
Open Journal of Discrete Mathematics, 2013, 3, 86-92
http://dx.doi.org/10.4236/ojdm.2013.32017 Published Online April 2013 (http://www.scirp.org/journal/ojdm)

The Software for Constructing Trails with Local
Restrictions in Graphs

Tatyana Panyukova, Igor Alferov
Department of Mathematical Methods in Economics and Statistics, South Ural State University, Chelyabinsk, Russian Federation

Email: kwark@mail.ru

Received December 18, 2012; revised March 15, 2013; accepted April 20, 2013

Copyright © 2013 Tatyana Panyukova, Igor Alferov. This is an open access article distributed under the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The present research considers the problem of covering a graph with minimal number of trails satisfying the pre-defined
local restrictions. The research is devoted to the problem of graph covering by minimal number of trails satisfying some
local restrictions. Algotithm of allowed Eulerian cycle construction is considered. The authors showed that it is possible
to recognize the system of transitions and solve the problem of constructing the allowable path by linear time. It’s also
possible to find allowable Eulerian cycle for Eulerian graph or to proclaim that such a cycle does not exist by the time

   O V G E G  . All presented algorithms have the software realization.

Keywords: Eulerian Graph; Trail; Transition; Compatible Path; Algorithm

1. Introduction

Lots of problems of finding paths satisfying the different
restrictions can be applied to some practical problems.
For example for sheet material cutting problem plane
graph represents the model of cutting plan, and a path
covering all its edges defines the trajectory of cutter. The
restriction defined for this problem is lack of intersection
of any initial part of path with edges that are not passed
yet [1]. Creating the control systems using non-oriented
graphs the following problems of constructing the paths
with different restrictions can arise. Among them are
straight-ahead paths [2]; paths the next edge of which is
defined by the given cyclic order on the set of incident
edges [3-5]; paths for which it’s necessary to pass some
edges in pre-defined order [5].

The restrictions on the order of vertices and edges can
be classified as local (the next edge of a path is defined
by conditions established at the current vertex or edge
[2-8]), and global (Eulerian, Hamiltonian cycles, bidirec-
tional double tracing etc.). Most of researches are de-
voted to algorithms with local restrictions of edges order
in a path. The present research considers the problem of
covering a graph with minimal number of trails satisfy-
ing the pre-defined local restrictions.

2. Constructing of TG-Compatible Path

The generalization of most of particular cases for prob-

lem of simple trail with local restrictions construction
and analysis of its computing complexity is made by
S.Szeider [7].

Let’s quote the basic definitions and results of this re-
search to make the further statements clear. Let’s confine
with finite simple graphs. Let’s designate as  V G and
 E G the sets of vertices and edges of graph G corre-

spondingly. For vertex let’s define the set  v V G
 GE V of all graph G edges incident to vertex v. The

degree of vertex v let be designated as ; for
let

d v d 0
      d v d: v V G d . Let V G H G if H be

vertex-induced subgraph of graph G i.e. the subgraph
received of graph G by deleting of one set of vertices and
only all edges incident to vertices of this set.

Restrictions for paths in graph G can be defined in
terms of allowed transitions graph.

Definition 1. Let transition graph for vertex  GT v
 v V G be a graph vertices of which are the edges

incident to vertex v i.e. G , and set of
edges consists of allowed transitions.

  V T v   GE v

Definition 2. The system of allowed transitions (or
shortly, system of transitions) G is called the set T

    GT v v V G where be the transition graph
for vertex v.

GT v

Definition 3. The path for graph G
is called -compatible if  

0 1 1 k kP v e v e v 
GT   1,i ie e E  G iT v for

each i  1 1i k   .

Copyright © 2013 SciRes. OJDM

T. PANYUKOVA, I. ALFEROV 87

Theorem 1 [S. Szeider]. If all graphs of transitions
belong either class M of full multipartite graphs or class P
of matchings then the problem of GT -compatible trail
constructing can be solved by the time   O E G . Oth-
erwise this problem is NP-complete.

If the system of transitions for a vertex  v V G is a
matching then this problem can be reduced to the problem
for graph

     :G V G V G v    ,

 
            : ,G i j i j G

E G

E G E v v v v v vv E T v



  .

If for any vertex graph  v V G  GT v is full mul-
tipartite graph then a trail can be constructed by the fol-
lowing algorithm.

Algorithm -Compatible Path GT
Input:

 Graph  , ; G V E
 Vertices x, y the end-vertices of GT -compatible trail;
 System of transitions GT :    v V G  G . T v M

Output:
 The sequence of edges corresponding to GT -compati-

ble trail between vertices x and y or the message that
such a path does not exist.

Step 1. If vertex x or vertex y is isolated then stop: path
does not exist.

Step 2. Delete all isolated vertices from graph G.
Step 3. Construct the supplementary graph G as fol-

lowing (Figure 1):
 Each vertex  v V G should be split into vertices

 1 2, , , p vv v v where  p v be the number of parts
of graph  GT v . The edges of corresponding part of
graph  GT v and one additional vertex  p vv are in-
cident to vertex pv ;

 Add two new vertices  1w v and  2w v , edge
   1 2 , and edge   w v w v jp vv w v for each part of

graph  T v , 1 2j  . G

Step 4. Construct the initial matching for graph G

        
  

1 2
1,2, ,

p p
v V G p p v

M G v v w v
 


  

 
  w v 




.

Figure 1. Illustration how supplementary graph G is con-
structed.

Step 5. Find the alternate sequence between vertices x
and y that enlarges the cardinality of matching for graph
G . If it’s impossible to find such a sequence then stop
(matching  M G has maximal cardinality and graph
has no G -compatible path). Otherwise all the edges of
found enlarging path except of additional edges of graph

T

G produce the -compatible path between vertices x
and y. Stop.

GT

Let’s admit that there is open question in research [7].
This question is about recognition the multipartiteness of
graphs  GT v . Problems of constructing the allowed path
or set of paths covering all the edges of given graph are
not also considered.

Let’s illustrate an example of graph G (Figure 2) that
algorithm G -COMPATIBLE PATH cannot be used for
constructing of paths covering all edges of graph G. Let
the following system of transitions is defined for the
graph:

T

GT

    2 1 1 5,v v v v ,     6 1 1 4,v v v v ,     4 3 3 7,v v v v ,

    8 3 3 2,v v v v ,     3 2 2 8,v v v v ,     5 2 2 1,v v v v ,

    1 4 4 6,v v v v ,     7 4 4 3,v v v v ,     2 5 5 8,v v v v ,

    2 8 8 5,v v v v ,     3 8 8 7,v v v v ,     3 7 7 8,v v v v ,

    4 7 7 6,v v v v ,     4 6 6 7,v v v v ,     1 6 6 5,v v v v ,

    1 5 5 6,v v v v

G

.

Supplementary graph for finding of -com-
patible path between vertices and which con-
struction is reviewed on step 3 of algorithm is shown at
Figure 3.

GT

1v 7v

The initial matching  M G is marked by thick lines.
The alternate enlarging sequence of edges for this match-
ing be

 1,1 5,2v v ,  5,2 5,2v v ,  5,2 5,2v w , ,  5,2 5,1w w  5,1 5,1w v ,

 5,1 5,1v v ,  5,1 6,2v v ,  6,2 6,2v v , , ,  6,2 6,2v w  6,2 6,1w w

 6,1 6,1w v ,  6,1 6,1v v , .  6,1 7,2v v

Edges of this sequence not belonging the initial match-
ing are represented by dash line. These edges form the set

Figure 2. Example of graph.

Copyright © 2013 SciRes. OJDM

T. PANYUKOVA, I. ALFEROV

Copyright © 2013 SciRes. OJDM

88

Figure 3. Graph G' received of graph G by additional constructions.

 1,1 5,2v v ,  5,2 5,2v w ,  5,1 5,1w v ,

 6,1v w ,

 5,1 6,2v v ,  6,2 6,2v w ,

6,1  7,2 . 6,1v v

All edges of this set belonging to graph G i.e.  1 5,v v ,
 vertex

 it’s possi-

v

1v to vertex 7v
ith

  5 6 6 7, , ,v v v form GT -compatible path from
.

Using algor m -COMPATIBLE PATH
bl

re 4 shows the software realization of the repre-
se

GT
 a e to construct only simple trail between two different

vertices (i.e. a trail where each vertex is presented only
once).

Figu
nted algorithm. The bold line marks the found trail be-

tween vertices 1 and 4. This trail corresponds the system

Figure 4. Software for compatible path algorithm.

of allowed transitions (see the additional window at right
botto

olve the problem of -compatible
pa

m side).
However in common the direct use of this algorithm

does not allow to s GT

o
th with maximal number of edges constructing. Actu-

ally the matching of maximal cardinality f r graph G
cannot contain the pairs of edges forming forbidden tran-
sition because these edges are incident to one comm
vertex of graph G

on
 . At the same time, in common there

may exist GT -compatible path containing such a pair of
edges.

For exam e, for graph G presented on Figure 2 the
path

pl

           2 1 1 4 4 8 8 1 1 5 5 2, , , , ,v v v v v v v v v v v v

in principle cannot be received by constructing the
matching of maximal weight for graph . This path G
begins from edge 2 1v v and ends by edge 5 2v v . These
edges form forbidden transition  5 2v v , 2 1v , conse-
quently, graph G

v
 s not contain the alternate path

with both of these edges.
Thus, the question of multipartite  GT v graph recog-

nition is still open as well

doe

 as the pro of allowed path
co

nstructing of Compatible
Eulerian Trails

blem
nstructing or finding the set of paths covering all the

edges of initial graph G.

3. Algorithm for Co

In the previous section the restrictions for paths were

T. PANYUKOVA, I. ALFEROV 89

sta lowed transitions system [7]. It’s ted in the terms of al
shown that the problem of constructing the allowed path
in graph G can be solved by polynomial time if a system
of transitions GT consists only of matchings and full
multipartite graphs. It’s trivial to recognize if graph of
allowed transitions belongs to the class of matchings. If
we want recognize if transitions graph belongs to class of
full multipartite graphs it’s expedient to use the definition
of partition system [3-5,8].

The conception of partition system is used for defini-
tion of allowed trail in terms of forbidden transitions.

Definition 4. Let  ,G V E be a graph. Let  GP v
be some partition of set  GE v . Then the partition sys-
tem e syst of graph G be th ets

   
em of s

 :G GP P v v V G  .
Definition 5. Let

 Gp P v , ,e f p . A trail not

containing the s e v transition f and   f v e 
can be called GP -comp t s
e v f  and

atible, and ransition
f v  dden.

Let's admit that graph of allowed transitio
e are forbi

ns  T vG

nsitions
itions

unambiguously defines the graph of forbidden tra

 v which is the complement of allowed trans
graph to full graph. Thus, using definitions 1-3 the prob-
lem either with use of allowed transitions or forbidden
transitions can be stated.

So the partition system is defined on the set of

GT

 E v
(the set of vertices incident to v). If edges e and e
be

1 2

long to one subset then edge 2e cannot be placed after
the edge 1e in a trail. Let graph  ,G V E be defined b
the adjacency list. Its elements are the structures. Each
element of this structure consists of two fields: vertex
number iv (this vertex is adjacent to the current one);
the number of partition element ic . To define the degree
of the current vertex it is enough to count the number of
elements of adjacency list.

Let’s admit that each edge e belongs to two adjacency
lists of vertices iv and

y

jv (the ends of an edge). But for
each vertex edge e belongs to different partition systems.

Input data are represented by the following list
vector < list < pair <string, int> > > Graph;

es, eachAll data are represented by a vector of vertic
first

el pair of
ea

dden transitions

ement of this vector is a list of pairs. The
ch list is a vertex number, the second one is its degree.

The other pairs represent the numbers of adjacent vertices
and number of corresponding partition set.

On the other side, graph of allowed transitions defined
by partition system GP cannot be arbitrary, and belongs
to class M of full multipartite graphs: the elements of par-
tition  GP v define the parts of graph  GT v M , and
set of its edges

       , :G GE T e f E v p P v   .s

Graph of forbi

   ,G v e f p 

 GT v in this case will
consist of  GP v cliques, this fact can be used for rec-

ognition if  T v M
As it was considered earlier,

imal le
ils. The ne



using algorithm [9].
algorithm of S. Szeider in

co cting

condition for

mmon does not allow constru of allowed trails
having max ngth. The most interesting are allowed
Eulerian tra cessary and sufficient

G -compatible trails existence is proved by the following
theorem [8].

Theorem 2 [A. Kotzig]. Connected Eulerian graph G
has GP -compatible Eulerian trail if and only if



P

    1
v  

2G G 
 

Ob ously, complexity of checking the con

V p 

GP -com
 

P v p d v  .

vi dition of
existence of patible Eulerian trail is not more
than  G .

t the al
O E

Let’s lis gorithm for construction of compatible
tra

G

ut data:


il.
Algorithm P -Compatible Eulerian Trail
Inp
Eulerian graph  ,G V E ,

 Transitions system  P v G

Output data:
 v V G  .

 . Allowed Eulerian cycle 1k

Step 1. Let 0k
G

 , G Gk  .
Step 2. Find a vertex h   v for w ich

ment of partit containing
t ough to look through

th n x v and count how
m on meets at this list.
C

2
kGd v .

ion systemStep 3. Find ele
maximal number of edges. I ’s en

e adjacency list of curre t verte
any times each element of partiti
hoosing this element we get a class

    1 1: max
k kG GC P v C C C P v   .

Step 4. Find any edges  1 1e v C and
   e v E v C2 1kG  . If it’s possible choose edges and

rtices of ore than 2. If set
1e

2e incident to ve degree m
 E v C1kG  

Eu
then stop: there is no G

lerian trail. Otherwise go to step 5.
t graph 1kG  by detaching vertex v

P -com tible

Step 5. Construc

pa


,

 which only edges 1e and 2e are incident, from ver-
edges are kept incident to vertex v.

Step 6. Let class  
kGC P v

to
tex v. The other

contains the edge 2

 2 v . Exclude vertices 1v 2v from partition sys-
tem. Define
e and

     1 2: ,
k kG GP v P v C C   .

For further modification of partition system define the
fo

Ste
he modified system without any changes.

llowing.
p 6.1. All partition systems not containing vertex v

are taken to t
Step 6.2. If systems 1C and 2C had been consisted

of one edge 1 2 1C C  en th    :
1k kG GP v P v .


Step 6.3. If


1 2 1C C  then

      1 1:
kG GP v P v C e v

   .  1k

Step 6.4. If 2 1C  then

Copyright © 2013 SciRes. OJDM

T. PANYUKOVA, I. ALFEROV 90

         1 1 1 2: ,
k kG GP v P v C e v C e v


     .

nstruct

x .

e

2

Step 6.5. Co

 
 

1 1

1,2

k kG G
x V G

P P
 



 

Step 7. Define the valu

      1 12k kG E G V G    . 1k

r of edges is a constant value
and the number of vertices is increased by 1.

Step 8. If , let and go to step 2
fo

rtices

Let’s admit that the numbe

 1 0kG   1k k 
r graph 1kG  . Otherwise go to step 9.
Step 9. Choose any vertex v and mark all achievable

vertices. If there are unmarked ve go to step 10 oth-
erwise stop the received graph 1kG  is Eulerian trail
without forbidden transitions.

Step 10. Get vertices 1v and 2v from a list of
marked and unmarked vertices of graph 1kG  . These
vertices are split from vertex v of g G . Unite them
to

raph
di

0

 one vertex 1,2v . There we get a mo fied graph 1
ˆ

kG  .
Let 1k k  .

Step 11. Choose edges  1 1,2 1e v C nd

  2 1,2 1,2 1e v E v C  so that   1 2 1,e e E v a

E

 a

nd




kG

  e e 1 2 2, v . If set  1,2kGE v C 

vertex 1,2v

1 then
P -compatible Eulerian trail. Othe

stop:
rwise con-

by s
there is no G

struct graph kG 1 plitting


 fr

2e are incident to
om vertex

1,2v Only edges 1e and vertex 1,2v


.
All other ed are incident to vertex 1,2v and go to step
9.

The following theorem i proved in [9].
Theorem 3. Algorithm GP -compa le Eulerian trail

correctly solves the problem of constructing the -
co

ges

s
tib

GP
mpatible Eulerian trail.
That paper also shows that computing complexity of

this algorithm is

 
 

    
0,1, ,

kG k
k G

O d v O E G V G


   
 




.
 

Thus, the constructed algorithms are resolved by the
polynomial time and can be simply realized using stan-
dard computing facilities.

Let’s consider the allowed trail construction for a
graph on Figure 5. Let its transitions system is as shown
in a table below. The numbers in white circles show the
number of partition system the edge belongs for each
vertex.

Let’s construct allowed Eulerian cycle beginning and
ending at vertex 1. At the first iteration the first vertex is
split. To simplify the illustration let’s consider the “short
version” of vertex splitting (the example of “full version”
is presented on Figure 3). Figure 6 and table show graph
with split vertex 1 and a list of connectivity where

1 (2,2) (6,1) (8,2) (5,1)

2 (1,2) (6,1) (7,1) (3,2)

3 (2,1) (7,1) (5,2) (4,2)

(6) (8)

4 (3,2) (5,1)

5 (4,1) (3,1) (8,2) (1,2)

6 (1,1) (2,1) (7,2) (8,2)

7 (2,2) (3,1) ,1 ,2

8 (1,2) (6,1) (7,2) (5,2)

Figure 5. Example.

1 (8,2) (5,1)

2 (1',2) (6,1) (7,1) (3,2)

3 (2,1) (7,1) (5,2) (4,2)

4 (3,2) (5,1)

5 (4,1) (3,1) (8,2) (1,2)

6 (1',1) (2,1) (7,2) (8,2)

7 (2,2) (3,1) (6) (8) ,1 ,2

8 (1,2) (6,1) (7,2) (5,2)

1' (2,2) (6,1)

Figure e first tion of ithm.

new or modified ents are y.

Fi 12 tables r them represent all other
iterations of algorithm.

 6. Th itera algor

 elem colored by gra
gures 7- and unde

Copyright © 2013 SciRes. OJDM

T. PANYUKOVA, I. ALFEROV 91

1 (8,2) (5,1)

2 (7,1) (3,2)

3 (2,1) (7,1) (5,2) (4,2)

4 (3,2) (5,1)

) (1) 5 (4,1) (3,1) (8,2 ,2

6 (1',1) (2',1) (7,2) (8)

) (5)

,2

7 (2,2) (3,1) (6,1) (8,2)

8 (1,2) (6,1) (7,2 ,2

1' (2',2) (6,1)

2' (1',2) (6,1)

Figure 7. The second iteration of algorithm.

1 (8,2) (5,1)

2 (7,1) (3',2)

3 (7,1) (4,2)

4 (3,2) (5,1)

5 (4,1) (3',1) (8,2

1 (8,2) (5,1)

2 (7,1) (3',2)

3 (7,1) (4,2)

4 (3,2) (5',1)

5 (3',1) (1,2)

(7) (8)

(6) (8)

(7)

6 (1',1) (2',1) ,2 ,2

7 (2,2) (3,1) ,1 ,2

8 (1,2) (6,1) ,2 (5) ',2

1' (2',2) (6,1)

2' (1',2) (6,1)

3' (2,1) (5,2)

5' (4,1) (8,2)

Figure 9. The forth iteration of algorithm.

1 (8,2) (5,1)

2 (7,1) (3',2)

3 (7,1) (4,2)

4 (3,2) (5',1)

5 (3',1) (1,2)
) (1)

(7) (8)

) (8)

) (5)

,2

6 (1',1) (2',1) ,2 ,2

7 (2,2) (3,1) (6,1 ,2

8 (1,2) (6,1) (7,2 ,2

1' (2',2) (6,1)

2' (1',2) (6,1)

3' (2,1) (5,2)

6 (2',1) (8,2)

7 (2,2) (3,1) (6) (8)

(7) (5)

',1 ,2

8 (1,2) (6,1) ,2 ',2

1' (2',2) (6',1)

2' (1',2) (6,1)

3' (2,1) (5,2)

5' (4,1) (8,2)

6' (1',1) (7,2)

Figure 8. The third iteration of algorithm. Figure 10. The fift tion of algorithm. h itera

Copyright © 2013 SciRes. OJDM

T. PANYUKOVA, I. ALFEROV

Copyright © 2013 SciRes. OJDM

92

1 (8,2) (5,1)

2 (7',1) (3',2)

3 (7',1) (4,2)

4 (3,2) (5',1)

5 (3',1) (1,2)

(7) (5)

6 (2',1) (8,2)

7 (6',1) (8,2)

8 (1,2) (6,1) ,2 ',2

1' (2',2) (6',1)

2' (1',2) (6,1)

3' (2,1) (5,2)

5' (4,1) (8,2)

6' (1',1) (7,2)

7' (2,2) (3,1)

Figure 11. The sixt tion of algorithm.

h itera

1 (8',2) (5,1)

2 (7',1) (3',2)

3 (7',1) (4,2)

4 (3,2) (5',1)

5 (3',1) (1,2)

6 (2',1) (8',2)

7 (6',1) (8,2)

8 (7,2) (5',2)

1' (2',2) (6',1)

2' (1',2) (6,1)

3' (2,1) (5,2)

5' (4,1) (8,2)

6' (1',1) (7,2)

7' (2,2) (3,1)

8' (1,2) (6,1)

Figure 12. The las ation of algorith

In result graph is split i simple cycle. I ssible
to cons t allowed Eul cycle beginning at any its
vertex. r example, the wing cycle b ing at
vertex 1 n be constructe

It’s possible to recognize the system of transitions and
to solve the problem of constructing the allowable path
by linear time. It’s also possible to find -allowable
Eulerian cycle for Eulerian graph or to oclaim that
such a cycle does not exist. This problem be solved
by the time

t iter m.

nto a t’s po
truc erian
Fo follo eginn
 ca d:

1 2 6 8 1 5 3 2 7       

3 4 5 8 7 6 1.      

GP
 pr

 can
G

    O V G E G using hm -
compatible Eulerian trail.

4. Acknowledgements

The research is supported by the Ministry of Education
and Science of Russian Federation, contract 14.B37.21.
0395.

REFERENCES
[1] T. Panyukova, “Cover with Ordered Enclosing for Flat

Graphs,” Electronic Notes in Discrete Mathematics, Vol.
28, 2007, pp. 17-24. doi:10.1016/j.endm.2007.01.004

algorit GP

[2] T. Pisanski, T. W. Tucker and A. Zitnik, “Straight-Ahead
walks in Eulerian Graphs,” Discrete Mathematics, Vol.
281, No. 1-3, 2004, pp. 237-246.
doi:10.1016/j.disc.2003.09.011

[3] H. Fleischner, “Eulerian Graphs and Related Topics,”
Part 1, Vol. 1, Elsevier, Amsterdam, 1990.

[4] H. Fleischner, “Eulerian Graphs and Related Topics,”
Part 1, Vol. 2, Elsevier, Amsterdam, 1991.

[5] H. Fleischner, L. W. Beineke and R. J. Wilson, “Eulerian
Graphs, Selected Topics in Graph Theory 2,” Academic
Press, London, New York, 1983, pp. 17-53.

[6] D. Chebikin, “On k-Edge-Ordered Graphs,” Discrete Ma-
thematics, Vol. 281, No. 1-3, 2004, pp. 115-128.
doi:10.1016/j.disc.2003.09.004

[7] S. Szeider, “Finding Paths in Graphs Avoiding Forbidden
Transitions,” Discrete Applied Mathematics, Vol. 126,
No. 2-3, 2003, pp. 261-273.
doi:10.1016/S0166-218X(02)00251-2

[8] A. Kotzig, “Moves without Forbidden Transitions in a
Graph,” Matematický Časopis, Vol. 18, No. 1, 1968, pp.
76-80.

[9] T. A. Panyukova, “The Paths with Local Restrictions,”
Reports of South Ural State University. Section: Mathe-
matical Modelling and Programming, Vol. 5, No. 16,
2010, pp. 58-67 (in Russian).

