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Abstract 
The power-density function of the noise spectrum of open and complex sys-
tems changes by the power of frequency. We show that the fluctuation origin 
and the noise-powered description are equivalent to describe the colored 
noise power density. Based on this, we introduce a scale-independent inva-
riant for monitoring the dynamics of the complex system. The monitoring of 
the noise spectrum of the system specifies the forecast of failure, the timing of 
desired regular corrections and/or the assessed operation life of the system, 
indicating the possible faults before it happens, predicting deterioration like 
wear/tear, fatigue in the still properly working system. These considerations 
are highly applicable to living systems and their preventive care.  
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1. Introduction 

Testing the proper functioning of complex systems during their long-term ser-
vice as they age and undergo wear and tear is of vital importance with respect to 
preventive maintenance and operation life. The problem is rather complex and 
complicated, as we must make conclusions about the properties of a given sys-
tem from the results of its test: we must specify the characteristic values of the 
type in question by using the operation data of several single parts. This problem 
can be practically traced back to a single root: the systems used are open and 
connected to their environment through a number of interactions; therefore, 
they cannot be considered as closed, even for the duration of a measurement. 
They are definitely open from an energetic point of view, (energy exchange with 
the environment). Interactions indispensable to the operation (on which the ef-
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fect of the system is directed, retroactive effects); influences of environment (en-
vironmental loads, e.g. temperature, contamination, pressure, rain etc.), as well 
as the effect of the user’s habits and conditions (e.g. early morning usage, usual 
usage order, effects of usual intensity, direction etc.) all affect the ageing of the 
actual system. A permanent control and maintenance service is needed to keep 
the complex function active. We will show that the characteristic values of ener-
gy input (feeding and take out), as well as the non-deprivable substantial cha-
racteristics, can be used to check the general process.  

Measurements of any dynamic effects are always noisy. The desired signal 
(electrical, mechanical, etc.) and the measured one differ. The measurement 
clarity is characterised in these cases by the signal/noise ratio. Dynamic effects 
and changes could be noise-free only in the case of very simple and reversible 
cases (in energetically closed systems). This is practically a theoretical idealiza-
tion, because in reality, noise is always present as the random or systematic 
fluctuation of the given signal (measured, set, used etc.) [1] [2].  

The noise source is composed of many-sided interactions; the continuous 
energy and entropy/information exchange of open dynamic systems, the mutual 
dependence of the single subsystems and the actual noise spectrum are formed 
in a synergetic way [3]. Consequently, the desired effect is accompanied in every 
real case by the noise spectrum composed of the specific features of the dynamic 
systems. Thus, the noise is a certain degree of appearance of parameters, 
processes, dynamic behaviour etc. always arising, but not directly involved in the 
given examination.  

In the course of the usual wearing tests and quality examinations, each ele-
ment of the system is examined separately by using several sensors, and during 
this measurement, one tries to eliminate or minimize the noise. Consequently, 
the aim of these measurement procedures is to filter the noises and create the 
best possible signal-to-noise ratio in order to obtain the most exact information 
possible regarding the given partial system.  

In the case of open, dissipative systems (basically, every occurrence realizing 
not spontaneous thermo-dynamical changes, e.g. heat engines, biological sys-
tems, electromagnetic radiators etc.) the reduction of noise is impossible by fix-
ing the interactions, because the open, dissipative feature assumes the definite 
interaction with the environment. For this reason, in real, irreversible dynamic 
systems, we may consider only the second possibility, namely that we must 
reckon with noise anyway, and—at the most—the chosen dynamical methods 
may suppress the noise and bring out the „useful” signal as far as possible. 

The noise, however, provides information on the interactions (inside and/or 
outside the system) of the examined system. In this case, the measured signal is 
not the useless noise, but the fluctuation properties, which could carry the sys-
temic changes in the complex system.  

Our objective is to obtain information on all the dynamics of complex systems 
in order that they may be used for the planning processes and qualitative ex-
aminations. Our concept is based on the recognition that the all the dynamics 
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are included in the noise, and practically all those dynamic variables appear 
therein, the interactions of which have a share in the creation of the given (de-
sired/useful) signal. Moreover, the noise spectrum gives account of the correla-
tions within the system. Therefore, the examination can be carried out on the 
whole system, and the system’s operation can be analysed from its noise spec-
trum. All the failures arising because of wear, tear and fatigue processes (in gen-
eral through stochastic changes) result in the continuous change of the noise 
spectrum. Therefore, the assumption of the noise spectrum allows the prediction 
of the wear and tear (fatigue etc.) processes.  

All standard paper components have been specified for three reasons: 1) ease 
of use when formatting individual papers, 2) automatic compliance to electronic 
requirements that facilitate the concurrent or later production of electronic 
products, and 3) conformity of style throughout a journal paper. Margins, col-
umn widths, line spacing, and type styles are built-in; examples of the type styles 
are provided throughout this document and are identified in italic type, within 
parentheses, following the example. Some components, such as multi-leveled 
equations, graphics, and tables are not prescribed, although the various table text 
styles are provided. The formatter will need to create these components, incor-
porating the applicable criteria that follow. 

2. Simple Derivation and Description of Colored Noises 

Although a complex system has a great exchange of information with its envi-
ronment, it can be, in general, characterized by a stationary state, that is, by a 
state in dynamic equilibrium. Therefore, the dynamic equilibrium characterizing 
the appropriate operation can describe the time-dependent effect ( )( ),H x t  as 
a fluctuation around the average, that is:  

( ) ( ) ( )( ), , ,H x t H x t H x tδ= +                  (1) 

where ( ),H x t  denotes the averaging, and ( )( ),H x tδ  is the actual devia-
tion from the average (fluctuation). (Of course, there are also dynamic and 
non-equilibrium systems (e.g. explosives); however, their effects are measurable 
as a rough average (e.g. relative destroying effect measurable e.g. in the dynamite 
equivalent), which is also specified by a fluctuation around the average.) Later 
on, we are going to examine the time behavior of the process with a specified 
(fixed) x; therefore, the variable x will not be indicated hereafter. 

The process is random if the variable is stochastic, and in this case, the power 
density function of process H is 

( )
( ) ( )

2*

H

H f H f
S f

f
=

∆
                    (2) 

where f∆  is the effective band-width of the Fourier integral, * denotes a con-
jugate and  

( ) ( ) ( )
0

exp 2 π dH f i ft H t t
∞

= −∫                  (3) 
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In other words, according to [4] Voss:  

( ) ( ) ( )
0

Re exp 2 π dH HS f i ft C t t
∞ 

= − 
 
∫                (4) 

where ( ) ( )( ) ( )( )0HC t H t Hδ δ= ⋅  is the autocorrelation (pair-correlation) 
function of process H between two points of time, that is:  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

0 0

2
0 0 0

HC t H t H t H t H t

H t H t t H t

= − −

= + −
           (5) 

The functions ( )HS f  and ( )HC t  are naturally not independent, as in ad-
dition to Equation (4), on the basis of the Wiener-Khintchine relationship [1] 
[3] the following is valid: 

( ) ( ) ( )
0

Re exp 2 π dH HC t i ft S f f
∞ 

= − 
 
∫                (6) 

If the ( )HC t  correlation function decays by the time constant τ (of course, 
this is a requirement in the majority of real cases), namely:  

( ) expH
tC t
τ

 = − 
 

                       (7) 

then 

( )
( )

[ ]2 2π
1

HS f fτ
ω

ωτ
= =

+
                 (8) 

If ( ) 1ωτ   (this is valid in the case of fast decay of correlation or at low 
frequencies), then ( )S f  is constant, the noise is independent of the frequency 
and we get so-called white noise.  

If multiple fluctuations exist with randomly fluctuated time constants of the 
correlation Equation (7), and ( )HD τ  denotes its distribution for the given 
process H, then  

( ) ( ) ( )

( )
( )

max

min

max

min

0

2

Re exp exp d d

d
1

H H

H

tS i t D t

D

τ

τ

τ

τ

ω ω τ τ
τ

τ
τ τ

ωτ

∞   = − −  
   

=
+

∫ ∫

∫
         (9) 

If the ( )HD τ  function is scale invariant, namely if, for example, van der [5] 

( ) ddHD τ
τ τ

τ
=                        (10) 

then we get so-called pink noise (Flicker noise, 1/f noise, etc.): 

( ) 1
HS f

f
=                          (11) 

In the given multiple fluctuation case, the relationship Equation (9) cannot be 
normalized, so 
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( )
0

d const.HD τ τ
∞

≠∫                     (12) 

Therefore, a frequency cut-off shall be carried out at the high and low boun-
daries. We can demonstrate as well [6] that the lognormal distribution of ( )HD τ : 

( )

2

2

log
1 exp

π 2HD

τ
τ

τ
τσ σ

    −         =
 
 
 
 

             (13) 

Results in 1/f noise, as shown in Equation (11). In this case, there is no nor-
malization problem, and the cut-off is uncertain. We may demonstrate as well 
[4] that the distribution of the product of random distribution variables is always 
lognormal, thus it results every time in Equation (11). However, if there is no 
dominant lognormal distribution, but the system can be described by a wide 
range of distributions, then 

( ) 1
HS f

f α=                         (14) 

where basically, we cannot fix the value of α because it can also depend consi-
derably on the general parameters of the system (e.g. temperature, pressure etc.) 
[4]. In this way, the slope of the log-log scale representation of Equation (14), we 
get directly the character of the noise of process H.  

( )
[ ]

log
log

HS f
f

α
  =                      (15) 

The changing noise of the dynamical variables-as the spectrum characterizes 
the system—assumes the existence of a certain order and self-organization in the 
examined system. The self-organization comes into existence by the mutual de-
terminacy and during the complex operation of partial systems building on one 
another, requiring the work of others and determining the dynamics of the other 
ones by causality. Complex systems with many-sided connections to their envi-
ronment are in a non-equilibrium, non-stationary state and have a high-level 
hierarchical structure. The subsystems forming the structure are connected to 
each other in many ways through their physical and chemical processes or other 
information network. The amplitude of physical and chemical information sig-
nals generated by various individual subsystems, their characteristic time or 
other properties can change over a wide range, e.g. the simplest biological sys-
tems show a great variety of processes on the individual characteristic time scales 
and are connected to each other by scaling [7] [8] [9]. As we have shown, the 
noises carry dynamical information about the operating systems and may also 
give information on the wearing phases of the given structure. In general, the 
noise of any open dynamical systems could be scaled by the 1/fα spectrum [10]. 
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3. Fluctuation of Diagnostic Quantities 

Every complex system can be decomposed into numerous simple subsystems, 
the state of which can be described by some physical parameters that character-
ize the subsystems. This means that the state of the whole system is known if we 
know the state of its every subsystem. Let us denote by X  the vector made of 
the state parameters of subsystems, hereinafter called the micro-state of the sys-
tem. In terms of diagnostics, the selectable and limited number of iF  values are 
of measurable quantities and characteristic of the macro system, on the base of 
which we can judge if the functioning of the system complies with the require-
ments or not. These quantities are called macroscopic diagnostic state parame-
ters, and the F  vector made of them is the so-called diagnostic state vector. As 
the number of these vectors is significantly fewer than the number of state pa-
rameters serving for the description of the micro-state, from a microscopic point 
of view, the system described by applying the diagnostic state parameters is not 
complete. 

Let us assume that the functions of diagnostic state parameters can be de-
scribed as a function of the micro-state and seeing that the equipment interacts 
with the external parameters denoted by the vector Y , thus:  

( ) ( ), , 1, 2, ,i iF F X Y i n= =                  (16) 

As the number of microstates large ( ( )dim X n ), with the knowledge of di-
agnostic state parameters, we may predicate not more than statistical statements 
regarding the micro-state of the system characterized by the diagnostic state 
vector, since many kinds of micro-states may belong to the same macro-state, 
and these micro-states can quickly change in time. 

This means that we can specify, at most, the probability that the micro-state 
falls into the ( ), dX X X+  interval at time t with a probability of ( ),w X t , that 
is: 

( ) ( )d , dP X X X w X t Xξ< ≤ + =               (17) 

As the micro-state of the system may change rapidly over time, the diagnostic 
state parameters of (16) fluctuate in time; consequently, they are stochastic va-
riables. 

Such variables can be characterized in the simplest way by the 

( ) ( )
( )

( ), , d , 1, 2, ,i i
X

F F X Y w X t X i n= =∫           (18) 

mean value and the 

( ) ( )2
, 1, 2, ,

iF i iF F i nσ = − =               (19) 

Equation (16) mean-square deviation.  
In accordance with the Tshebyshev theorem, the probability of i iF F a− >  

is 

( ) ( )22

2 2
iF i i

i i

F F
P F F a

a a
σ −

− > ≤ =              (20) 
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if 
iFσ  is very small, then we may conclude from the above inequality that the 

probability of the deviation is small; in this way, Fi and the average of Equation 
(18) coincide in practice.  

If the above case is not true, we may choose the procedure of characterizing 
the 

( ), 1, 2, ,i i if F F i n= − =                  (21) 

functions expressing the stochastic fluctuations. In engineering practice, these 
are characterized by the power-density spectrum. An additional advantage of 
this description is that we may conclude from the distortion of power spectrum 
density the occurrence of some future error, even if, on the basis of the average 
of diagnostic state vector, the system can be considered as adequate. 

4. Stochastic Description 

Let us suppose that the fluctuation introduced earlier can be divided into the 
sum of semiperiodic stochastic processes on different time scales that are statis-
tically independent. Clearly, the semiperiodic stochastic processes on different 
time scales have different frequency scales as well. 

We assume that every component process like this is statistically self-similar.  
The ( )X t  stochastic process is memory-less if the increment of 

( ) ( )dX t t X t+ −                         (22) 

can be expressed in the form of 

( ) ( ) ( )d , ,dX t t X t X t t t+ − = Θ                   (23) 

In general, this is a Markov process (Jaynes, 2003). 
Let us assume that ( ) , ,dX t t tΘ    is a smooth function of the , ,dX t t  va-

riables and ( )X t  is continuous, then: 

( ) ( )
d 0
lim d
t

X t t X t
→

+ =                       (24) 

The stochastic process is self-similar in the sense of [11] if the difference can 
be divided into the sum of statistically independent increments. Then, they have 
a normal distribution within the interval. Here, we may see also the Markov 
character: memory-less and recursive. 

( ) ( ) ( )

( )

( ) ( )

1

1

d , ,d

d d1

d d d1 , 1 ,

n

i

n

i

X t t X t X t t t

t tX t i X t i
n n

t t tX t i i
n n n

=

=

+ − = Θ  
   = + − + −   
   
  = Θ + − −    

∑

∑

               (25) 

Since dt  can be chosen as arbitrarily small, the ( )1
d1i
tt t i

n− = + −  times can  

approach t  arbitrarily by choosing a suitable high value for n. Therefore, we 
get from our above equation, for adequately high n, by utilizing the continuity 
that 
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( ) ( )

( ) ( )

1 1

1

, ,

d, ,d , ,

i i

n

i
i

t t X t X t

tX t t t X t t
n

− −

=

→ =

 Θ = Θ     
∑

              (26) 

Here, we may consider the ( ) d, ,i
tX t t

n
 Θ   

 expressions as the representa-

tions of ( ) d, , tX t t
n

 Θ   
 variables. These are statistically independent because 

the process is memory-less. Since n is arbitrarily high, we may conclude from the 
central limit distribution theorem that ( ) , ,dX t t tΘ    is the sum of n statisti-

cally independent ( ) d, ,i
tX t t

n
 Θ   

 stochastic variables. That is, the stochastic 

variable has a normal distribution. In accordance with the above, this is also true 

for the ( ) d, , tX t t
n

 Θ   
 stochastic variables. 

We may conclude the following properties from the properties of stochastic 
variables with normal distributions. 

( ) ( )

( )( ) ( )2 2

d, ,d , ,

d, ,d , ,

tX t t t n X t t
n

tX t t t n X t t
n

σ σ

 Θ = Θ     

  Θ = Θ        

           (27) 

where 〈〉 denotes the mean-value and σ2() is the mean-square deviation. The so-
lution of the function equations are: 

( ) ( )

( )( ) ( )2

, ,d , d

, ,d , d

X t t t A X t t t

X t t t D X t t tσ

Θ =      

Θ =      
              (28) 

where A  and D  are smooth functions of X  and t ; and D  is positive. By 
taking into consideration the normality of ( ) ( ) ( )d , ,dX t t X t X t t t+ − = Θ    
and the above results, we get from Equation (23) that 

( ) ( ) ( ) ( ) ( )

( ) ( )
1 1
2 2

d , ,d , d , , d

, d 0,1 d

X t t X t X t t t A X t t D X t t

A X t t D t

+ − = Θ =      

= +

N

N
  (29) 

where ( )0,1N  is a normally distributed stochastic process of zero average and 
unitary mean-square deviation:  

( )

2

2

ln
1 exp

π 2

x
x

N x
xσ σ

  
     = − 
 
 
 

               (30) 

If we change over to the differential equation, we get the 

( ) ( ) ( )
1
2d , ,

d
X A X t D X t t
t
= + Γ                 (31) 
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non-homogeneous equation, where 

( ) ( )1

0
lim 0,d
dt

t t−
→

Γ = N                     (32) 

is a normally distributed white noise. This is a generalized Langevin equation. 
Let us take the simplest one from these stochastic processes: 

( )
1
2d 1

d
X X D t
t τ
= − + Γ                    (33) 

Equation (33) describes the Ornstein-Uhlenbeck stochastic process [12]. The 
mean value decays exponentially, and there is a white noise thereon that drives 
it. This equation describes the noise of a system comprising an energy accumu-
lator (e.g. mass, revolving mass, capacitor, inductivity) and a linear attenuation 
(e.g. resistance of medium, ohmic resistance) excited by white noise. 

On the basis of simple consideration that the power spectral density of the 
Ornstein-Uhlenbeck process:  

( )
( )

2

2,
1

DS τ
ω τ

ωτ
=

+
                    (34) 

where τ  is the time constant of the system and the spectral density is similar to 
(8). At the same time, this can be considered as the natural time scale of the sto-
chastic process. Let us introduce a frequency scale by applying the definition:  

1
λ

τ
=                            (35) 

To characterize the stochastic processes, let us take that ( )dG λ λ  is the 
number of stochastic processes falling into the frequency interval of ( ), dλ λ λ+ , 
then for the energy spectrum of the stochastic processes falling into the ( )2 1,λ λ  
interval of frequency scales we have that 

( ) ( )
( )

2

1

1 2 22
, , d

DG
S

λ

λ

λ
ω λ λ λ

λ ω
=

+
∫                  (36) 

If the distribution is uniform, namely, if 

( )
2 1

ddG λ
λ λ

λ λ
=

−
                      (37) 

we get that 

( ) ( )
( )

2

1

1 2

1 2 1 22 2
2 1

1 22

, 0
π, , d ,

2

,

D ha
DG DS f ha

D ha

λ

λ

ω λ λ
λ

λ λ λ λ ω λ
ω λ λλ ω

λ λ ω
ω


 <


= = 
−+ 





∫

 

 

 

    (38) 

This is a well-known result with the effect of white, pink and Wiener's noise in 
the first, second and third interval, respectively. 

We can choose a time interval from a representation where the noise is similar 
to the original one, and within this, we may choose an interval where the noise is 
similar to the noise of the interval from where we carried out the previous selec-
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tion. Mathematically, this means that we can carry out the scaling of the fre-
quency of the chosen component noise in such a way that it will be similar to a 
noise component of other frequency scale. It follows that the distribution func-
tion can be scaled in a self-similar way. (Of course, this cannot be applied to 
every scale, but we can find a scale whereon the distribution function of the sys-
tem can be scaled.)  

( )G G
N N
γ λ

λ  =  
 

                     (39) 

This means that the distribution function can be overlapped with the distribu-
tion function taken on the τ  scale by the uniform enlarging of ordinate values 

on the 
N
λ

 frequency scale.  

We may see easily that the solution of the above functions equation takes the 
form of 

( ) ( )
1

1ln
,

ln
A

G
Nα

λ γλ α
λ += =                  (40) 

where ( )A λ  is the periodical function of the scale whereon the distribution 
function is self-similar. Namely, 

( )A A
N
λ

λ  =  
 

                      (41) 

For the sake of simplicity, let us suppose that this function is invariable, and 
calculate again the energy spectrum of the stochastic processes falling into the 
( )2 1,λ λ  frequency interval. From this we get that 

( ) ( )
( )

2 2

1 1

2

1

1 2 2 2 2 2 1

2 2 1

, , d d

1 d

1

DG DAS f

DA

λ λ

α
λ λ

λ ω

α α
λ ω

λ
λ λ λ λ

λ ω λ ω λ

λ
ωω λ λ

ω ω

+

+ +

= =
+ +

=
    +    
     

∫ ∫

∫
         (42) 

The integral can be expressed by using the hyper-geometric functions; how-
ever, it is not easy to find out a descriptive meaning. For this reason, let us per-
form the integration for the ( )0,∞  interval. With the exception of the pink 
noise, the result will be a finite constant. We get the expected result by using this 
approach. 

( )
2

1

1 2 2 2 1

2 2 1
0

2

1, , d

1

1 d

1

1

DAS

DA

λ ω

α α
λ ω

α α

α

λ
ω λ λ

ωω λ λ
ω ω

λ
ωω λ λ

ω ω

ω

+ +

∞

+ +

+

=
    +    
     

≈
    +    
     

∝

∫

∫            (43) 
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Consequently, the self-similar function is the condition for getting the 

( ) ( )1 2S βω β α
ω

∝ = +                  (44) 

power spectral density.  
How can these distribution functions be considered as universal? In order to 

prove the universality of this result, we need to carry out a universality test. We 
are going to show that this can be derived from any distribution function con-
verging on zero in the case of high λ  frequencies.  

Let us take indeed that ( )g λ  is a function like this, namely that this is a fully 
general, not necessarily lognormal function, where  

( )lim 0g
λ

λ
→∞

=                       (45) 

In the dynamic events of a collective system, the movements by time are built 
strictly on each other, and the whole course can be derived only in a recursive 
way (causality principle). Philosophically, this means that the time of a given 
process or system can be described only by the superimposing order of interac-
tions (not by the order of side-by-side existence). This means that the interac-
tions are built on each other and set off the wearing (progress of time) process. 
Therefore, the time (on single-variable and causality basis) is composed of supe-
rimposed and successive recurrent steps. The progress of time corresponds to 
the process of wearing. This—at the same time—corresponds to the recursive 
self-organization resulting in the formation of Mandelbrot set. Consequently, we 
get a specific self-organization characteristic of the system, which makes the re-
levant system specific, and in a certain respect, distinguishable from the other 
ones. In this manner, this self-similar solution corresponds to the thermody-
namic notion of entropy.  

According to the recursive causality idea [13] [14], let us generate a distribu-
tion function using the recursive method, as the process was described above: 

( ) ( )

( ) ( )

1
1

0 0

, 1, 2,i
i i ig g i

N N
g g

ξγ
ξ

ξ λ

−
−
 = = 
 

=



              (46) 

By using these functions, let us generate the 

( ) ( ) ( )

( ) ( )

1

2

2

1

1

i i
i

G g

g g g
N N N N

λ γ ξ

γ λ γ λ
γ λ

∞

=

= −

      = − + + +      
       

∑



       (47) 

distribution function. It is easy to show that this complies with the 

( ) ( ) ( )1G G g
N N
γ λ

λ γ λ = + − 
 

                (48) 

functions equation. In accordance with our limitation for high λ-values (see 
(45)), the value of ( )g λ  is tending to zero, so we get the functions equation 
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( )G G
N N
γ λ

λ  =  
 

                      (49) 

which expresses exactly the self-similar property.  

5. The Generation of Colored Noise Is Not Univocal 

We derived above the 1 f α  colored noise from the Orstein-Uhlenbeck process. 
Now, we are going to show that the colored noise could be derived from the Lo-
rentz process as well, expecting that, in this case, the distributions of the indi-
vidual time constants will differ. 

It follows from this that, the lognormal distribution is not a significant de-
mand for the 1 f α  noise. In order to prove this, let us take the other most 
simple process from among the self-similar stochastic ones: 

( )
1
2

0

d 1 ,
d
X X D t
t

DD

τ

τ

= − + Γ

=
                    (50) 

This is called the Lorentz stochastic process. Here, as we saw earlier, 

( ) ( )1

d 0
lim 0,d
t

t t−
→

Γ = N  is a white noise of normal distribution. We have seen on 
the basis of simple consideration that the power spectral density of the process is 
as follows (similar again to (8)): 

( )
( )

0
2,

1
DS τ

ω τ
ωτ

=
+

                     (51) 

In this case, τ  is the time constant of the system generating the stochastic 
signal. This can be considered as the natural time scale of the stochastic process 
as well as to the effect that this gives information on the character of change of 
the two-point correlation function of the stochastic process. 

Indeed, we know that the power spectral density of the signal equals the 
Fourier transform of its correlation function. We get from this and Equation 
(51) the two-point correlation function:  

( ) ( )
( )

1 1 0
02, e

1
XX

DC F S F D
ϑ
ττ

ϑ ω τ
ωτ

−− −
 

= = =     +  
       (52) 

where F-1 denotes the inverse Fourier transformation. Therefore, the degree of 
correlation decreases exponentially by the τ  time constant. Because of this 
property, τ  is called the time-correlation length. Let us suppose that ( )dG τ τ  
is the number of statistically independent stochastic processes falling into the 
interval of ( ), dτ τ τ+  time-correlation length; thus, the resultant energy spec-
trum falling into the ( )0,∞  interval is: 

( ) ( )
( )

0
2

0

d
1

D G
S

τ τ
ω τ

τω

∞

=
+

∫                   (53) 

If the distribution is scale-invariant, and if we require only the self-similarity, 
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then the probability (e.g. for the density function) is scale independent:  

( ) ( ) d dd dG G ατ τ
τ τ ατ ατ

ατ τ
= ⇒ =              (54) 

so 

( ) ddG τ
τ τ

τ
=                       (55) 

Hence, by using the 

( )2
0

1 π 1d
21

τ
ωτω

∞

=
+

∫                    (56) 

improper integral, from (52) we get the expected result: 

( ) ( )
( ) ( )

0 0
02 2

0 0

1
π 1 1d d

21 1

D G DS D
f

ττ τ τω τ τ
ωτω τω

∞ ∞

= = = ∝
+ +

∫ ∫        (57) 

In more general, if we suppose that 

( ) ( )G Gβατ α τ=                      (58) 

then  

( )G βτ τ=                         (59) 

If we require only the self-similarity, we get from Equation (53) and Equation 
(59) that the noise spectrum of signals falling into the ( )0,∞  interval is:  

( ) ( )
( ) ( )

1
0 0

2 2
0 0

d d
1 1

D G DS
βτ τ τ

ω τ τ
τω τω

+∞ ∞

= =
+ +

∫ ∫              (60) 

Because of the physical representation, it is advisable to convert the integral 
into the following form:  

( )
( )

( )
( )

( )
11

0 0
2 2 2

0 0

d d
1 1

D DS
ββ

β

ωττ
ω τ ωτ

ωτω τω

++∞ ∞

+= =
+ +

∫ ∫          (61) 

For this integral, we are not able to give a general solution. Fortunately, in our 
case, the improper integral can be expressed in a closed form if 0 2 2β< + < , 
Namely, 

( )
( )

( )
( )

1

2
0

πd
2 π1 2sin

2

A
βωτ

ωτ
βτω

+∞

= =
+ +

 
 

∫             (62) 

from Equation (61) and Equation (62) we obtain: 

( ) ( )
( )

( )
1

0 0
2 2 2

0

d
1

D D AS
β

β β

ωτ
ω ωτ

ω ωτω

+∞

+ += =
+

∫              (63) 

Consequently, the self-similar function is the condition for getting the 

( ) 1S αω
ω

∝                          (64) 
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power spectral density. Advantage of the applied Lorenzian process instead of 
the Ornstein-Uhlenbeck one is its fixed boundary conditions for integration, no 
arbitrary cut-off is necessary for finite integrals.  

The foregoing can be generalized. Namely, if we depart from the stochastic 
process described by the 

( )
1
2

0

d 1 ,
d
X X D t
t

DD γ

τ

τ

= − + Γ

=
                    (65) 

equation instead of Equation (50), where ( ) ( )1

d 0
lim 0,d
t

t t−
→

Γ = N  is the normally 
distributed white noise. 

Then, on the basis of simple consideration, we can see that the power spectral 
density will have the 

( )
( )

2
0

2,
1

DS
γτ

ω τ
ωτ

−

=
+

                      (66) 

form. If we require only self-similarity, we get from Equation (66) and Equation 
(59) thatthe noise spectrum of signals falling into the ( )0,∞  interval is 

( ) ( )
( ) ( )

2 2
0 0

2 2
0 0

d d
1 1

D G DS
γ β γτ τ τ

ω τ τ
τω τω

− − +∞ ∞

= =
+ +

∫ ∫             (67) 

Because of the physical representation, it is advisable to convert the integral 
into the 

( )
( )

( )
( )

( )
22

0 0
2 3 2

0 0

d d
1 1
D DS

β γβ γ

β γ

ωττ
ω τ ωτ

ωτω τω

− +− +∞ ∞

− += =
+ +

∫ ∫          (68) 

form. 
In our case, the improper integral can be expressed again in a closed form if 

0 3 2β γ< − + < . That is: 

( )
( )

( )
( )

2

2
0

πd
3 π1 2sin

2

A
β γωτ

ωτ
β γτω

− +∞

= =
− + +

 
 

∫            (69) 

Now, from Equation (61) we have that 

( ) ( )
( )

( )
2

0 0
3 2 3

0

d
1

D D AS
β γ

β γ β γ

ωτ
ω ωτ

ω ωτω

− +∞

− + − += =
+

∫              (70) 

Therefore, from the self-similarity, we get again the  

( ) 1S αω
ω

∝                           (71) 

power spectral density of the colored noise! 
From this, we may draw the conclusion that self-similarity can be considered 

as a fundamental property in the generation of colored noises, and the existence 
of self-similarity alone is a satisfactory condition for its presence; neither the 
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underlying stochastic processes nor the distributions have a role in generating 
this phenomenon.  

6. Connection between the Fluctuation and the Induced  
Noise Theory 

Above, we derived the 1 f α  noise from the noise spectrum of system driven by 
white noise, while van der [14] [15] [16] derived the colored noise from the 
fluctuations. Next, we are going to show the equivalence of these two methods, 
namely the white noise powered and the fluctuation gained systems are both 
have colored noise spectra. 

The thermo-dynamic fluctuations can be characterized by macroscopic fluc-
tuation quantity. The field range in which the fluctuation is generated is not 
uniform regarding the fluctuation quantity; however, it is in a state of equili-
brium in every point. This latter means that, among the field ranges, the ex-
change of extensive quantities characteristic of the fluctuation can be neglected 
during the relaxation time of equilibration. An additional characteristic of the 
thermo-dynamic fluctuations is that the fluctuation lasts for a finite duration, 
and the rate of change of the individual ( ), 1, 2, ,ia i n=   extensive parameters 
during the fluctuation can be expressed by the extensive quantities participating 
in the fluctuation. 

( ) ( )1 2
d

, , , , 1, 2, ,
d

i
n

a f a a a i n
t
= =               (72) 

The relaxation time of which is much longer than that of the others, then the 
fluctuation can be described by a sole extensive parameter. Let us suppose that 
Equation (72) is linear and the system returns to its equilibrium, then the equa-
tion describes a completely deterministic and noiseless fluctuation process of 
one variable:  

d
d
a a
t

λ= −                           (73) 

The solution of this equation will be as follows: 

( ) ( )0 e ta t a λ−=                        (74) 

Then, the correlation function is 

( ) ( ) ( ) ( ) 2
0 0 eaaf a a a λ ττ τ −= =                  (75) 

and the power spectral density of this: 

( ) ( ) ( ) 2

2 2e d 0i
aaS i f aωτ λ

ω τ τ
λ ω

∞
−

−∞

= =    +∫            (76) 

How do we have the noise from deterministic conditions? A deterministic 
process generates a fluctuation, and its spectrum is deterministic. The expected 
noise is not deterministic, and it is not a fluctuation—it is a noise. To make a 
comparison, we suppose that the deterministic fluctuation signal randomly re-
peats itself. The constructed noise is the series of randomly repeating determi-
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nistic signals. If we introduce a white noise function into the deterministic equa-
tion (the result is the Langevin equation), then the amplitude of the white noise 
spectrum can be chosen in such a way that it corresponds to the noise spectrum 
generated by the deterministic and random repetition frequency. The same is 
true also for the correlation function. This is a white noise and 1/ω2 Brownian 
noise for small and high ω values, respectively. 

The power spectral density of the random series of such fluctuations differs 
only in one proportionality coefficient, as explained in [2]. If the distribution of 
λ frequencies is uniform, then the resultant spectrum will have white noise, 1/f 
and Brownian noise at the first part, in the middle and at the tail, respectively. 
Shlesinger also departs from this type of fluctuation [5], but he writes the equa-
tion Equation (73) in the equivalent form:  

d 1
d
a a a
t

λ
τ

= − = −                         (77) 

In this case, instead of (76), the spectrum is:  

( ) ( ) ( )
( )

2

2e d 0
1

i
aaS i f aωτ τ

ω τ τ
τω

∞
−

−∞

= =    +
∫             (78) 

Supposing (like we did before in part No. 1.) that the probability density func-
tion of the time correlation length is lognormal, we get the resultant noise spec-
trum of 1 f α . We may conclude, that the deterministic nature of this process is 
not an essential request to get colored noise spectrum; if we suppose that there is 
a random series of such fluctuations, in the same way as in Equation (51).  

Introducing, e.g. a stochastic exciting term into Equation (77):  

( )d 1
d
a a q t
t τ
= − +                        (79) 

We state: the spectrum of the signal shall correspond to the power spectral 
density of fluctuation Equation (78); and this condition can always be fulfilled. 
In order to prove this, let us calculate the Fourier transform of the Equation 
(79). Then we get: 

( ) ( ) ( ) ( )1
1

i a q a q
i
τ

ω ω ω ω
τ ωτ

 + = → =  + 
           (80) 

From this, we have the power spectral density:  

( )
( )

( )
2

2

21
S qτ
ω ω

ωτ
=

+
                    (81) 

We may see that if  

( ) ( )0a
q ω

τ
=                         (82) 

is chosen, it leads us to the expected result. Consequently, if ( )q t  is a white 

noise of ( )0a
τ

 amplitude, then the noise spectrum of the signal is equivalent to  
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the noise spectrum of fluctuation! Moreover, two stochastic processes are equiv-
alent if their noise spectra are the same.  

The above monitoring could be suitable for numerous technical solutions of 
operating and controlling the complex systems, like: 
• by using the parameter predetermined on the system of proper operation we 

can observe the state of system completeness, 
• to replace the complicated system of multi-sensor observation (at the same 

time, for the specification of the place of fault we have to use local sensors, 
but in a more integrated measurement groups, as without the use of proce-
dure in accordance with this invention), 

• to forecast the trends indicating the possible faults, 
• to observe the trend of system wearing-out (lifetime), 
• to measure during the planning process the implementation degree of the 

uniform dynamical load by using the exponent approximating (-1), 
• to explore the „usual”, suddenly occurring changes, usage faults and unau-

thorized usage (e.g. a non-qualified person intervenes and modifies the inva-
riant quantity even if it does not result in operation fault, e.g. manual change 
gearbox of cars). 

The present results are applicable to such complex systems as living organ-
isms. The fractal physiology controls a living system by the time-fractal analysis 
[17] [18] [19], which is equivalent to the above noise/fluctuation approach. The 
analysis of a normally functioning living organism shows that these noises are 
self-similar according to their time scale. As it is shown [20] [21], it can discover 
the abnormalities very early, and/or it is able to check the ageing-status of the 
human body [22]. Earlier, we had investigated the method theoretically [23] 
[24]. 

The future of the present investigation could lead to the “inverse treat”, when 
the colored-noise signal of the initially fixed properly working system forced 
during the functioning could be useful keeping increasing the faultless lifetime 
to operate. This idea is applied in the modulated electro-hyperthermia treatment 
process, when the modulation mimics the healthy homeostatic noise [25].  

7. Conclusion 

Our present study shows the possibility of measuring a system-dependent inva-
riant (scale-independent) parameter, which characterizes the actual status of the 
whole complex system, informs about the interactive “harmony” of the system 
and makes it possible to check the proper function of the system as a complex 
unit. We observed that the noise contains the entire dynamics and practically 
every dynamical variable of the whole system, the interactions of which contri-
bute to the generation of the given (desired/useful) signal. Therefore, we may 
examine the system as a whole and analyze the operation of the system on the 
base of its noise spectrum. All the faults arising from wear, tear and fatigue 
processes (in general, through stochastic changes) will result in the continuous 
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change of the noise spectrum. Therefore, measurement of the noise spectrum 
allows the prediction of wear/tear (fatigue etc.) processes. This information faci-
litates control of the given system among the concretely functioning conditions, 
including its evolutionary trend, predicting the possible failures or lifetime thre-
sholds in time of the proper function without statistically determined system- 
independent data. 
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