Double Derangement Permutations

Pooya Daneshmand¹, Kamyar Mirzavaziri², Madjid Mirzavaziri³

¹Ferdowsi University of Mashhad, International Campus, Mashhad, Iran
²National Organization for Development of Exceptional Talents (NODET) I, Mashhad, Iran
³Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran

Received 28 September 2015; accepted 9 April 2016; published 12 April 2016

Abstract

Let n be a positive integer. A permutation a of the symmetric group S_n of permutations of $\{1, 2, \ldots, n\}$ is called a derangement if $a(i) \neq i$ for each $i \in [n]$. Suppose that x and y are two arbitrary permutations of S_n. We say that a permutation a is a double derangement with respect to x and y if $a(i) \neq x(i)$ and $a(i) \neq y(i)$ for each $i \in [n]$. In this paper, we give an explicit formula for nD_{xy}, the number of double derangements with respect to x and y. Let $0 \leq k \leq n$ and let $\{i_1, \ldots, i_k\}$ and $\{a_1, \ldots, a_k\}$ be two subsets of $[n]$ with $i_j \neq a_j$ and $\ell = |i_1, \ldots, i_k| \cap |a_1, \ldots, a_k|$. Suppose that $\Delta(n, k, \ell)$ denotes the number of derangements x such that $x(i_j) = a_j$. As the main result, we show that if $0 \leq m \leq n$ and z is a permutation such that $z(i) \neq i$ for $i > m$, then $D_n(e, z) = \sum_{k=0}^{m} \sum_{\ell = |i_1, \ldots, i_k|} (-1)^\ell \Delta(n, k, \ell(i_1, \ldots, i_k))$, where $\ell(i_1, \ldots, i_k) = |i_1, \ldots, i_k| \cap |z(i_1), \ldots, z(i_k)|$.

Keywords
Symmetric Group of Permutations, Derangement, Double Derangement

1. Introduction

Let n be a positive integer. A derangement is a permutation of the symmetric group S_n of permutations of $[n] = \{1, 2, \ldots, n\}$ such that none of the elements appear in their original position. The number of derangements of S_n is denoted by D_n or ν. A simple recursive argument shows that
The number of derangements also satisfies the relation \(D_n = nD_{n-1} + (-1)^n \). It can be proved by the inclusion-exclusion principle that \(D_n \) is explicitly determined by \(n! \sum_{i=0}^{n} (-1)^i \frac{1}{i!} \). This implies that \(\lim_{n \to \infty} \frac{D_n}{n!} = \frac{1}{e} \).

These facts and some other results concerning derangements can be found in [1]. There are also some generalizations of this notion. The problème des rencontres asks how many permutations of the set \(\{1, 2, \ldots, n\} \) have exactly \(k \) fixed points. The number of such permutations is denoted by \(D_{n,k} \) and is given by \(D_{n,k} = \frac{n!}{k!} D_{n-k} \).

Thus, we can say that \(\lim_{n \to \infty} \frac{D_{n,k}}{n!} = \frac{1}{k!e} \). Some probabilistic aspects of this concept and the related notions concerning the permutations of \(S_n \) is discussed in [2] and [3].

Let \(e \) be the identity element of the symmetric group \(S_n \), which is defined by \(e(i) = i \) for each \(i \in [n] \). We can say that a permutation \(a \) of \([n] \) is a derangement if \(a(i) \neq e(i) \) for each \(i \in [n] \). We denote this by \(a \perp e \). Thus, \(D_n \) is the number of \(a \) with \(a \perp e \). If \(e \) is any fixed element of \(S_n \), then the number of \(a \in S_n \) with \(a \perp x \) is also \(D_n \), since \(a \perp x \) if and only if \(ax^{-1} \perp e \). In the present paper, we extend the concept of a derangement to a double derangement with respect to two fixed elements \(x \) and \(y \) of \(S_n \).

2. The Result

In the following, we assume that \(n \) is a positive integer and the identity permutation of the symmetric group \(S_n \) of permutations of \([n] \) is denoted by \(e \). Moreover, for two permutations \(a \) and \(b \) of \(S_n \), the notation \(a \perp b \) means that \(a(i) \neq b(i) \) for each \(i \in [n] \). We also denote the number of elements of a set \(A \) by \(|A| \).

Definition 1. Suppose that \(x \) and \(y \) are two arbitrary permutations of \(S_n \). We say that a permutation \(a \) is a double derangement with respect to \(x \) and \(y \) if \(a \perp x \) and \(a \perp y \). The number of double derangements with respect to \(x \) and \(y \) is denoted by \(D_n(x,y) \).

Proposition 1. Let \(0 \leq k \leq n \) and let \(\{i_1, \ldots, i_k\} \) and \(\{a_1, \ldots, a_k\} \) be two subsets of \([n] \) with \(i_j \neq a_j \) and \(\ell = \left| \{i_1, \ldots, i_k\} \cap \{a_1, \ldots, a_k\} \right| \). Then \(\Delta(n,k,\ell) \), the number of derangements \(x \) such that \(x(i_j) = a_j \), is determined by

\[
\Delta(n,k,\ell) = \begin{cases} \sum_{i=0}^{k-\ell-1} \frac{(k-\ell-1)!}{i!} D_{(n+1)-(k+i)} & \text{if } k \neq \ell \text{ and } 2k-\ell \leq n \\ D_{n-k} & \text{if } k = \ell \\ 0 & \text{otherwise} \end{cases}
\]

Proof. Let \(a_j \in \{i_1, \ldots, i_k\} \cap \{a_1, \ldots, a_k\} \). Thus \(a_j = a_s \) for some \(s \neq r \). Now there are two cases:

Case 1. \(a_j \in \{i_1, \ldots, i_k\} \). Let \(a_j = i_k \). In this case a derangement \(x \) satisfies the condition \(x(i_j) = a_j \) if and only if the derangement \(x' \) of the set \([n] \setminus \{i_k\} \) satisfies the condition \(x'(i_{j}) = a_{s} \) for all \(j \neq i_k \), where \(a_{j} = a_{j} \) for \(j \neq s \) and \(a_{s} = a_{i_k} \). This provides a one to one correspondence between the derangements \(x \) of \([n] \) with \(x(i_j) = a_j \) and the given sets \(\{i_1, \ldots, i_k\} \) and \(\{a_1, \ldots, a_k\} \) with \(\ell \) elements in their intersections, and the derangements \(x' \) of \([n] \setminus \{i_k\} \) with \(x_{j} = a_{j} \) for the given sets \(\{i_1, \ldots, i_{k-1}\} \setminus \{i_k\} \) and \(\{a_1, \ldots, a_{k-1}\} \setminus \{a_{s}\} \) with \(\ell - 1 \) elements in their intersections.

Case 2. \(a_j \notin \{i_1, \ldots, i_k\} \). In this case a derangement \(x \) satisfies the condition \(x(i_j) = a_j \) if and only if the derangement \(x' \) of the set \([n] \setminus \{a_j\} \) satisfies the condition \(x'(i_{j}) = a_{s} \) for all \(j \neq s \). This provides a one to one correspondence between the derangements \(x \) of \([n] \) with \(x(i_j) = a_j \) and the given sets \(\{i_1, \ldots, i_k\} \) and \(\{a_1, \ldots, a_k\} \) with \(\ell \) elements in their intersections, and the derangements \(x' \) of \([n] \setminus \{a_j\} \) with \(x'(i_{j}) = a_{j} \) for the given sets \(\{i_1, \ldots, i_k\} \setminus \{a_j\} \) and \(\{a_1, \ldots, a_j\} \setminus \{a_{s}\} \) with \(\ell - 1 \) elements in their intersections.

These considerations show that \(\Delta(n,k,\ell) = \Delta(n-1,k-1,\ell-1) \). Iterating this argument, we have

\[
\Delta(n,k,\ell) = \Delta(n-1,k-1,\ell-1) = \Delta(n-2,k-2,\ell-2) = \cdots = \Delta(n-\ell,k-\ell,0).
\]

We can therefore assume that \(\ell = 0 \). We thus evaluate \(\Delta(n,k,0) \), where \(2k \leq n \). For \(k = 0 \), we obviously have \(\Delta(n,0,0) = D_n \). For \(k \geq 1 \), we claim that
\[\Delta(n,k,0) = \Delta(n-1,k-1,0) + \Delta(n-2,k-1,0).\]

For a derangement \(x\) satisfying \(x(i) = a_i\) there are two cases: \(x(a_i) = i\) or \(x(a_i) \neq i\).

If the first case occurs then we have to evaluate the number of derangements of the set \([n]\) \(\setminus\{a_i\}\) for the given sets \(\{i_2,\ldots,i_k\}\) and \(\{a_2,\ldots,a_k\}\) with 0 elements in their intersections. The number is equal to \(\Delta(n-2,k-1,0)\).

If the second case occurs then we have to evaluate the number of derangements of the set \([n]\) \(\setminus\{a_i\}\) for the given sets \(\{i_2,\ldots,i_k\}\) and \(\{a_2,\ldots,a_k\}\) with 0 elements in their intersections. The number is equal to \(\Delta(n-1,k-1,0)\).

We now use induction on \(k\) to show that

\[
\Delta(n,k,0) = \sum_{i=0}^{k-1} \binom{k-1}{i} D_{\Delta(n-1-i,k-i)} n^{-k+i-1}. \\
2 \leq 2k \leq n.
\]

For \(k = 1\) we have

\[
\Delta(n,1,0) = \Delta(n-1,0,0) + \Delta(n-2,0,0) = D_{n-1} + D_{n-2} = \frac{D_n}{n-1}.
\]

Now let the result be true for \(k - 1\). We can write

\[
\Delta(n,k,0) = \Delta(n-1,k-1,0) + \Delta(n-2,k-1,0)
\]

\[
= \sum_{i=0}^{k-1} \binom{k-1}{i} D_{\Delta(n-1-i,k-i)} (n-1-2k+i) + \sum_{i=0}^{k-1} \binom{k-1}{i} D_{\Delta(n-1-i,k-i)} (n-2-k+i)
\]

\[
= \sum_{i=0}^{k-1} \binom{k-2}{i} D_{\Delta(n-1-i,k-i)} (n-k+1-i) + \sum_{i=0}^{k-1} \binom{k-2}{i} D_{\Delta(n-1-i,k-i)} (n-k+2+i)
\]

\[
= \frac{D_{\Delta(n-1-k+i)}}{n-k} + \sum_{i=1}^{k-1} \binom{k-2}{i} D_{\Delta(n-1-k+i)} (n-k+i) + \sum_{i=1}^{k-1} \binom{k-2}{i} D_{\Delta(n-1-k+i)} (n-k+i)
\]

\[
= \frac{D_{\Delta(n-1-k)+1}}{n-k} + \sum_{i=1}^{k-1} \binom{k-2}{i} D_{\Delta(n-1-k+i)} (n-k+i) + \sum_{i=1}^{k-1} \binom{k-2}{i} D_{\Delta(n-1-k+i)} (n-k+i)
\]

\[
= \sum_{i=0}^{k-1} \binom{k-1}{i} D_{\Delta(n-1-k+i)} n^{-k+i-1}
\]

Corollary 1. Let \(k\) be a positive integer. Then

\[
\sum_{i=0}^{k-1} \binom{k-1}{i} D_{\Delta(n-1-k+i)} = k!.
\]

Proof. Let \(n = 2k\), \(i_j = j\) and \(a_j = k+j\) for \(j = 1,\ldots,k\). Then a derangement \(x\) satisfies the condition \(x(i) = a_j\) if and only if \(x'\) defined by \(x'(i) = x(i) + i\) for \(i \in [k]\) is a permutation of \([k]\). The number of such permutations \(x'\) is \(k!\).

The following Table 1 gives some small values of \(\Delta(n,k,0)\).

The following lemma can be easily proved.

Lemma 1. Let \(x\) and \(y\) be two arbitrary permutations and \(m \geq 0\) be the number of \(i\)'s for which \(x(i) \neq y(i)\). Then there is a permutation \(z\) such that \(z(i) \neq i\) for \(i \leq m\) and \(z(i) = i\) for \(i > m\) and \(D_x(x,y) = D_z(x,z)\).

Theorem 2. Let \(0 \leq m \leq n\) and let \(z\) be a permutation such that \(z(i) \neq i\) for \(i \leq m\) and \(z(i) = i\) for \(i > m\). Then

\[
D_x(e,z) = \sum_{k=0}^{m} \sum_{1 \leq i_1 < \ldots < i_k \leq m} (-1)^k D_{\Delta(n,k,\ell(i_1,\ldots,i_k))},
\]
Table 1. Values of $\Delta(n,k,0)$ for $1 \leq n \leq 10$ and $1 \leq 2k \leq n$.

<table>
<thead>
<tr>
<th>$n\k$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>309</td>
<td>64</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>2119</td>
<td>362</td>
<td>78</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>16,687</td>
<td>2428</td>
<td>426</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>148,329</td>
<td>18,806</td>
<td>2790</td>
<td>504</td>
<td>120</td>
</tr>
</tbody>
</table>

where $\ell(i_1,\ldots,i_k) = |[i_1,\ldots,i_k] \cap [z(i_1),\ldots,z(i_k)]|$.

Proof. Let E_i be the set of all derangements x for which $x(i) = z(i)$, where $1 \leq i \leq m$. Then $D_n(e,z) = D_n - \bigcup_{i=1}^m E_i$. We use the inclusion-exclusion principle to determine $\bigcup_{i=1}^m E_i$. For each $0 \leq k \leq m$ and $1 \leq i_1 < \cdots < i_k \leq m$ we have

$$|E_{i_1} \cap \cdots \cap E_{i_k}| = \Delta(n,k,\ell(i_1,\ldots,i_k)),$$

where $\ell(i_1,\ldots,i_k) = |[i_1,\ldots,i_k] \cap [z(i_1),\ldots,z(i_k)]|$. This implies the result.

Our ultimate goal is to find an explicit formula for evaluating $D_n(e,c)$ for an arbitrary cycle c. Prior to that we need to state two elementary enumerative problems concerning subsets A of the set $[n]$ with k elements and exactly ℓ consecutive members.

Lemma 2. Let $S(n,k,\ell)$ be the number of subsets $A = \{a_1,\ldots,a_k\}$ of $[n]$ for which the equation $r = s + 1$ has exactly ℓ solutions for r and s in A. If $0 \leq \ell < k \leq n$ then

$$S(n,k,\ell) = \binom{n-k+1}{k-\ell} \binom{k-1}{\ell}.$$

Moreover, $S(n,0,0) = 1$ and $S(n,k,\ell) = 0$ for other values of n,k,ℓ.

Proof. We can restate the problem as follows: We want to put k ones and $n-k$ zeros in a row in such a way that there are exactly ℓ appearance of one-one. To do this we put $n-k$ zeros and choose $k-\ell$ places of the $n-k+1$ possible places for putting $k-\ell$ blocks of ones in $\binom{n-k+1}{k-\ell}$ ways. Let the number of ones in the i-th block be $r_i \geq 1$. We then must have $r_1 + \cdots + r_{\ell-1} = k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Now suppose that we write $1,2,\ldots,n$ around a circle. We thus assume that 1 is after n and so $n,1$ is also assumed to be consecutive. Under this assumption we have the following result.

Lemma 3. Let $C(n,k,\ell)$ be the number of subsets $A = \{a_1,\ldots,a_k\}$ of $[n]$ for which the equation $r = s + 1 \pmod{n}$ has exactly ℓ solutions for r and s in A. If $0 \leq \ell < k < n$ then

$$C(n,k,\ell) = n \binom{n-k-1}{k} \binom{k}{\ell}.$$

Moreover, $C(n,0,0) = C(n,n,n) = 1$ and $C(n,k,\ell) = 0$ for other values of n,k,ℓ.

Proof. Similar to the above argument, we want to put \(k \) ones and \(n-k \) zeros around a circle in such a way that there are exactly \(\ell \) appearances of one-one. At first, we put them in a row. There are four cases:

Case 1. There is no block of ones before the first zero and after the last zero. In this case we put \(n-k \) zeros and choose \(k-\ell \) places of the \(n-k-1 \) possible places for putting \(k-\ell \) blocks of ones in \(\binom{n-k-1}{k-\ell} \) ways. Let the number of ones in the \(i \)-th block be \(r_i \geq 1 \). We then must have \(r_1 + \cdots + r_{n-k} = k \). The number of solutions for the latter equation is \(\binom{k-1}{\ell} \).

Case 2. There is no block of ones before the first zero but there is a block after the last zero. In this case we put \(n-k \) zeros and choose \(1 \) place of the \(n-k \) possible places for putting \(1 \) block of ones in \(\binom{n-k-1}{1} \) ways. Let the number of ones in the \(i \)-th block be \(r_i \geq 1 \). We then must have \(r_1 = k \). The number of solutions for the latter equation is \(\binom{k-1}{\ell} \).

Case 3. There is a block of ones before the first zero but there is no block after the last zero. This is similar to the above case.

Case 4. There is a block of ones before the first zero and a block of ones after the last zero. In this case we must have \(\ell - 1 \) appearance of one-one in the row format, since we want to achieve \(\ell \) appearance of one-one in the circular format. Thus we put \(n-k \) zeros and choose \(k-(\ell-1)-2 \) places of the \(n-k-1 \) possible places for putting \(k-(\ell-1)-2 \) blocks of ones in \(\binom{n-k-1}{k-(\ell-1)-1} \) ways. Let the number of ones in the \(i \)-th block be \(r_i \geq 1 \). We then must have \(r_1 + \cdots + r_{k-(\ell-1)} = k \). The number of solutions for the latter equation is \(\binom{k-1}{\ell-1} \).

These considerations prove that

\[
C(n,k,\ell) = \binom{n-k-1}{k-\ell}\binom{k-1}{\ell} + 2\binom{n-k-1}{k-\ell-1}\binom{k-1}{\ell} + \binom{n-k-1}{k-\ell-1}\binom{k-1}{\ell-1}.
\]

A straightforward computation gives the result.

The following Table 2 gives some small values of \(C(10,k,\ell) \).

<table>
<thead>
<tr>
<th>(k/\ell)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>60</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>100</td>
<td>75</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>40</td>
<td>120</td>
<td>80</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>100</td>
<td>75</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>60</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Theorem 3. Let c be a cycle of length $m \leq n$. Then
\[
D_n(e,c) = \sum_{0\leq i_1 \leq \cdots \leq i_m \leq n} (-1)^i \frac{C(m,k,\ell)}{C(n,k,\ell)} \Delta(n,k,\ell).
\]

Proof. Let c_n be the cycle defined by $c_n(j) = j + 1$ for $1 \leq j \leq m - 1$, $c_n(m) = 1$ and $c_n(i) = i$ for $m + 1 \leq i \leq n$. Then $D_n(e,c) = D_n(e,c_n)$.

Using the notations of Theorem 2, $\ell(i_1,\ldots,i_k) = \ell$ if and only if the subset $A = \{i_1,\ldots,i_k\}$ of $[m]$ has exactly ℓ solutions for the equation $r = s + 1 \pmod{n}$ for $r,s \in A$. Thus the number of $\{i_1,\ldots,i_k\}$ with the property $\ell(i_1,\ldots,i_k) = \ell$ is $C(m,k,\ell)$. Applying Theorem 2, we have the result.

Example 1. We evaluate $D_5(e,c_5)$ and $D_5(e,c_3)$. Applying Theorem 3 with $m = 5$ we have
\[
D_5(e,c_5) = C(5,0,0)\Delta(5,0,0) - C(5,1,0)\Delta(5,1,0) + C(5,2,0)\Delta(5,2,0)
+ C(5,2,1)\Delta(5,2,1) - C(5,3,1)\Delta(5,3,1) - C(5,3,2)\Delta(5,3,2)
+ C(5,4,3)\Delta(5,4,3) - C(5,5,3)\Delta(5,5,3)
= C(5,0,0)\Delta(5,0,0) - C(5,1,0)\Delta(5,1,0) + C(5,2,0)\Delta(5,2,0)
+ C(5,2,1)\Delta(4,1,0) - C(5,3,1)\Delta(4,2,0) - C(5,3,2)\Delta(3,1,0)
+ C(5,4,3)\Delta(2,1,0) - C(5,5,3)\Delta(0,0,0)
\]
\[
= 1 \times 44 - 5 \times 11 + 5 \times 4 + 5 \times 3 - 5 \times 2 - 5 \times 1 + 5 \times 1 - 1 \times 1 = 13,
\]
and $\{(x(1),x(2),x(3),x(4),x(5))\}$ for the 13 double derangements x with respect to e and c_5 are
\[
(3,1,5,2,4),(3,4,5,1,2),(3,5,1,2,4),(4,3,5,2,4),(4,1,5,2,3),
(4,1,5,3,2),(4,5,1,2,3),(4,5,1,3,2),(4,5,2,1,3),(5,1,2,3,4),
(5,4,1,2,3),(5,4,1,3,2),(5,4,2,1,3).
\]

Applying Theorem 3 with $m = 3$ we have
\[
D_5(e,c_3) = C(3,0,0)\Delta(5,0,0) - C(3,1,0)\Delta(5,1,0)
+ C(3,2,1)\Delta(5,2,1) - C(3,3,1)\Delta(5,3,3)
= 1 \times 44 - 3 \times 11 + 3 \times 3 - 1 \times 1 = 19,
\]
and $\{(x(1),x(2),x(3),x(4),x(5))\}$ for the 19 double derangements with respect to e and c_3 are
\[
(3,4,5,1,2),(3,5,4,1,2),(3,4,5,2,1),(3,5,4,2,1),(4,5,2,1,3),
(5,4,2,1,3),(4,5,2,3,1),(5,4,2,3,1),(4,1,5,2,3),(5,1,4,2,3),
(4,1,5,3,2),(5,1,4,3,2),(5,2,1,4),(3,4,2,5,1),(3,1,5,2,4),
(3,1,4,5,2),(5,1,2,3,4),(4,1,2,5,3),(3,1,2,5,4).
\]

The above example shows that how can we evaluate $D_n(e,c)$ for a cycle c. Moreover, Theorem 2 gives a formula for evaluating $D_n(e,z)$ for any permutation z. Applying Lemma 1, we can compute $D_n(x,y)$ for any permutations x and y.

References