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ABSTRACT 

We studied the homeostatic equilibrium of the healthy organism. The homeostasis is controlled by oppositely effective 
physiologic feedback signal-pairs in various time-scales. We show the entropy of every signal in this state is identical 
and constant: SE = 1.8. The controlling physiological signals fluctuate around their average values. The fluctuation is 
time-fractal, (pink-noise), which characterizes the homeostasis. The aging is the degradation of the competing pairs of 
signals, decreasing the complexity of the organism. This way, the color of the noise gradually changes to brown. A spe-
cial scaling process occurs during the aging: the exponent of the frequency dependence of the power density function 
grows in this process from 1 to 2, but the homeostasis of the system is unchanged. 
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1. Introduction 

Life is based on energetically open systems, where the 
environmental conditions determine it as equilibrium. 
The living equilibrium is the homeostasis. The actual 
homeostatic state is definitely “constant” despite its en-
ergetically open status. The normal healthy state of any 
living system is in homeostasis, which is not static, but 
dynamically change in time, forming a relatively stable 
state. This relative stability makes it possible to recog- 
nize the various individuals despite the fact that millions 
of their cells actually vanish and millions of those are 
reborn. The homeostasis is controlled by numerous nega-
tive feedback loops [1,2], creating both the micro- and 
macro-structures in equilibrium. 

The disease breaks the relative equilibrium, risks the 
relative stability of the system. The system tries to re- 
establish the homeostasis by enhancing the negative 
feedback control. The physiology tries to compensate 
and correct the damage.  

The natural therapy must help the body’s internal cor-
rective actions to reestablish the healthy state. Recogniz-
ing the disease, most of the medical approaches act with 
changes of the conditions (diets, medicaments, other 
supplies) trying to constrain the body back to the previ-
ously working equilibrium. However, in many cases, it 
works against the natural homeostasis, the constrained 
action induces new homeostatic negative feedbacks from 
the living object. The living organism starts to fight 
against our constraints together with the fight against the 
disease [3]. This is the problem of the classical hyper-

thermia, which introduces a new constrained effect, the 
heating out from the natural homeostasis. This constraint 
induces physiological feedback, forcing the body to fight 
on “double front”: against the disease and against the 
action of the heat.  

This controversial situation happens for example in 
case of the classical hyperthermia in oncology, when the 
constrained massive temperature change is physiologi- 
cally down-regulated (or at least the physiology works 
against it by the systemic [like blood-flow] and local [like 
heat-shock] [protein (HSP)] reactions) [4]. Oncothermia 
disclaims the old approach, introducing a new paradigm: 
with the application of micro-heating it induces consid-
erably less physiological feedback to work against the 
action, and with the application of the electric field it 
uses such an effect, for which the body has no physio-
logical answer. With this new paradigm, oncothermia 
helps the natural feedback mechanisms to reestablish the 
healthy state [4]. This simple example shows the crucial 
role of the homeostasis in the curative processes.  

2. Homeostasis and Entropy 

To characterize the homeostatic equilibrium we may in-
troduce a special entropy-definition. 

There are various proposals to calculate the entropy of 
finite data-series, which are coherent with the Shannon- 
type entropy [5]. Measuring complexity of time-series 
was introduced the Richman-Moorman-entropy [6]. 

Define a time-series of N-sampling with  
   1, , , ,l l NX X X X   . Choose m-length vectors from 
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The Richman-Moorman-entropy is the negative loga-
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From these, the conditional probability is: 
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and hence the Richman-Moorman-entropy:  

 
 

 
 1

In In
m m

i
E m m

i i

P r n r
S

P r n r   
1

i

          (7) 

The  and  quantities in Equation (7) 
could be determined from the probability distribution 
function of the vectors. Analyzing the multiple-scale en- 
tropy of physiological signals the Richman-Moorman- 
entropy was applied [7]. Supposing that the Gauss-type 
pink-noise at physiologic signals is a good approximation 
due to the central limit theorem [8]. The covariance ma-
trix is necessary for characterizing the multidimensional 
Gauss-distribution. In case of the Gauss-pink-noise, the 
covariance matrix could be determined from the power 
spectrum, and on this basis the entropy as well. 

 m
in r  1m

in r

The definition of the covariance matrix of random 
N-variables is: 

   , :i j i i j jC X X E X X X X    

The diagonal of the covariance matrix contains the de-
viations of the random variables. The covariance matrix 
is hermitic, symmetric with real values, consequently it 
could be diagonal-transformed, and its characteristic equ- 
ation with λi eigenvalues: 

i iCU U i                  (9) 

Hence:  

j i j iiU CU U U i ij              (10) 

Consequently, forming a U  matrix from the eigen-
vectors as columns will be diagonal:  
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the transformed random variables: 
T

Y U X                  (13) 

have the same covariance matrix. Consequently, the de-
viation of jY  transformed random variables are: 

j j                    (14) 

On the other hand, the probability density function of 
the N-dimensional noise with Gauss-distribution is: 
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from where the distribution function of the transformed 
random variable is: 
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Calculating the covariance matrix, the power density 
of pink-noise:  

  1

0 otherwise

K
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          (17) 

From Equation (17) the autocorrelation function could 
be determined by the Wiener-Khinshin-theorem [9]: 
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where  Ci  isthe integral-cosine function and 
0 5772  .  is the Euler constant. Hence:  
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The connection of the covariance matrix and the auto-
correlation function for the ergodic processes (like the 
pink noise) is Equation [7]: 

       
        
       

         

0 2 ....

0 .... 1

2 0 .... 2

. . . . .

. . . . .

1 2 .... 0

C

N

N

N

N N N

      


      

      

      



 
 



 


 
 
   






 (20) 

From these the entropy of pink nose was obtained [7]:  

1.8ES                     (21) 

So, this analysis proved the scale-independency of pink- 
noise in a definite interval of the signals. The multiscale 
entropy analysis (MSE, [7]) is applied to analyze various 
physiological signals [10]. Its application made on a dis-
crete one-dimensional time-series  1, , , ,l Nx x x 

  

.  

From this a consecutive coarse-grained  time-  ry

series is constructed with   scale-factor. With averag-
ing or smoothing (filtering) another time series can be 
presented. Noises with different   scales could be con-
structed this way:  
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and we determine the entropy of all the coarse-grained 
time-series. This is the Multiscale Entropy analysis 
(MSE) [7] method. Applying the above process for pink- 
and white-noises, and the entropy vs the applied scale 

factors (number of the members of the actual averaging) 
had different functions. The smoothing (filtering, cutting 
the high-frequencies) is irrelevant in case of the pink- 
noise. When the original was pink, the entropy remains 
constant on all scales in a very wide range of limits. The 
entropy of the white-noise is decreased by the growing 
scale-factors, in consequence of the very short correla-
tion; but its entropy is high at the scales, less than 4, due 
to the short range correlations. The short correlation is 
weak, but the long is strong for the pink-noise. 

3. Physical Consequences of MSE Results 

From physical point of view, the scaling of a discrete 
time series is a filtering process, which rejects some 
high-frequency components of the noise. The largest 
band-width of the noise is at scale 1. Gradually jumping 
onto a higher scaling, the average of the high-frequency 
components is more and the bandwidth decreases. The 
highest frequency in the signal could be estimated by the 
Shannon’s sampling-theorem: the largest frequency ap-
pearing in the noise is the half of the sampling frequency. 
In consequence: in case of scale factor 2 the half, in case 
of scale factor n the n-th part of the highest frequency 
determines the bandwidth. The same is valid in the low-
est frequency-limit of the bandwidth. 

The length of the data-series is the function of the reg-
istration time. When T  is the sampling time and N is 
the size of the data-series, the time of registering is 

TN . The reciprocal value of this time is the smallest 
frequency in the signal, so it is the lower boundary of the 
bandwidth. Due to the decreasing length of the data-se- 
ries by scaling, the lower frequency-limit of the band- 
width is growing (see Figure 1).  

The Richman-Moorman-entropy of the time-series 
shows a “holographic-like” structure of the pink noise: 
the truncation of the noise does not change its entropy. 

The Richman-Moorman-entropy of course has physi-
cal meaning in the same way as in the Shannon-entropy 
(they are coherent). Multiplying the Richman-Moorman- 
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Figure 1. Narrowing the bandwidth by scaling. 
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entropy by the Boltzmann constant, the physical entropy 
of the registered signal is constructed. The entropy of a 
system is the function of state; so it is a function of the 
state-variables, among which the energy is one of the 
most important variables. In our present case the energy 
of the system is the sum of the energy-values of the Fou-
rier components of the registered noise. In consequence, 
the entropy of the signals formed from pink noise does 
not change by its decreasing energy. This case is seen in 
the thermodynamics: the entropy of the system in the 
equilibrium thermodynamics has extremum in function 
of energy, which means that the subsystems having 
thermodynamic equilibrium could exchange energies by 
fluctuations without changing the entropy of the system. 
It seems that a similar situation exists in case of such 
stochastic systems, which emits pink noise. If this anal-
ogy is valid, the subsystems can exchange considerable 
energy without changing the entropy of the system. In-
troducing a type of function like the temperature is im-
possible, because the entropy here isn’t additive, as the 
entropies of all the pink-noise systems are equal. Here 
the entropy is more intensive than extensive parameter in 
the description of the system. 

4. Network Control of the Homeostasis 

The mesenchyme, which is 25% of the human body, has 
an important role of forming homeostasis in the organism 
[11]. It is a loose connective tissue with an undifferenti-
ated type [12]. The pink-noise with entropy SE = 1.8 
characterizes the homeostasis like an intensive parameter. 
This intensivity is valid for every physiologic signal and 
for all the organs, the SE = 1.8 is a universal constant for 
the living body.  

The cellular functions like supplies and filtering are 
mediated by the mesenchyme, which represents a trans-
mitter between the blood-capillaries and the cells. The 
mesenchyme is a ground substance matrix for the cells, it 
is an ordered set of meshwork of connective species like 
highly polymerized hydro-carbonates, gucosaminogly-
cans, ologasacharid-chans connected to proteins, pro-
teoglycans, and structure-glycoproteins, meshed by the 
dendrites of cellular glycocalix and by the extracellular 
matrix.  

Mesenchyme has a trimodal function: cellular, humo- 
ral and neural. The cellular function brings the chemical 
equilibrium of connective tissue together with reticu-
loendothel cells. The humoral function controls the trans- 
port processes through the capillaries and lymphnetwork. 
This transport mechanism ensures the communication 
with far away systems. The neural function is responsible 
for the functional connection with all other parts of the 
organism. The three levels are different in their ranges: 
the cellular is local, the humoral is mesoscopic and the 

neural is global (systemic) interaction in the body. Due to 
the slow transport processes, the humoral effects are slow, 
while the neural is speedy. 

The information control is effective by assistance of 
the neural system, of the cellular transport (hormones, 
enzymes, apoptosis, “social” signals) and of the humoral 
by blood and lymph transports too. The cell is the quick-
est to react. All the controlling mechanisms are operated 
by a pair of opposite signals: up- and down-regulation of 
the actual process. This is valid in all the time-scales 
having numerous pairs to form the physiological signals. 
The three levels are connected to each other by the mes-
enchyme. 

The homeostasis is determined by the equilibrium of 
the large number of opposite pairs. As an example, we 
describe the proliferation homeostasis. There is a mecha-
nism, which replaces the aged, harmed or too stressful 
cells. This process, which again the equilibrium of the 
opposite driving forces, stabilizes the final size of the 
organs. The opposite processes are the annihilation 
(apoptosis driven by the programmed cell death) and 
creation (cell division driven by growth factors). The two 
sides are in equilibrium in healthy state. When this equi-
librium vanishes, the system cannot work well, that is the 
illness. When the apoptosis starts to dominate that could 
be an autoimmune disease, when the creation determines 
the process, the tumor is the result. The complexity of the 
system (which is characterized by the number of the op-
posing pairs) is the basic of the proper work, allows the 
system to accommodate properly to the environmental 
challenges. The acting signal-pairs are connected and 
coupled to each other, forming a unified complex system.  
The above shown proliferation homeostasis works on the 
renewing of the cellular system, but one cell has to be 
annihilated giving place for the new-born one keeping 
the complete function in equilibrium (homeostasis). The 
equilibrium of this complex system could be described 
by fractal physiology [13-16] and bio-scaling [17-19]. 
This complexity is mirrored in the four dimensional de-
scription of the living state [20], which is valid in all 
scales of the life [21]. 

The complex network of the regulating pairs with op-
posite actions is the basis of the Traditional Chinese 
Medicine (TCM) and philosophy too (Yin-Yang pairs). 
The complexity means that the system cannot be simple 
additionally composed from their parts, the parts alone 
do not carry the function, which they have in the com-
plete complex system. The couplings and interactions 
between the controlling pairs could explain the multi- 
functional behavior of tuning a single controlling pair, so 
the consequences of one external retuning of the balance 
could lead to various results. 

We present this interaction of the sample of the prolif-
eration homeostasis again. One of the functions of the 
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mesenchyme is humoral by the transport of nutrients. 
When the oxygen supply is insufficient in an organ (hy-
poxia for example by the extreme utilization of a group 
of muscles), the conditions of the cells become hypoxic. 
The cells destroyed by the hypoxia release such chemi-
cals into the extracellular electrolyte, which dissolve the 
endothelial cellular connections in the capillaries, break-
ing their adherent (cytoskeleton) connections. This ig-
nites the first step of the angiogenesis, when the structure 
of the endothelial cells in the vessel-wall changes, the 
vascular tone reduces and the permeability of the ves-
sel-wall increases. The increased permeability provides 
better oxygen and nutrient supply to the tissue. In the 
second stage of the angiogenesis protecolis-enzymes 
evolve, making the extracellular electrolyte less viscose, 
giving possibility for the cells to have higher motility. 
The effect of the Vascular Endothelial Growth Factor 
(VEGF) is inducing cellular division and helping the 
chemotactically driven migration by the gradients of the 
growth factors. It starts building up a primitive network 
of vessels. 

The fourth step of angiogenesis is the maturation, 
when the extracellular matrix is reconstructed, the cellu-
lar connections reestablished, and the vessel-wall builds 
its stable final form. In this step the angiopoietin mole-
cules have the duty to connect the primitive just-born 
capillarity vessels into the existing network. The proper 
physiological function (transport) of the new vessel is not 
enough to finish the job, transport must be given where 
the nutrient + oxygen supply is requested. 

The vessels are built up by a morphogenetic network, 
constructed by the gradients of the growth factors and by 
the electric potential gradients, which occur in the more 
negative daughter-cells than their matured counterpart 
(see Figure 2). 

The potential gradient determines the direction of 
growth and the equilibrium is constructed by the dy-
namic control of the network of opposing pairs of actions, 
which is built up by the well determined scaling [22], 
ensure the proper equilibrium energy supply of the newly 
reborn complex system. 

The deterministic way of the control cannot be accu- 
 

 Vessel-wall
Daughter-cells 

Electric field

 

Figure 2. Construction of electric potential gradient by an-
giogenesis. 

rate and stable enough, with appropriate processing ve-
locity, so the process is not deterministic. There is a cru-
cial role of the random processes also to make the control 
optimal, not to use unnecessary accuracy and waste en-
ergy to control the system. The aims of the homeostasis 
are to safeguard the cellular functions and to assure the 
constant life-conditions for these smallest units. The en-
vironmental parameters must be kept in a tolerable band, 
the fluctuations of the actual values must not go over a 
definite limit for a longer time. These thresholds keep the 
average of the parameters constant in time, but due to the 
given band-width the deviation must also be fixed (see 
Figure 3). 

The structure of fluctuations is essential in this sto-
chastic process. We show in the next the time-fractal 
fluctuations satisfy the above request of the homeostasis. 
Time-fractal is the signal of stochastic control of homeo-
stasis. 

Consider the environmental signal, (see Figure 4), 
which is controlled by a homeostatic process is an aver-
age of various components: 
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The average is the basic signal and the deviation form 
is the controlling error. Due to the random processes, the 
controlling error is a noise in the homeostasis. 
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Figure 3. The fluctuations must be in the definite range 
properly keeping the control. Consequently, the average 
always has to be fixed in time, and the random fluctuations 
remain in the band for a long-range of the time. 
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Figure 4. Homeostasis controlled parameter of the envi-
ronmental signal. 
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Consequently t      z t x t x t he noise:     (24) 

where  denotes the ave  variance raging by time. The
oiseof the n   2z t , is also time-dependent: 

   2z t f t                (25) 

Due to the living structure, the noise has to be self- 
similar [23]. This means that the variance of the noise 
has a time-dependent power-function [24]: 
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where the similarity exponent is always positive: 0 H . 
Consider the following example as 1 2H  , th
control-error variance is the linear func the time: 

 

en the 
tion of 

2z t ct                  (27) 

where c is constant. In this case, the error-signal is a 
Brownian-motion. The scaling law is in consequence of 
Equation (26):  
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The power   is the “color” of the error signal and 
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1 f , then its deviation is constant in time in the well 

en interval. Indeed, the probability of the error signal 
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Consequently, when the k is large e
enough time is chosen for averaging) the
pr

Aging decreases the complexity of the system [27]. This 
of the number of the opposite 

 

nough, (large 
 probability is 

actically one, so the signal does not leave the chosen 
band. This means the system is well controlled in all 
times, the homeostasis is fixed, the system is regulated. 
The entropy of the system in this case is constant on all 
the scales (SE = 1.8), the signals are controlled (they are 
kept in a definite interval) on all scales. 

When the power-spectrum of the error signal deviates 
from the pink-noise, has another color (for example β > 
1), then its self-similar exponent will be positive, so ac-
cording to Equation (26) the deviation of the error-signal 
will grow in time, the homeostasis of the system will be 
broken. In these cases extra regulation (internal or exter-
nal signals) (e.g. immune reactions, transport-rearrange- 
ments, etc. or constrain treatments, therapies, etc.) is ne- 
cessary to stabilize the system.  

5. Aging and Scaling 

loss means the degradation 
controlling pairs making the dialectic determinations. 
These changes could deviate the action time, the pairs act 
on different time-scales. Also we may assume that the 
quick action pairs are degraded first. All of these mean 
the aging is an MSE scaling, but the fluctuations of high 
frequency gradually disappear, the scaling possibility of 
the noise signal remains characteristic in normal aging 
cases, but shifts toward the Brownian noise (1/f2). This 
corresponds to the H = 1/2 in Equation (26), so the vari-
ance becomes linearly growing by time, according to 
Equation (27), the error-signal is a Brownian-motion, the 
aging suppresses the complexity [23], and the autocorre-
lation gradually decreases by time according to Equation 
(30). The scaling is a good simulation of aging, the sys-
tem gradually occupies larger scale-factors. Studying the 
color of the noise of physiological signals to check the 
healthy state. We can distinguish the disease (the sig-
nal-noise is gradually shifted to white one, the correlation 
length decreases). On this way the loss of complexity by 
natural aging shifts the noise towards Brownian, opposite 
to the disease. 

The mesenchyme is the coupling media of the action 
networks constructing the homeostasis. The mesenchyme 
is a crossing field of the homeostatic actions working like 
hubs for various and numerous actions. Modifying the 
hubs, the homeostatic control could be changed. Three 
main effects could act:  

1) The mesenchyme over-controls. In this case the 
signal has to be down-regulated, purging is active [28].  

2) When the signal is too low, it must be up-regulated, 
which is the tonization [28].  

3) The signal is correct, but its deviation is too large,
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th

 open, their active connections to their en-
vir

ve needles, like
el

f stress-induced proteins (Heat-Shock
Pr

stasis is the equilibrium of the living com
 entropy-definition which could char-
 in this state. The dynamical fluctua-

[1] K. Sneppen, S. Krisna and S. Semsey, “Simplified Mo- 
dels of Biolog  Reviews of Biolo- 
gical Networks 9. 

en a homeostatic entropy has to be produced at the 
hubs [28].  

The outer connection points for this control are the 
probable acupunctural points. The living systems are 
energetically

onment is mandatory. The special material exchange 
in the acupuncture points (CO2 development [29], tem-
perature differences [30], potential differences [31]), as 
well as the change of the size [32] of the acupuncture 
point support the assumption that these connections con-
trol the hubs in the complex system. 

The stimuli of the acupuncture points (controlling the 
active fluctuations in the homeostatic band) could be 
achieved by various methods, like invasi  

ectric or laser stimuli or mechanical pressure, perma-
nent embedding methods of acupuncture. We do not 
know yet the actual local processes induced by the stim-
uli, but probably the mechanical and electric factors 
make the disturbance which promotes the natural correc-
tion system to reestablish the homeostatic equilibrium. 
There might not be any single effect that can be blamed 
for the action, but various local disorders are complexly 
interacting, like micro-wounds making injury current, 
like micro-bleeding inducing Platelet-Derived Growth- 
Factors (PDGF), like forced cellular apoptosis and re-
placing division, etc. Irrespective of the realized ways of 
the action, the acupuncture the acupuncture could give 
enough disturbance to rearrange the structure of the local 
hub to find the homeostatic equilibrium again by self- 
organizing way. This is much similar to the process, 
when we give mechanical vibration for a bowl of cherries 
to arrange itself to a lower energy status with self-or-
ganization. The stimuli are active till the micro-distur- 
bance exists [28,33]. There are examples for the stochas-
tic disturbance inducing self-organized processes in the 
bioprocesses. 

Forming the secondary, ternary and fourth structures 
of proteins operated by self-organizing way [34], and one 
of the functions o  

oteins, HSP) is providing such disturbances for the 
stress-unfolded portents, where the molecules could find 
the lower energy state forming their normal structure 
again [35]. 

6. Conclusion 

The homeo -
plexity. There is an
acterize the system
tions have pink-noise distribution, which ensures the 
equal deviation all over the system. The noise changes its 
character by disease or aging. The disease is the partial 
loss of the collectivity (the fluctuations are shifted to-
wards the white noise, disordered), while the aging shifts 
the noise oppositely to the brown-direction (fixed routes, 

less adaptability, loss of complex adaptation facilities). 
Acupuncture probably makes changes to reestablish the 
pink-noise fluctuation when it is lost to white noise di-
rection (disordered complexity), introducing disturbances 
in the hubs of the complex network system, making the 
natural rescaling of the interactions possible. 
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