥ , which contain at most 
two cycles. We also characterize the extremal graph achieving this maximum value. 

Theorem 6. If H is a connected graph of order 12n ≥  with at most two cycles, then 
( ) ( ), 2mi H h n≤ , where  

( )
4

2

7
2

3 2 2, if 12 is even;
, 2

9 2 , if 13 is odd.

n

n

n
h n

n

−

−


⋅ + ≥= 

 ⋅ ≥

 

Furthermore, ( ) ( ), 2mi H h n=  if and only if ( ), 2H H n∈ , where  

( )
3 3 2

1 3 2

6 , if 12 is even;
2

,2
72 , if 13 is odd.

2

nK K K n
H n

nK K K n

 − × ∪ ≥   = 
−  × ∪ ≥   

 

A unicyclic graph is a connected graph having one cycle. The order of a unicyclic 
graph is at least three. The following lemmas will be needed in the proof of main 
theorem. 

Lemma 4. Suppose that G T H= ∪  is the union of a tree T and a unicyclic graph H, 
where 6G n= ≥ . Then ( ) ( )2 2,1mi G h n≤ ⋅ − . The equality holds if and only if  

( )2 2,1G K H n= ∪ −  or 3
41,

2
nG K B − = ∪  

 
.  

Proof. Let T k= . Note that H has one cycle, then 3H n k= − ≥ . We consider two 
cases. 

Case 1. 6n ≥  is even. 
By Lemma 2, Theorem 1 and Theorem 5, we have  

( ) ( ) ( ) ( ) ( )
1 1

2 2

2 4
2 2

2 1
2 2

6 4
2 2

2
2

,1

2 2 1 , if 1 3 is odd;

2 1 3 2 , if 2 4 is even;

2 2 , if 1 3 is odd;
=

3 2 2 , if 2 4 is even;

2 2

k n k

k n k

n k

n n k

n

mi G mi T mi H t k h n k

k n

k n

k n

k n

− − −

− − −

− −

− − −

−

= ⋅ ≤ ⋅ −
  

⋅ + ≤ ≤ −     =     + ⋅ ⋅ ≤ ≤ −         


+ ≤ ≤ −
  

+ ≤ ≤ −     

+
≤

( )

( )

( )
( )

( )

3 1
2

2 46
2 2

4
2

4
2

, if 1 3 is odd;

3 2 2 , if 2 4 is even;

3 3, if 1 3 is odd;3 2 , if 1 3 is odd;
2 2,1 , if 2 4 is even;

3 2 , if 2 4 is even;
2 2,1

n

nn

n

n

k n

k n

t n k nk n
h n k n

k n
h n

− −

− −−

−

−


≤ ≤ −

  
+ ≤ ≤ −     


− ⋅ ≤ ≤ − ⋅ ≤ ≤ −= =  ⋅ − ≤ ≤ − ⋅ ≤ ≤ −

= ⋅ −
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If the equality holds, then ( ) ( ) ( )3 3,1mi G t n h= − ⋅  or ( ) ( ) ( )2 2,1mi G t h n= ⋅ − .  

Hence the equality holds if and only if ( )2 2,1G K H n= ∪ −  or 3
41,

2
nG K B − = ∪  

 
. 

Case 2. 7n ≥  is odd. 
By Lemma 3 and since 7n ≥ ,  

( ) ( ) ( ) ( )2 2 2 1 3 2 3 12 1 3
2 2 2 2 2 2 22 2 max 2 2 , 2 2 2 1

n n n nk n k n− − − − − − − −− − − −  + ≤ + + = + 
  

 for 2 3k n≤ ≤ − . 

By Theorem 1 and Theorem 5, we have  

( ) ( ) ( ) ( ) ( )
1 4

2 2

2 1
2 2

5
2

3 2 1
2 2 2

5
2

= ,1

2 3 2 , if 1 4 is odd;

=

2 1 2 1 , if 2 3 is even;

3 2 , if 1 4 is odd;
=

2 2 2 1, if 2 3 is even;

3 2 , if 1

k n k

k n k

n

n k n k

n

mi G mi T mi H t k h n k

k n

k n

k n

k n

k

− − −

− − −

−

− − − −

−

⋅ ≤ ⋅ −

  
⋅ ⋅ ≤ ≤ −     


    + ⋅ + ≤ ≤ −      
   


⋅ ≤ ≤ −

 + + + ≤ ≤ −

⋅ ≤ ≤
≤

( )

3 3
2 2

1
2

4 is odd;

2 1 2 1 , if 2 3 is even;

2 2 = 2 2,1 .

n n

n

n

k n

h n

− −

−


−

  
 + + + ≤ ≤ −    

≤ + ⋅ −

 

If the equality holds, then ( ) ( ) ( )2 2,1mi G t h n= ⋅ − . Hence the equality holds if and 
only if ( )2 2,1G K H n= ∪ − . 

By case 1 and case 2, we have that ( ) ( )2 2,1mi G h n≤ ⋅ − . The equality holds if and  

only if ( )2 2,1G K H n= ∪ −  or 3
41,

2
nG K B − = ∪  

 
.                       □ 

Lemma 5. Suppose that F is a forest of order 4n ≥  having at most two components. 
Then ( ) ( )2 2mi F t n≤ ⋅ −  and the equality holds if and only if ( )2 2F K T n= ∪ −  or  

11,
2

nF B − =  
 

.  

Proof. Let F be a forest of order 4n ≥  having at most two components such that 
( )mi F  as large as possible. Then ( ) ( )( ) ( )2 2 2 2mi F mi K T n t n≥ ∪ − = ⋅ − . If F has 

one component, then F is a tree and, by Theorem 1, ( ) ( ) ( )2 2t n mi F t n⋅ − ≤ ≤ . Then  

n is odd and ( ) ( )mi F t n= . By Theorem 1, 
11,

2
nF B − =  

 
. Now we assume that F  

have two components. Let 1T  and 2T  be the components of F, where 1T s= . We 
consider two cases. 

Case 1. 4n ≥  is even. 

By Lemma 3, 
( ) ( ) ( ) ( )2 2 2 2 2 2 2 22 2 4

2 2 2 2 2 2 22 2 max 2 2 , 2 2 2 1
n n n ns n s n− − − − − − − −− − − −  + ≤ + + = + 

  
 for  
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2 2s n≤ ≤ − . By Lemma 2 and Theorem 1, then  

( ) ( ) ( ) ( ) ( ) ( )
4

2
1 2

1 1
2 2

2 2
2 2

2
2

4 2 2
2 2 2

2 2 2 2 1

2 2 , if 1 1 is odd;

2 1 2 1 , if 2 2 is even;

2 , if 1 1 is odd;

2 1 2 2 , if 2

n

s n s

s n s

n

n s n s

t n mi F mi T mi T t s t n s

s n

s n

s n

s n

−

− − −

− − −

−

− − − −

 
⋅ − = + ≤ = ⋅ ≤ ⋅ −  

 
  

⋅ ≤ ≤ −     = 
    + ⋅ + ≤ ≤ −      
   

≤ ≤ −
=  

+ + + ≤ ≤ −  
 

( )

2
2

4 4
2 2

2
2

2
2

4
2

2 is even;

2 , if 1 1 is odd;

2 1 2 1 , if 2 2 is even;

2 , if 1 1 is odd;

2 2, if 2 2 is even;

2 2 1 2 2 .

n

n n

n

n

n

s n

s n

s n

s n

t n

−

− −

−

−

−








≤ ≤ −≤   
 + + + ≤ ≤ −    


≤ ≤ −= 
 + ≤ ≤ −
 

≤ + = ⋅ −  
 

 

The equalities hold and ( ) ( ) ( )2 2mi F t t n= ⋅ − . By Theorem 1, ( )2 2F K T n= ∪ − . 
The equality holds if and only if ( )2 2F K T n= ∪ − . 

Case 2. 5n ≥  is odd. 
Then F has exactly one even component, we assume that 2s ≥  is even. By Theorem 

1, then  

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

1 2 1
2 2 2

1 2

2 13 1 3 1
2 2 2 2 2

2 2 2 2 1 2

2 2 2 2 2 2 2

n s n s

nn n s n n

t n mi F mi T mi T t s t n s

t n

− − − −

− −− − − − −

   
⋅ − = ≤ = ⋅ ≤ ⋅ − = + ⋅      

   

= + ≤ + = = ⋅ −

.  T h e  

equalities hold and ( ) ( ) ( )2 2mi F t t n= ⋅ − . The equality holds if and only if 
( )2 2F K T n= ∪ − .                                                     □ 

The following is the proof of Theorem 6. 
Proof. Let H be a connected graph of order 12n ≥  with at most two cycles such that 
( )mi H  as large as possible. Then ( ) ( )( ) ( ), 2 , 2mi H mi H n h n≥ = . Since  
( ) ( ) ( ), 2 ,1mi H h n h n≥ > , by Theorem 5, H have at least two cycles. That means that H 

have exactly two cycles and nH C≠ . Let v be a vertex lying on some cycle such that 
( )deg v  is as large as possible. Since nH C≠ , we can see that ( ) 3deg v s= ≥ . The 

graph H v−  is a graph of order 1n −  with at most one cycle. We consider two cases. 
Case 1. ( )1,1H v G n− = − . 

Then 3 2
4

2
nH v K P−

− = ∪  or 2
1

2
nH v P−

− = . Since H is connected, this means  
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that v connects to every component of ( )1,1G n − . Then [ ]( )mi H N v−  has at most 
one edge, then [ ]( ) 2mi H N v− ≤ . So we have  

( ) ( ) ( ) [ ]( ) ( )

( )
4

2

1
2

, 2 1,1 2

3 2 2, if 12 is even;
, 2 .

2 2, if 13 is odd;

n

n

h n mi H mi H v mi H N v g n

n
h n

n

−

−

≤ ≤ − + − ≤ − +


⋅ + ≥= ≤

 + ≥

 

Then [ ]( ) 2mi G N v− =  and 12n ≥  is even. So 3 2
4

2
nH v K P−

− = ∪ . Note that 

H has two cycles, hence ( )3 3 2
6 , 2

2
nH K K K H n− = × ∪ = 

 
 for even 12n ≥ . 

Case 2. ( )1,1H v G n− ≠ − . 
Let ( )deg v d= . Then the subgraph [ ]H N v−  is a graph of order 1n d− −  

having at most one cycle. By Theorem 3, [ ]( ) ( )1mi H N v g n d− ≤ − − . By Theorem 4, 
( ) ( )1,1mi H v g n′− ≤ − . By Lemma 1 and Theorem 4, then  

( ) [ ]( ) ( ) ( ) ( ) ( )

( )

4 6
2 2

7 5
2 2

6
2

7
2

1 , 2 1,1

3 2 2 5 2 , if 12 is even;

9 2 3 2 , if 13 is odd;

6,1 2, if 12 is2 2, if 12 is even;

3 2 , if 13 is odd;

n n

n n

n

n

g n d mi H N v mi H mi H v h n g n

n

n

g n nn

n

− −

− −

−

−

′− − ≥ − ≥ − − ≥ − −

   
⋅ + − ⋅ ≥         = 

    ⋅ − ⋅ ≥      
   


− + ≥+ ≥= =
 ⋅ ≥

( )
even;

4,1 , if 13 is odd;g n n

 − ≥

 

Then  

( )
4, if 12 is even;
3, if 13 is odd.

n
deg v d

n
≥

= ≤  ≥
 

Claim. ( ) 3deg v = . 
Suppose that ( ) 4deg v = , then n is even. By Theorem 3, [ ]( ) ( )5,1mi H N v g n− ≤ −   

and 
( ) ( ) [ ]( ) ( ) ( )

( )

4 8
2 2

8 2
2 2

, 2 5,1 3 2 2 3 2

9 2 2 2 1

n n

n n

mi H v mi H mi H N v h n g n

f n

− −

− −

 
− ≥ − − ≥ − − = ⋅ + − ⋅  

 

= ⋅ + > = −

.  

By Theorem 2, H v−  is not a forest and H v−  has one cycle. Let H ′′  be the 
component of H v−  having one cycle and ( )F H v V H ′′= − − , where 3H s′′ = ≥ . 
Note that H has two cycles and v is lying on some cycle. Thus v has two edges incident 
to some component of H v− . Since ( ) 4deg v = , the number of the components of 
H v−  is at most three. Thus F is either a tree or the union of two trees. By Lemma 5, 

( ) ( )2 3mi F t n s≤ ⋅ − − . By Lemma 3,  
( ) ( ) ( ) ( )3 1 3 3 5 1 5 31 3 4

2 2 2 2 2 2 22 2 max 2 2 , 2 2 2 2
n n n ns n s n+ − − − + − − −+ − − −  + ≤ + + ≤ + 

  
 for 3 5s n≤ ≤ − . By  
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Theorem 5, ( ) ( ),1mi H h s′′ ≤ . Note that ( )
8

29 2 2
n

mi H v
−

− ≥ ⋅ + . By Lemma 2 and  

Lemma 5,  

( ) ( ) ( ) ( )
( )( ) ( )

8
2

4
2

5 1
2 2

4 4
2 2

2 3,1 , if 3;
9 2 2

2 3 ,1 , if 3;

2 (2 1), if 3;

2 2 1 2 1 , if 3 5 is odd;

2 2 3 2 , if 2 4 is even;

n

n

n s s

n s s

h n s n
H v mi F mi H

t n s h s s n

s n

s n

s n

−

−

− − −

− − −

⋅ − = −′′⋅ + ≤ − = ⋅ ≤  ⋅ − − ⋅ ≠ −


⋅ + = −

    
= ⋅ + ⋅ + ≤ ≤ −             

   
⋅ ⋅ ⋅ ≤ ≤ −      

   
2

2

4 1 3
2 2 2

6
2

2
2

4 4 2
2 2 2

6
2

2 2, if 3;

2 2 2 2 , if 3 5 is odd;

3 2 , if 2 4 is even;

2 2, if 3 ;

2 2 2 2 , if 3 5 is odd; 2

3 2 , if 2 4 is even;

n

n s n s

n

n

n n n

n

s n

s n

s n

s n

s n

s n

−

− + − −

−

−

− − −

−













+ = −
  = + + + ≤ ≤ −   

 

 ⋅ ≤ ≤ −


+ = −
  ≤ + + + ≤ ≤ − ≤ +   

 

 ⋅ ≤ ≤ −

8
24 9 2 2,

n−

< ⋅ +

 

where 12n ≥ . This is a contradiction, so ( ) 3deg v = . 
By Claim, ( ) 3deg v = . Note that H has two cycles and v is lying on some cycle. Thus 

v has two edges incident to some component of H v− . Since ( ) 3deg v = , the number 
of the components of H v−  is at most two. Thus H v T H ′− = ∪ , where T is a tree 
and H ′  is a unicyclic graph. By Lemma 4 and Theorem 3, then  

( ) ( ) ( ) ( ) ( )2 3,1 2 3,1mi H v mi T mi H h n h n′− = ⋅ ≤ ⋅ − = ⋅ −  and  
[ ]( ) ( )4,1mi H N v g n− ≤ − . So  

( ) ( ) ( ) [ ]( )
( ) ( )

( )

4 4
2 2

7 7
2 2

4
2

7
2

, 2

2 3,1 4,1

2 2 1 2 , if 12 is even;

2 3 2 3 2 , if 13 is odd;

3 2 2, if 12 is even;

9 2 , if 13 is odd.

, 2 .

n n

n n

n

n

h n mi H mi H v mi H N v

h n g n

n

n

n

n
h n

− −

− −

−

−

≤ ≤ − + −

≤ ⋅ − + −

  
+ + ≥     = 

  ⋅ + ⋅ ≥   
 


⋅ + ≥= 

 ⋅ ≥
=
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The equalities hold. Then [ ] ( )4,1H N v G n− = −  and, by Lemma 4,  

( )2 3,1H v K H n− = ∪ −  or 3
51,

2
nK B − ∪  

 
. If 3

51,
2

nH v K B − − = ∪  
 

, then n is 

odd and [ ] 3 2
7

2
nH N v K K−

− ≠ ∪ . That is [ ] ( )4,1H N v G n− ≠ − , this is a contra-  

diction. Thus ( )2 3,1H v K H n− = ∪ − . If n is even, where 12n ≥ , then  

( )2 2 3 2
63,1

2
nH v K H n K K K− − = ∪ − = ∪ ×∪ 

 
 and  

[ ] ( ) 2
44,1

2
nH N v G n K−

− = − = . Then, there exists a vertex ( )u V H v∈ −  lying on  

some cycle such that ( ) 3
2
ndeg u ≥ > . This contradicts to the claim, so n is odd. Thus 

( )2 2 1 3 2
73,1

2
nH v K H n K K K K −  − = ∪ − = ∪ ∗ ∪  

  
 and  

[ ] ( ) 3 2
74,1

2
nH N v G n K K−

− = − = ∪ . Hence ( )1 3 2
72 ,2

2
nH K K K H n− = × ∪ = 

 
  

for odd 13n ≥ .                                                        □ 
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