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ABSTRACT

The present research considers the problem of covering a graph with minimal number of trails satisfying the pre-defined
local restrictions. The research is devoted to the problem of graph covering by minimal number of trails satisfying some
local restrictions. Algotithm of allowed Eulerian cycle construction is considered. The authors showed that it is possible
to recognize the system of transitions and solve the problem of constructing the allowable path by linear time. It's also
possible to find alowable Eulerian cycle for Eulerian graph or to proclaim that such a cycle does not exist by the time

0(|V(G)| : |E(G)|) . All presented algorithms have the software realization.
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1. Introduction

Lots of problems of finding paths satisfying the different
restrictions can be applied to some practical problems.
For example for sheet materia cutting problem plane
graph represents the model of cutting plan, and a path
covering all its edges defines the tragjectory of cutter. The
restriction defined for this problem is lack of intersection
of any initial part of path with edges that are not passed
yet [1]. Creating the control systems using non-oriented
graphs the following problems of constructing the paths
with different restrictions can arise. Among them are
straight-ahead paths [2]; paths the next edge of which is
defined by the given cyclic order on the set of incident
edges [3-5]; paths for which it’'s necessary to pass some
edges in pre-defined order [5].

The restrictions on the order of vertices and edges can
be classified as local (the next edge of a path is defined
by conditions established at the current vertex or edge
[2-8]), and global (Eulerian, Hamiltonian cycles, bidirec-
tional double tracing etc.). Most of researches are de-
voted to algorithms with local restrictions of edges order
in a path. The present research considers the problem of
covering a graph with minimal number of trails satisfy-
ing the pre-defined local restrictions.

2. Constructing of Tg-Compatible Path

The generalization of most of particular cases for prob-
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lem of simple trail with local restrictions construction
and analysis of its computing complexity is made by
S.Szeider [7].

Let's quote the basic definitions and results of this re-
search to make the further statements clear. Let’s confine
with finite simple graphs. Let’s designate as ' (G) and
E(G) the sets of vertices and edges of graph G corre-
spondingly. For vertex veV(G) let's define the set
E; (V) of al graph G edges incident to vertex v. The
degree of vertex v let be designated as d(v); for d >0
let ¥,(G)={veV(G)|d(v)=d}. Let H<G if H be
vertex-induced subgraph of graph G i.e. the subgraph
received of graph G by deleting of one set of vertices and
only all edgesincident to vertices of this set.

Restrictions for paths in graph G can be defined in
terms of alowed transitions graph.

Definition 1. Let transition graph 7, (v) for vertex
veV(G) be a graph vertices of which are the edges
incident to vertex v ie. V(T,(v))=Eq(v), and set of
edges consists of alowed transitions.

Definition 2. The system of alowed transitions (or
shortly, system of transitions) 7, is called the set
{T, (v)lveV (G)} where T,(v) bethe transition graph
for vertex v.

Definition 3. The path P =v,ev;--¢,v, for graph G
is caled T, -compatible if (e,e,,)eE(T,(v,)) for
eachi (1<i<k-1).
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Theorem 1 [S. Szeider]. If al graphs of transitions
belong either class M of full multipartite graphs or class P
of matchings then the problem of 7, -compatible trail
constructing can be solved by the time O(|E (G)|) Oth-
erwise this problem is NP-complete.

If the system of transitions for avertex velV(G) isa
matching then this problem can be reduced to the problem
for graph

GV (G)=V(G)\{v},

E(G)

=(E(G)\ E; (v))U {{vl.v/.} ; {vl.v,vvj} e E(T, (v))}

If for any vertex veV(G) graph T, (v) isfull mul-
tipartite graph then a trail can be constructed by the fol-
lowing algorithm.

Algorithm T;-Compatible Path

I nput:

Graph G=(V,E);
Verticesx, y the end-verticesof T, -compatibletrail;
System of transitions 7,,: (VveV(G)) T,(v)eM .

Output:

The sequence of edges corresponding to 7, -compati-
ble trail between vertices x and y or the message that
such apath does not exist.

Step 1. If vertex x or vertex y isisolated then stop: path

does not exist.

Step 2. Delete al isolated vertices from graph G.

Step 3. Construct the supplementary graph G’ asfol-
lowing (Figure 1):

e Each vertex veV(G) should be split into vertices
Vi Vp,ee,v,, Where p(v) be the number of parts
of graph 7;(v). The edges of corresponding part of
graph T (v) and one additional vertex Vi, aein-
cident to vertex v, ;

e Add two new vertices wy(v) and w,(v), edge
wi(v)w,(v), and edge v, w,(v) for each part of
graph T, (v), 1</j<2.

Step 4. Construct the initial matching for graph G’

w(@)- U

vel(G)

Figure 1. lllustration how supplementary graph G’ iscon-
structed.
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Step 5. Find the aternate sequence between vertices x
and y that enlarges the cardinality of matching for graph
G'. If it's impossible to find such a sequence then stop
(matching M (G') has maximal cardinglity and graph
has no T -compatible path). Otherwise al the edges of
found enlarging path except of additional edges of graph
G’ produce the T, -compatible path between vertices x
and y. Stop.

Let’'s admit that there is open question in research [7].
This question is about recognition the multipartiteness of
graphs 7, (v) . Problems of constructing the allowed path
or set of paths covering all the edges of given graph are
not also considered.

Let's illustrate an example of graph G (Figure 2) that
agorithm 7, -COMPATIBLE PATH cannot be used for
constructing of paths covering all edges of graph G. Let
the following system of transitions 7, is defined for the

graph:

v st (vt vt} {{vava) v}
{{"8"3} {Vs"z}}’ {{Vs"z} {"2"8}}’ {{stz}’{"z"l}}'
{{V1V4}’{V4"6}}’ {{V7"4}’{"4"3}}’ {{Vzvs}’{"s"s}}’
{{Vzvs}’{"svs}}’ {{V3V8}={V8V7}}’ {{Va"?}’{vv"s}}’
v favelf o {{vave) v v} dvevs)

Supplementary graph G’ for finding of 7. -com-
patible path between vertices v, and v, which con-
struction is reviewed on step 3 of agorithm is shown at
Figure 3.

Theinitial matching M (G') is marked by thick lines.
The alternate enlarging sequence of edges for this match-
ing be

{V1,1V5,2} ' {Vs,zvé,z} ! {Vé,zws,z} ' {W5,2W5,1} ' {WS,lvé,l} '

{vé,lVS,l} ' {V5,1v6,2} ' {Ve,z"é,z} ' {Vé,zwe,z} ' {WG,ZWG,I} '

{WG,lvé,l} ) {Vé,lVG,l} , {V6,1V7,2} .

Edges of this sequence not belonging the initial match-

ing are represented by dash line. These edges form the set

Figure 2. Example of graph.
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V3 2

Vi,

Figure 3. Graph G' received of graph G by additional constructions.

——

{Vl,1v5,2} , {Vé,zws,z} , {WS,lvé,l} , {VS,lVG,Z} ) {Vé,zws,z
{v6,1W6,1} , {V6,1V7,2} .

All edges of this set belonging to graph G i.e. {v,,vs},
{Vs:Ve}1{Ve:v;} form T, -compatible path from vertex
v, tovertex v,.

Using agorithm 7, -COMPATIBLE PATH it's possi-
ble to construct only a simple trail between two different
vertices (i.e. a trail where each vertex is presented only
once).

Figure 4 shows the software redlization of the repre-
sented algorithm. The bold line marks the found trail be-
tween vertices 1 and 4. This trail corresponds the system

BepwmHa
2
Pe6po
3
MNepexon

it neperon

Figure 4. Software for compatible path algorithm.
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of alowed transitions (see the additional window at right
bottom side).

However in common the direct use of this algorithm
does not alow to solve the problem of T, -compatible
path with maximal number of edges constructing. Actu-
aly the matching of maximal cardinality for graph G’
cannot contain the pairs of edges forming forbidden tran-
sition because these edges are incident to one common
vertex of graph G'. At the same time, in common there
may exist 7. -compatible path containing such a pair of
edges.

For example, for graph G presented on Figure 2 the
path

b wval vave) Dven ) v | {veve
in principle cannot be received by constructing the
matching of maxima weight for graph G'. This path
begins from edge v,v, and ends by edge v,v,. These
edges form forbidden transition {vyv,}, {v,,}, conse-
quently, graph G’ does not contain the dternate path
with both of these edges.

Thus, the question of multipartite 7;,(v) graph recog-
nition is still open as well as the problem of allowed path
constructing or finding the set of paths covering al the
edges of initia graph G.

3. Algorithm for Constructing of Compatible
Eulerian Trails

In the previous section the restrictions for paths were
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stated in the terms of allowed transitions system [7]. It's
shown that the problem of constructing the alowed path
in graph G can be solved by polynomial time if a system
of transitions 7, consists only of matchings and full
multipartite graphs. It's trivial to recognize if graph of
allowed transitions belongs to the class of matchings. If
we want recognize if transitions graph belongs to class of
full multipartite graphs it’s expedient to use the definition
of partition system [3-5,8].

The conception of partition system is used for defini-
tion of allowed trail in terms of forbidden transitions.

Definition 4. Let G=(V,E) beagraph. Let P;(v)
be some partition of set £, (v). Then the partition sys-
tem Of graph G be the system of sets
Py={P;(v)|ver (G)}.

Definition 5. Let peP,(v), e,fep. A tral not
containing the transitions e—>v— f and f—ov—oe
canbecalled P, -compatible, and transitions
e—>v—o f and f—ov—e areforbidden.

Let's admit that graph of alowed transitions 7 (v)
unambiguously defines the graph of forbidden transitions
T, (v) which is the complement of alowed transitions
graph to full graph. Thus, using definitions 1-3 the prob-
lem either with use of alowed transitions or forbidden
transitions can be stated.

So the partition system is defined on the set of E(v)
(the set of vertices incident to v). If edges ¢, and e,
belong to one subset then edge e, cannot be placed after
theedge ¢, inatrail. Let graph G(V,E) bedefined by
the adjacency list. Its elements are the structures. Each
element of this structure consists of two fields: vertex
number v, (this vertex is adjacent to the current one);
the number of partition element ¢, . To define the degree
of the current vertex it is enough to count the number of
elements of adjacency list.

Let’'s admit that each edge e belongs to two adjacency
listsof vertices v, and v; (theendsof an edge). But for
each vertex edge e belongs to different partition systems.

Input data are represented by the following list

vector < list < pair <string, int>> > Graph;

All data are represented by a vector of vertices, each
element of this vector is a list of pairs. The first pair of
each list is a vertex humber, the second one is its degree.
The other pairs represent the numbers of adjacent vertices
and number of corresponding partition set.

On the other side, graph of allowed transitions defined
by partition system P, cannot be arbitrary, and belongs
to class M of full multipartite graphs: the elements of par-
tition P, (v) define the parts of graph T, (v)eM , and
set of its edges

E(TG(V)):{e,feEG(V):(VpePG(v))(e,f)czp} S

Graph of forbidden transitions 7, (v) in this case will
consist of |7, (v)| cliques, this fact can be used for rec-
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ognitionif 7'(v)e M using agorithm[9].

As it was considered earlier, agorithm of S. Szeider in
common does not allow constructing of alowed trails
having maximal length. The most interesting are allowed
Eulerian trails. The necessary and sufficient condition for
P -compatible trails existence is proved by the following
theorem [8].

Theorem 2 [A. Kotzig]. Connected Eulerian graph G
has P, -compatible Eulerian trail if and only if

(Yver)(vpeP, (v))(| P2, (v)] .

Obviously, complexity of checking the condition of
existence of P,-compatible Eulerian trail is not more
than Oﬂ|E(G)| :

Let's list the agorithm for construction of compatible
trail.

Algorithm Pg-Compatible Eulerian Trail

Input data:

e Euleriangraph G =(V,E),
o Transitionssystem P, (v) VvelV(G).

Output data:

e Allowed Euleriancycle G,,; .

Step l.Let £=0, G, =G.

Step 2. Find avertex v for which d, (v)>2.

Step 3. Find element of partition system containing
maxima number of edges. It's enough to look through
the adjacency list of current vertex v and count how
many times each element of partition meets at this list.
Choosing this element we get aclass

C e B, (v):]C|={max|cl|c e B, (v)} .

Step 4. Find any edges ¢,(v)e C, and
e,(v)e Eg (v)—-C,. If it spossible choose edges ¢, and
e, incident to vertices of degree more than 2. If set
E; (v)-C, =@ then stop: there is no F, -compatible
Eulerian trail. Otherwise go to step 5.

Step 5. Construct graph G, ., by detaching vertex v,
to which only edges ¢, and e, are incident, from ver-
tex v. The other edges are kept incident to vertex v.

Step 6. Let class C,e R, (v) contains the edge
e,(v). Exclude vertices v, and v, from partition sys-
tem. Define R, (v)=F, (v)—{C,C,} .

For further modification of partition system define the
following.

Step 6.1. All partition systems not containing vertex v
are taken to the modified system without any changes.

Step 6.2. If systems C; and C, had been consisted
of oneedge |C,|=|C,|=1 then F. (v):=F; (v).

Step 6.3.1f |C,|>|C,|=1 then

17 (v)= P, (V)U{Cl—{el(v)}} .
Step 6.4.1f |C,|>1 then
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R, (v)=F, (V)U{Cl—{el(v)} ,C, —{62 (v)}} .
Step 6.5. Construct

PGk+1 = U PG,/(+1 (x) )

.\‘EV(GLZ)

Step 7. Define the value
O-(GkJrl) = 2(|E(Gk+l) _|V(Gk+l) ) .

Let’s admit that the number of edgesis a constant value
and the number of verticesisincreased by 1.

Step 8.1f o(G,,,)>0,let k=k+1 andgoto step 2
for graph G,,, . Otherwise go to step 9.

Step 9. Choose any vertex v and mark all achievable ! (22) ©1 ®2) G
vertices. If there are unmarked vertices go to step 10 oth- 2 12 6.1 (7.1 (32
erwise stop the received graph G,,, is Eulerian trail 3 1) 7.0 (5,2) (4,2)
without forbidden transitions. 4 3.2) 5.1)

Step 10. Get vertices v, and v, from a list of ' '
marked and unmarked vertices of graph G, . These 5 1) @1 (82) 12
vertices are split from vertex v of graph G, . Unite them 6 1,1 21 (7,2 82
to one vertex v,,. There we get a modified graph G, . 7 22 31) ©1) 82)
Let k=k+1.

Step 11. Choose edges ¢, (v;,)eC; and 8 (12) 1) (72) (52)

e, (Vl,z) ek, (Vl,z)_ C, sothat{e,e,}# E(v,)and Figure5. Example.
{ene,} # E(v,) . If set E; (v,)-C =@ then stop:
thereisno P, -compatible Eulerian trail. Otherwise con-
struct graph G, by splitting vertex v, from vertex
v, Only edges ¢, and e, areincident to vertex v,,.
All other edges are incident to vertex v,, and go to step
9.

The following theorem is proved in [9].

Theorem 3. Algorithm P, -compatible Eulerian trail
correctly solves the problem of constructing the P, -
compatible Eulerian trail.

That paper also shows that computing complexity of
thisalgorithmis

1 (82 (5.)
O{k—O,LZ;U(G)de (vk)J (£ (@) 2 .2 ®.1) 7.1) 32)

Thus, the constructed algorithms are resolved by the 3 @1 7 62 “2
polynomial time and can be simply redlized using stan- 4 (3.2 (5,1)
dard c’omputir?g facilities. ' . 5 @) 3.) 82) 1.2)

Let's consider the alowed trail construction for a '
graph on Figure 5. Let its transitions system is as shown 6 @D @0 (72) ®2)
in a table below. The numbers in white circles show the 7 (2.2) (3.1 (6.1) (82
number of partition system the edge belongs for each 8 12 6,1) 72 52)
vertex. ‘

Let's construct allowed Eulerian cycle beginning and ! 22 ©®D
ending at vertex 1. At the first iteration the first vertex is Figure 6. Thefirst iteration of algorithm.
split. To simplify the illustration let’s consider the “short
version” of vertex splitting (the example of “full version” new or modified elements are colored by gray.
is presented on Figure 3). Figure 6 and table show graph Figures 7-12 and tables under them represent all other

with split vertex 1 and a list of connectivity where iterations of agorithm.

Copyright © 2013 SciRes. OJDM
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1 82 (51)
1 (82 (5.1) 2 (7,1 3.2
2 (7.1) (32 3 (7.2 (4.2
3 2,1 (7.1) (5,2) (4,2) 4 (32 (5.2)
4 (32 (5.1) 5 (3,0 (12)
5 1) 3.1) 82) 12) 6 .9 2.9 (7.2) 82
6 (RN (2,9 (7.2) (82 ! (22 1) (6.1) (62
8 (12 (61) (7.2) (5,2
7 (22 (B 61 (82 N 22 6.1)
8 12 6.1 (7.2) (52) > 2 ©1)
1 (2,2 (6,1) 3 (2,1 (5,2)
2 2 (6.2) 5 (4,1 (82
Figure 7. The second iteration of algorithm. Figure 9. Theforth iteration of algorithm.
1 (82 (5,9) 1 8,2) (5,2)
2 (7,2 (3.2 2 (7.2) (3.2
3 (7 @2) 3 7.0 (42)
A @2 51) 4 (32 (50
. 5 (30 (12
5 4.2 (3.9 (82 (1.2 5 2. ©2)
6 (RN 2.9 (7.2) 82 - 22) @) ©.1) 8.2)
7 (2.2) (31 (6.1) (82 8 1.2 (6,1) (7.2) (5,2
8 1,2 (6,1) (7.2) (5.2) 1 22 (6',2)
1 2,2) (6,2) 2 12 (6.1)
3 (21 (5.2
2 (t'2) ©1) 5 @) 82)
3 (27 (5.2) 6 2,2 (7,2)
Figure 8. Thethird iteration of algorithm. Figure 10. Thefifth iteration of algorithm.
Copyright © 2013 SciRes. OJDM
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1 82 5.1

2 (72) 3,2

3 (72) 4,2)

4 3.2 (5,1)

5 (3.1 1,2

6 (2,1 82

7 (6.1) 82

8 1,2 (6,1) (7,2 (5,2

1 (2,2 (6,1)

2 1,2 (6,1

3 21 (5.2

5 4.1 (8,2)

6' 1.1 (7.2

T 2,2 31
Figure 11. The sixth iteration of algorithm.
1 (8,2 (5,1)
2 (7,2 (3.2
3 (7,2) 4,2)
4 32 (G
5 (3.1 1.2
6 2,1 (8.2
7 (6,1 (8.2
8 (7.2 (5.2
1 (2,2 (6',1)
2 1.2 (6.1)
3 20 (5,2
5 4,1 (8,2
6 1,1 (7,2)
T 2,2 31
8 1.2 6.1)

Figure 12. Thelast iteration of algorithm.
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In result graph is split into a simple cycle. It's possible
to construct allowed Eulerian cycle beginning at any its
vertex. For example, the following cycle beginning at
vertex 1 can be constructed:

1256585155535 2->7
354555857561

It's possible to recognize the system of transitions and
to solve the problem of constructing the allowable path
by linear time. It's also possible to find P, -allowable
Eulerian cycle for Eulerian graph G or to proclaim that
such a cycle does not exist. This problem can be solved
by the time O(|V(G)[-|E(G)|) using agorithm P, -
compatible Eulerian trail.
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