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Abstract 
A proper edge t-coloring of a graph G is a coloring of its edges with colors t�1, 2, ,  such that all 
colors are used, and no two adjacent edges receive the same color. A cyclically interval t-coloring 
of a graph G is a proper edge t-coloring of G such that for each vertex ( )x V G∈ , either the set of 
colors used on edges incident to x or the set of colors not used on edges incident to x forms an 
interval of integers. In this paper, we provide a new proof of the result on the colors in cyclically 
interval edge colorings of simple cycles which was first proved by Rafayel R. Kamalian in the paper 
“On a Number of Colors in Cyclically Interval Edge Colorings of Simple Cycles, Open Journal of 
Discrete Mathematics, 2013, 43-48”. 
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1. Introduction 
All graphs considered in this paper are finite undirected simple graphs. For a graph G, let ( )V G  and ( )E G  
denote the sets of vertices and edges of G, respectively. For a vertex ( )x V G∈ , let ( )GJ x  and ( )Gd x  
denote the subset of ( )E G  incident with the vertex x, and the degree of the vertex x in G, respectively. We 
denote ( )G∆  the maximum degree of vertices of G. A simple path with 1n ≥  edges is denoted by nP . A 
simple cycle with 3n ≥  edges is denoted by nC . 

For an arbitrary finite set A, we denote by A  the number of elements of A. The set of positive integers is 
denoted by  . An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the 
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minimum element p and the maximum element q is denoted by [ ],p q . We denote [ ],a b◊  and [ ],a b�  the 
sets of even and odd integers in [ ],a b , respectively. An interval D is called a h-interval if D h= . 

A function ( ) [ ]: 1,E G tα →  is called a proper edge t-coloring of a graph G, if all colors are used, and no 
two adjacent edges receive the same color. The minimum value of t for which there exists a proper edge 
t-coloring of a graph G is denoted by ( )Gχ′ . If ( )0E E G⊆ , and α  is a proper edge t-coloring of a graph G, 
then let ( ){ }

0 0|E e e Eα α= ∈ . A proper edge t-coloring α  of a graph G is called an interval t-coloring of G if 
for any ( )x V G∈ , the set ( )|

DJ xα  is a ( )Gd x -interval. A graph G is interval colorable if it has an interval 
t-coloring for some positive integer t. The concept of interval edge coloring of graphs was introduced by 
Asratian and Kamalian [1]. In [1] [2], the authors showed that if G is interval colorable, then ( ) ( )G Gχ′ = ∆ . 

For any t∈ , we denote by tN  the set of graphs for which there exists an interval t-coloring. Let  

1 tt≥
=∪N N . For any graph G∈N , the minimum and the maximum values of t for which G has an interval  

t-coloring are denoted by ( )w G  and ( )W G , respectively. For a graph G∈N , let ( ) { }| tG t Gθ = ∈N . 
A proper edge t-coloring α of a graph G is called a interval cyclic t-coloring of G, if for any ( )x V G∈ , at 

least one of the following two conditions holds:  
1) ( )|

GJ xα  is a ( )Gd x -interval,  

2) [ ] ( )1, \ |
GJ xt α  is a ( )( )Gt d x− -interval.  

A graph G is interval cyclically colorable if it has a cyclically interval t-coloring for some positive integer t. 
This type of edge coloring under the name of “π-coloring” was first considered by Kotzig [3], and the concept of 
cyclically interval edge coloring of graphs was explicitly introduced by de Werra and Solot [4]. 

For any t∈ , we denote by tM  the set of graphs for which there exists a interval cyclic t-coloring. Let  

1 tt≥
=∪M M . For any graph G∈M , the minimum and the maximum values of t for which G has a cyclically  

interval t-coloring are denoted by ( )cw G  and ( )cW G  respectively. For a graph G∈M ,  let 
( ) { }| tG t GΘ = ∈M . 
It is clear that for any t∈ , t t⊆N M  and ⊆N M . Note that for an arbitrary graph G, ( ) ( )G Gθ ⊆ Θ . 

It is also clear that for any G∈N , the following inequality is true:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) .c cG G w G w G W G W G E Gχ′∆ ≤ ≤ ≤ ≤ ≤ ≤  

Let T be a tree. Kamalian [5] [6] showed that T ∈N , ( )Tθ  was an interval, and provided the exact values 
of the parameters ( )w T  and ( )W T . Kamalian [7] [8] also proved that ( ) ( )T TθΘ = . Some interesting 
results on cyclically interval t-colorings and related topics were obtained in [3] [4] [9]-[14]. For any integer 

3n ≥ , Kamalian [13] proved that nC ∈M , determined the set ( )nCΘ , and provided the following theorem. 
Theorem 1 (R. R. Kamalian [13]) For any integers 3n ≥  and [ ]2,t n∈ , n tC ∈M  if and only if  

[ ]3, , if is odd;

2, 2, 1 , if is even.
2 2

n n
t n nn n


∈    ◊ + ∪ +       

�
 

In this paper, we provide a new proof of the theorem. The terms and concepts that we do not define can be 
found in [15]. 

2. Main Result  
Proof of Theorem 1. Suppose that, in clockwise order along the cycle nC , the vertices of nC  are 1 2, , , nv v v�  
and the edges of nC  are 1 2, , , ne e e� , where 1i i ie v v +=  for 1, 2, ,i n= � , and 1 1nv v+ = . Since ( )nE C n=  
and  

( ) 2, if is even;
3, if is odd.n

n
C

n
χ

′ = 


 

We know that if t n>  or  

2, if is even;
3, if is odd,

n
t

n


< 

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then n tC ∉M . 
First we prove that if 3n ≥  and  

[ ]3, , if is odd;

2, 2, 1 , if is even,
2 2

n n
t n nn n


∈    ◊ + ∪ +       

�
 

then n tC ∈M . 
Case 1. n is odd. 
For any [ ]3,t n∈� , let  

( )
[ ]
[ ]
[ ]

, 1, ;
1, 1, ;
2, 1, .

i

i i t
e i t n

i t n
α

 ∈
= ∈◊ +
 ∈ + �

 

It is easy to check that α  is a cyclically interval t-coloring of nC . 
Case 2. n is even. 
For any [ ]2,t n∈◊ , let  

( )
[ ]
[ ]
[ ]

, 1, ,
1, 1, ;
2, 1, .

i

i i t
e i t n

i t n
α

 ∈
= ∈ +
 ∈◊ +

�  

If 1
2
nt = +  is odd, then let  

( ) [ ]
[ ]

, 1, ;
2, 1, .i

i i t
e

n i i t n
α

 ∈=  − + ∈ +
 

For any 3,
2
nt  ∈   

� , let  

( )

[ ]
[ ]
[ ]
[ ]

, 1, ;
, 1, 2 ;

1, 2 1, ;
2, 2 1, .

i

i i t
i t i t t

e
i t n
i t n

α

 ∈
 − ∈ +=  ∈ +
 ∈◊ +

�
 

It is easy to check that, in each case, α  is a cyclically interval t-coloring of nC . 
Now let us prove that if 3n ≥ , [ ]2,t n∈  and n tC ∈M , then  

[ ]3, , if is odd;

2, 2, 1 , if is even.
2 2

n n
t n nn n


∈    ◊ + ∪ +       

�
 

By contradiction. Suppose that there are 0n ∈ , 0 3n ≥ , [ ]0 02,t n∈  and  

[ ] 0

0
0

3, , if is odd;

2, 2, 1 , if is even,
2 2

n n
t n nn n


∉    ◊ + ∪ +       

�
 

such that 
0nC  has a cyclically interval 0t -coloring α . 

Case 1. 0n  is odd. 
Clearly, [ ]0 02, 1t n∈◊ − . Let se  and te  be two edges of 

0nC  such that ( ) 1seα =  and ( ) 0te tα = . 
Without loss of generality, we may assume s t< . Let 1L  be the subgraph induced by { }|ie s i t≤ ≤ , and 2L   
be the subgraph induced by { }| orje j s j t≤ ≥ , respectively. Since 0t  is even and α  is a cyclically interval  
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0t -coloring of 
0nC , then ( )1E L  and ( )2E L  are all even. So we have that 0n  is even, a contradiction. 

Case 2. 0n  is even. 
Let H be the graph removing from the graph 

0nC  the edges with the colors except 1 and 0t , and 0H  the 
graph removing from the graph H all its isolated vertices. 

Case 2.1. 0H  is connected. 
Let F be the subgraph of 

0nC  induced by ( ) ( ) { }
0 0\ ,nE C E H e e′ ′′∪ , where e′  and e′′  are the two pendant 

edges of 0H . 

Clearly, 0
0 02, 1

2
nt n ∈ + −  

� . If ( )0E H  is odd, then ( ) ( )e eα α′ ′′= . Since α  is a cyclically interval 0t - 

coloring of 
0nC , then ( )E Fα  is a interval ( )0 1t − -coloring with ( ) ( )e eα α′ ′′= . So we have  

( )0 0 02 3 1n E F t n> ≥ − ≥ + , a contradiction. 

If ( )0E H  is even, then ( ) ( )e eα α′ ′′≠ . Since α  is a cyclically interval 0t -coloring of 
0nC , then ( )E Fα  

is a interval 0t -coloring. So we know that ( )E F  is odd, and then ( ) ( )0 0 2n E H E F= + −  is odd, a con- 
tradiction. 

Case 2.2. 0H  is a graph with m connected components, 2m ≥ . 
Suppose that, in clockwise order along the cycle nC , the m connected components of 0H  are 1 2, , , mH H H� . 

Without loss of generality, we may also assume that ( )1 2 1,v v V H∈  and ( )
0 1nv V H∉ . 

Clearly, 0
0 02, 1

2
nt n ∈ + −  

�  and ( ){ }1min | 1ii e E H∈ = . Let ( ){ }1 1max | ir i e E H= ∈ ,  

( ){ }2 2min | ir i e E H= ∈  and ( ){ }3 max | i mr i e E H= ∈ . Let 3L  be the subgraph induced by { }1 2|ie r i r≤ ≤ ,  
and L4 be the subgraph induced by { }3| 1 orje j j r= ≥ , respectively. Let ( ) ( )1 2r re eα α=  or ( ) ( )

3 1re eα α= ,  

say ( ) ( )1 2r re eα α= . Since α  is a cyclically interval 0t -coloring of 
0nC , then ( )3E Lα  is a interval ( )0 1t − -  

coloring with ( ) ( )1 2r re eα α= . So we have ( )0 3 0 02 3 1n E L t n> ≥ − ≥ + , a contradiction. 

Now let ( ) ( )1 2r re eα α≠  and ( ) ( )
3 1re eα α≠ . Since α  is a cyclically interval 0t -coloring of 

0nC , then  

( )3E Lα  and ( )4E Lα  are all interval 0t -coloring. So we have ( ) ( )0 3 4 0 02 2 2 2n E L E L t n> + − ≥ − ≥ + , a con-  

tradiction.                                                                                □ 
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