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Abstract 
The phenomenon of phase transition in constraint satisfaction problems (CSPs) 
plays a crucial role in the field of artificial intelligence and computational com-
plexity theory. In this paper, we propose a new random CSP called d-p-RB 
model, which is a generalization of RB model on domain size d and constraint 

tightness p. In this model, the variable domain size , nd n n
γα ∈  

, and all con-

straints are uniformly divided into several groups with different constraint tight-
ness p. It is proved by the second moment method that the d-p-RB model un-
dergoes phase transition from a region where almost all instances are satisfia-
ble to a region where almost all instances are unsatisfiable as the control pa-
rameter increases. Moreover, the threshold value at which the phase transition 
occurs is located exactly. 
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1. Introduction 

The constraint satisfaction problem (CSP in short), originated from the artificial 
intelligence, has become an important topic in the interdisciplinary research of 
computer science, mathematics and statistical physics. Many problems in the fields 
of artificial intelligence, computer science and automatic control can be modeled 
as constraint satisfaction problems. Moreover, CSPs are widely used in many prac-
tical problems such as resource allocation, pattern recognition, logistics scheduling 
and temporal reasoning. 

In general, CSP is defined on a set of variables and a set of constraints. Each 
variable has a corresponding non-empty domain, the domain size of the variable 
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can be fixed, or vary with the number of variables. Each constraint involves a 
randomly selected subset of variables and a corresponding compatible assign-
ments set to specify the allowable combinations of values of the variables in this 
constraint. The randomly selected constraints constitute a random CSP instance. 
An assignment that satisfies all the constraints simultaneously is called a solution 
of the CSP instance. Interestingly, experimental results suggest that the probabil-
ity of a random CSP instance having a solution exhibits a phase transition beha-
vior. In a seminal paper, Cheeseman et al. showed empirically that the hardest 
instances of CSPs often occur around a rapid transition in solubility [1]. Since 
then, the phase transition phenomenon and its formation mechanism of CSPs 
have become one of the focuses of computational complexity theory [2]-[6]. The 
initial standard models for binary random CSP are A, B, C, D models [7] [8]. 
However, as the number of variables increases, the instances of standard models 
which contain flawed variables turned out to be asymptotically trivially insoluble, 
thus these models don’t have an asymptotic phase transition [9]. To overcome 
this shortcoming, some specific structures were introduced into the constraint 
relations such that the instances generated from these improved CSP models are 
arc consistent, path consistent, strongly 3-consistent or weakly 4-consistent [10] 
[11] [12] [13]. Although these improved models can eliminate flaws and produce 
nontrivial hard instances, the constraints are not generated in an easy natural 
way. In 2000, Xu and Li proposed RB model [14], which is a modification of the 
standard model B [7] in terms of the domain size and the number of constraints. 
RB model is a typical random CSP model with large growing domain size which 
makes it overcomes the shortcoming of B model which cannot produce hard in-
stances. Xu and Li have also shown that RB model can exhibit exact phase tran-
sition and the location of the transition point can be located precisely [14]. More-
over, Xu et al. proved theoretically and experimentally that the random instances 
of RB model had exponential tree-resolution complexity in the phase transition 
region, i.e., there are a lot of hard instances in the transition region [15] [16], which 
has great practical significance for algorithm test. In 2011, Zhao and Zheng [17] 
introduced the finite-size scaling method in the statistical physics to analyze the 
threshold behaviors in RB model, and gave the upper bound of the scale window 
of the transition region of RB model. Inspired by the random k-SAT with mod-
erately growing k [18] and RB model, Fan and Shen proposed a new CSP model, 
named k-CSP [19]. In k-CSP, the domain size is fixed while the length of con-
straint k is growing with the variable number n. After k-CSP, Fan et al. proposed 
d-k-CSP [20], in d-k-CSP, both the domain size d and the length of constraint k 
are variable as two integer functions of n. It has been proved rigorously that the 
two CSP models do have phase transition and the exact transition point can be 
located exactly. In 2011, Zhao et al. proposed a message-passing algorithm, which 
are based on belief propagation, to solve the random CSP instances generated by 
RB model with large growing domain size [21]. Subsequently, Zhao et al. put 
forward a belief propagation algorithm [22] which is based on variable entropy 
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and a reinforced belief propagation algorithm [23] to solve the random instances 
of RB model. Furthermore, they identify the connection between the structural 
features of the solution space and the complexity of the algorithm solving. 

In this paper, we propose a new random CSP model, called d-p-RB model, 
which is a generalization of RB model on constraint tightness p and the variable 
domain size d. In RB model, the domain size d nα=  (α is a constant) is a power 
function of the number of variables n, and the constraint tightness p is fixed. In 
d-p-RB model, we uniformly divided the random constraints into several groups 
and diversify the domain size d as well as the constraint tightness p of the con-
straints in different groups. More specifically, for an instance with n variables in 
d-p-RB model, the domain size , nd n n

γα ∈  
 (α, γ are constants) is defined 

within a certain range rather than a single value as in RB model, for the ith 
group of constraints, it has its own constraint tightness ip  ( 0 1ip< < ), which 
is distinct from the unchangeable p in RB model. By the second moment method, 
we show that the d-p-RB model can exhibit exact phase transition phenomenon 
under certain conditions, and the transition point can also be obtained pricey. 
Moreover, since both d and p are varied in d-p-RB model, it has more extensive 
practical significance and theoretical value. 

2. Preliminaries 
2.1. A CSP Instance 

A CSP instance ( ), ,I U D C=  of d-p-RB model is defined as follows: 
1) { }1 2, , ,=  nU u u u  is a set of n variables. 
2) { }1 2, , ,=  nD D D D  is a domain set. Each variable iu  ( 1, 2, ,i n=  ) 

takes values from iD , whose size , n
iD d n n

λα = ∈  
, where α and γ are con-

stants. 
3) { }1 2, , tC C C C= ,  is a set of constraints, and each constraint iC  is a 

pair ( ,i iS R ), where { }1 2
= , , ,

ki i i iS s s s  (k is the length of the constraint) is a sub-
set of U, and 

1 2
⊆ × × ×

ki i i iR D D D  is a compatible assignments set. 
A constraint iC  is satisfied if the k-tuple of values assigned to variables in 

iS  is contained in iR . A solution of a CSP instance is an assignment to all the 
variables that satisfies all constraints. 

2.2. d-p-RB Model 

A random CSP instance in d-p-RB model is generated in the following two steps: 
Step 1. We select with repetition l groups of constraints. For each group, there 

are t l  constraints with each contains k variables, which are randomly select 
from U, and distinct from each other. 

Step 2. For each group of constraints, we uniformly select at random without 
repetition k

ip d  ( 0 1ip< <  is the constraint tightness) compatible assignments 
to form the compatible assignments set iR  ( 1,2, ,i l=  ). 

3. Main Result 
We let lnt rn d= , where r is a constant control parameter, which determines 
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how many constraints are in a CSP instance. Let { }1 2min , , , lp p p p=  , where 

ip  ( 1, 2, ,i l=  ) determines how restrictive the constraints are. Let ( )Pr sat  
denote the probability of a random d-p-RB instance being satisfiable, then we 
have the following theorem. 

Theorem Let 

1
ln

m l

i
i

lr
p

=

= −
∑

 ( 0 1ip< < ), if the constants k, p, α, γ satisfy the 

relations 1
1k

γα +
>

−
, 

1max , 2k
p
γ

 
≥ + 

 
 then 

( )
when0 (1)

lim Pr         
when1 (2)

m

n
m

r r
sat

r r→∞

>
=  <

 

The theorem shows that, when the number of variables n is sufficiently large, 
there exists a sudden shift in mr . 

4. Proof of the Theorem 

Let N denote the number of solutions of a random CSP instance I. The expecta-
tion and the second moment of N is denoted by ( )E N  and ( )2E N . When 

mr r> , we consider the Markov inequality ( ) ( )Pr sat E N≤ . When mr r< , by  

the second moment method, we estimate the upper bound of 
( )
( )

2

2

E N

E N
, and then 

by the Cauchy inequality ( ) ( )
( )
2

2
Pr

E N
sat

E N
≥ , we finally attain our goal. Now we 

demonstrate the two cases respectively. 

4.1. Proof of r > rm 

Since the constraints are generated independently in d-p-RB model, the expected 
number of solutions ( )E N  is given by 

( ) ( )1 2

1

1

exp ln ln ln

exp ln 1 ln

t
n ll

l

i
i

l

i
i

E N d p p p

rn d n d p
l

rn d p
l

=

=

=

 = + 
 
  = +  

  

∑

∑



.                  (3) 

Since mr r> , we have 

1
1 ln 0

l

i
i

r p
l =

+ <∑ ,                        (4) 

thus 

( )lim 0
n

E N
→∞

= .                        (5) 

Then using the Markov inequality ( ) ( )Pr sat E N≤ , by (5), it’s not hard to 
have 
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( )lim Pr 0
n

Sat
→∞

= .                          (6) 

4.2. Proof of r < rm 
Definition 1 (The assignment pair) Suppose that the assignment pair ,i jt t  

is an ordered pair, where ( )1 2, , ,i i i int a a a=  , ( )1 2, , ,j j j jnt a a a=  , and  
,ih jh ha a D∈  ( 1,2, ,h n=  ). An assignment pair ,i jt t  satisfies a CSP instance 

if and only if both it  and jt  satisfy the instance. 
Definition 2 (The similarity number) Define a function as follows 

( )
1

,
0

ih jh
ih jh

ih jh

a a
Sam a a

a a

==  ≠
 

Assume ( )
1

,
n

ih jh
h

m sam a a
=

= ∑ , thus the assignment pair ,i jt t  has m  

identical assignments, i.e. the similarity number of ,i jt t  is m. It is obvious 
that 0 m n≤ ≤ . 

Next, we use the second moment method to complete the proof. 
Assume that ( ),i jP t t  represents the probability that it  and jt  satisfy the 

instant I simultaneously. We analyse this probability in the following way: 
Since there are m identical assignments in it  and jt , for each constraint, we 

have the following two cases: 
1) The assignments of k variables that the constraint restricts are all same in 

it  and jt , in this case, the probability of ,i jt t  satisfying the constraint is  
 1

1

 

k

k
i

ik

k
i

d
p d

p
d
p d

 −
 −  =
 
 
 

, and for a random constraint, the probability of such a situation 

is 

m
k
n
k

 
 
 
 
 
 

. 

2) Otherwise, the probability of ,i jt t  satisfying the constraint is 

 2
2 1

1 

k

k k
i i

i kk

k
i

d
p d p dp

dd
p d

 −
 − −  =

− 
 
 

, and the probability that ,i jt t  falls into such a situa-

tion is 1

m
k
n
k

−

 
 
 
 
 
 

. 

Let 

, ,  .m n

m
k ms
n n
k

σ

 
 
 = =
 
 
 

                        (7) 
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Since 

( ) ( )
( ) ( ),

1 1
1 1

k

m n

m
m m m kk m

n n n n k n
k

σ

 
  − − +   = = ≤  − − +   
 
 





              (8) 

we have  

, .k
m n sσ ≤                             (9) 

Since the constraints are generated independently, the assignment pair ,i jt t  
satisfying all the constraints in random instance I is 

( ) ( )

( )

( )

, ,
1

, ,
1

i=1

2

1

1, 1
1

1

1

11 .

t
kl l

i
i j i m n i m nk

i

t tl
l l
i S n i S n

i
t tl

kl l
i i i

t
tl l

kil
i

i i

p dP t t p p
d

p p

p p p s

pp s
p

σ σ

σ σ

=

=

=

 −
= + − − 

 ≤ + − 

 ≤ + − 

 −
≤ + 

 

∏

∏

∏

∏

            (10) 

Let mA  be the set of assignment pairs whose similarity number is m, mA  be 
the cardinality of mA , then we have 

( ) 2 1 11 1
n m m

n mn n
m

n n
A d d d

m m d d

−
−      = − = −      

      
.          (11) 

Thus by (10) and (11), the second order moment of the number of solutions 
of the random instance of d-p-RB model is 

( ) ( )

( )

( ) ( ) ( )

2

0

2
2

0 1

2

0 1

2

0 1

,

11 11 1

11 1= 1 1

,

n

m i j
m

tn m m tln
n kil

i
m i i

t
n m m ln l

ki

m i i

s

E N A P t t

n pd p s
m d d p

n pE N s
m d d p

E N B s W s

=

−

= =

−

= =

≤ ≤

=

 −    ≤ − +     
      

 −    − +     
      

=

∑

∑ ∏

∑ ∏

∑

       (12) 

where 

( ) ( ) 1 1 1
n ns ns

nB s ns d d

−
   = −   
   

                    (13) 

( )
1

11

t
l l

ki

i i

pW s s
p=

 −
= + 

 
∏ ,                     (14) 

i.e., 

( )
( ) ( ) ( )

2

2
0 1s

E N
B s W s

E N ≤ ≤

≤ ∑ .                     (15) 
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Considering that 0 1≤ ≤s , in order to evaluate the upper bound of the above 
Inequality (15), we divide the interval [0,1] into three parts: [ ]10, s , [ ]1 2,s s , 

[ ]2 ,1s , where 1
1
β=s

n
, 2 1

1

1
γ +
−

=
k

s
n

, here β and γ satisfy { }1 min 1,
1

γ β α+
< <

−k
. 

1) For [ ]10,∈s s , let 1
1
β=s

n
, where { }1 min 1,

1
γ β α+

< <
−k

, recalling that  

ln=t rn d , ,
γα ∈  

nd n n , and { }1 2min , , ,=  lp p p p  we have 

( )

( )

ln

1

ln

1

1
1

11

1exp ln ln 1

1exp ln

1
exp ln .γ β

=

+ −

 −
= + 

 

 −
≤ + 
 

  −
≤ +  

  
 −

≤ ⋅ ⋅ 
 

− 
≤  

 

∏
rn d

l l
ki

i i

rn d
k

k

k

k

p
W s s

p

p s
p

prn d s
p

prn d s
p

r p
n n

p

                  (16) 

Since 1 1
1

γ γβ + +
> >

−k k
, 1 0γ β+ − <k , we get 

( )lim 1
→∞

=
n

W s .                           (17) 

Then it is not hard to obtain that 

( ) ( ) ( ) ( )
1 10 0 0 1

1
≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ =∑ ∑ ∑
s s s s s

B s W s B s B s .               (18) 

2) For [ ]1 2,∈s s s , let 2 1
1

1
γ +
−

=
k

s
n

, ( ) ( ) ( )ln 1 ln 1= − − − −f s s s s s , by the 

Stirling’s formula 12! 2π e
e

ε =  
 

n
nnn n , where 1ε < , it’s not hard to see 

( )e 
< 

 
nh sn

ns
.                         (19) 

Since 

( ) ( ) ( )
ln

1 1 1 1 1
−  −   ≤ − +    

     

rn dn ns ns
kpnB s W s sns d d p

          (20) 

we get 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) 1

1 1ln ln 1 ln ln ln 1

1
ln ln

11ln ln 1 ln ln .γα −

 − ≤ + − − − + +  
   

− 
≤ − + ⋅ ⋅ 

 
− −

≤ − − − − + ⋅ ⋅ ⋅ 
 

k

k

k

r pB s W s nf s n ns ns d n d s
d l p

r p
n f s s d d s

lp

r psns s s n n n s
s lp

 (21) 
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For [ ]1 2,∈s s s , we have 

( ) ( ) ( )

( )

1

1

1

1

1
ln ln 1 ln ln

1 1
= ln

ln

1
ln .

ln

1

1

γ

γ

β

β α

β α

β α

−

+

−

−

≤ + − + ⋅ ⋅ ⋅

− + + ⋅

≤ − +

  −  
  
   

− 
 
 
  

    

k

k

r
B s W s ns n n n n

lp
n

r
ns n

n lp n

n n o
n

p

p
      (22) 

Since { }min 1,β α< , we have 

( ) ( )lim ln
→∞

= −∞
n

B s W s ,                     (23) 

hence 

( ) ( ) ( ) ( )

( )

1 2

1

1

1 1
ln

1exp ln
ln

0 .
β

β

β α

β α

−

≤ ≤

−

  − + +  
  

≤

   ≤ − +   
   

= → →∞

∑
s s s

n o
n

B s W s nB s W s

n n n o
n

n n

         (24) 

Thus, for arbitrary small ε, there exists an integer 1 0>N , such that 

( ) ( )
1 2 2

ε
≤ ≤

<∑
s s s

B s W s .                     (25) 

3) For [ ]2 ,1∈s s  we have 

( ) ( ) ( )
ln

1

11 1 1 1
−

=

 −   = − +    
     

∏
rn d

n ns ns l l
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i i

pnB s W s sns d d p
       (26) 

Then 

( ) ( ) ( )

( )

1

1

1
ln ln ln ln 1

1
ln ln 1 .

=

=

 −
≤ − + + 

 
   −

= + − + +        

∑

∑

l
ki

i i

l
ki

i i

prB s W s nf s ns d n d s
l p

prn f s d s s
l p

      (27) 

Let ( )
1

1
ln 1

=

 −
= + − 

 
∑

l
ki

i i

prg s s s
l p

, differentiating ( )g s  with respect to s, 

we get 

( ) ( )
( )

1

1

1
1

1

−

=

−
′ = −

+ −
∑

kl
i

k
i i i

k p srg s
l p p s

,                   (28) 

and then 

( )
( ) ( ) ( )

( )

2

2
1

1 1 1

1

−

=

 − − + − ′′ =
 + − 

∑
k kl i i i

ki
i i

k p s k p p srg s
l p p s

.        (29) 

By the condition 1k
p

≥ , we have ( ) 0g s′′ ≥ , which implies that ( )g s  is con-
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vex for [ ]0,1s∈ . Note that ( )0 0g =  and ( )
1

1 ln 1 0
l

i
i

rg p
l =

= − − <∑  for  

1
ln

l

m i
i

r r l p
=

< = − ∑ , therefore we get ( ) 0g s <  for [ ]2 ,1s s∈ . Let  

[ ] ( )
2 ,1max s s g s M∈ = − , where 0M >  is a constant. 

For ( ) ( ) ( )ln 1 ln 1f s s s s s= − − − − , similarly we have 

( ) ( )ln ln 1f s s s′ = − + −                      (30) 

( ) ( )
1 0

1
f s

s s
′′ = − <

−
.                     (31) 

So ( )f s  is concave and has the maximum value ln 2  at 1
2

s = . Thus we 

have  

( ) ( ) ( ) ( ) ( )ln ln ln 2 lnB s W s n f s d g s n M d≤ + ⋅ ≤ −   .      (32) 

So we get 

( ) ( ) ( ) ( ) ( )
2

1

1
exp ln 2 ln 2n Mn

s s
B s W s nB s W s n n M d n α− +

≤ ≤

≤ ≤ − ≤∑ ,   (33) 

hence  

( ) ( )
2 1

lim 0
n s s

B s W s
→∞ ≤ ≤

=∑ ,                     (34) 

i.e., for [ ]2 ,1s s∈ , there exists an integer 2 0N > , such that 

( ) ( )
2 1 2s s

B s W s ε
≤ ≤

<∑ .                    (35) 

Summarizing the above, from (18), (25), (35), letting { }1 2max ,N N N= , we 
obtain 

( ) ( )
0 1

1
s

B s W s ε
≤ ≤

< +∑ .                     (36) 

Thus we have 

( )
( )

2

2 1+
E N

E N
ε≤ ,                         (37) 

then by the Cauchy inequality ( ) ( )
( )
2

2
Pr

E N
sat

E N
≥ , we have 

( )1 Pr 1
1

sat
ε
≤ ≤

+
,                       (38) 

then we get 

( )lim Pr 1
n

sat
→∞

= .                       （39） 

Thus the theorem is proved. 
So far we have demonstrated the satisfiability phase transition in theory. From 

the proof of the theorem, it can be seen that when the control parameter r is less 
than the transition point mr , the probability of a CSP instance being satisfied 
tends to 1, while the control parameter r is greater than the transition point mr , 
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the probability tends to 0. Thus there exists a sharp threshold in the CSP in-
stances generated by d-p-RB model. 

5. Conclusion 

In this paper, we propose a new CSP model d-p-RB. Compared with RB model, 
we diversify the constraint tightness p and broaden the domain size d. By the 
method of second moment, we proved that there indeed exist satisfiability phase 
transition phenomenon and the transition point can also be located exactly. 
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