Integral Φ_0-Stability of Impulsive Differential Equations

Anju Sood¹, Sanjay K. Srivastava²

¹Applied Sciences Department (Research Scholar-1113002), Punjab Technical University, Kapurthala, India
²Applied Sciences Department (Mathematics), Beant College of Engineering and Technology, Gurdaspur, India
Email: anjusood36@yahoo.com

Received 24 September 2015; accepted 27 October 2015; published 30 October 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, the notions of integral Φ_0-stability of ordinary impulsive differential equations are introduced. The definition of integral Φ_0-stability depends significantly on the fixed time impulses. Sufficient conditions for integral Φ_0-stability are obtained by using comparison principle and piecewise continuous cone valued Lyapunov functions. A new comparison lemma, connecting the solutions of given impulsive differential system to the solution of a vector valued impulsive differential system is also established.

Keywords

Integral Φ_0-Stability, Cone Valued Lyapunov Functions, Impulsive Differential Equations, Fixed Time Impulses

1. Introduction

Impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biological systems, industrial robotics, optimal control, bio-technology and so forth. In view of the vast applications, the fundamental and qualitative properties i.e. stability, boundedness etc. of such equations are studied extensively in past decades. Several types of stability have been defined and established in literature by academicians for impulsive ordinary differential equations. Various techniques such as scalar valued piecewise continuous Lyapunov functions, vector valued piecewise continuous Lyapunov functions, Rajumikhin method, comparison principle etc. have been employed to establish stability results.

To the best of our knowledge, the concept of integral stability and Φ-stability were introduced for ordinary differential equations by Lakshmikantham in 1969 [1] and by Akpan in 1992 [2] respectively. Later, these sta-
bilities were developed in [3] and [4] by Akpan, Soliman and Abdalla but for ordinary differential equations. In 2010, Integral stability was established for impulsive functional differential equations by Hristova. Motivated by these works, in this paper, we introduce and establish integral ϕ_0-stability for impulsive ordinary differential equations:

$$
x'(t,x), \quad t \neq t_i \\
\Delta x = I_i(x), \quad t = t_i \\
x(t_0) = x_0
$$

(1)

where, $i \in \mathbb{N}$, $t \in R^+$, $I_i(x) = x(t_i^+) - x(t_i^-)$, $x \in R^n$, $f : R^+ \times R^n \rightarrow R^n$, $0 = t_0 < t_1 < t_2 < t_3 < \cdots$ and $I_i : R^n \rightarrow R^n$ are a sequence of instantaneous impulse operators and have been used to depict abrupt changes such as shocks, harvesting, natural disasters etc. and K is a cone defined in Section 2.

The paper is organized as follows:

In Section 2, some preliminaries notes and definitions are given. In Section 3, a new comparison lemma, connecting the solutions of given impulsive ordinary differential system to the solution of a vector valued impulsive differential system is worked out. This lemma plays an important role in establishing the main results of the paper. Sufficient conditions for integral ϕ_0-stability are obtained by employing comparison principle and piecewise continuous cone valued Lyapunov functions.

2. Preliminaries

Let R^n denote the n-dimensional Euclidean space with any convenient norm $\| \|$ and the scalar product $(x,y) \leq \| x \| \| y \|$, $R^+ = [0, \infty)$, $J = [t_0, \infty)$, $R = (-\infty, \infty)$.

For any $x = (x_1, x_2, \cdots, x_n) \in R^n$, $y = (y_1, y_2, \cdots, y_n) \in R^n$, we will write $x \leq y$ iff $x_i \leq y_i$ for all $i = 1, 2, 3, \cdots$

Let $x(t) = x(t; t_0, x_0)$ be the solution of system (1), having discontinuities of the first type (left continuous) at the moments when they meet the hyper planes $t = t_i$.

Together with system (1), let us consider, its perturbed IDS:

$$
x'(t,x) + f^*(t,x), \quad t \neq t_i \\
\Delta x = I_i^*(x) + I_i^*(x), \quad t = t_i \\
x(t_0) = x_0
$$

(2)

where, $f^*(t,x) : R^+ \times R^n \rightarrow R^n$, $I_i^*(x) : R^n \rightarrow R^n$.

Let $f(t,0) = f^*(t,0) = 0$, $I_i(0) = I_i^*(0) = 0$ ($i \in \mathbb{N}$) so that the trivial solution of (1) and (2) exists.

Let us define the following:

Definition 1. A proper subset K of R^n is called a cone if (i) $0 < \lambda \in \mathbb{R}$, $\lambda \geq 0$ (ii) $K + K \subseteq K$ (iii) $K = \overline{K}$ (iv) $K^0 \neq \emptyset$ (v) $K \cap \{-K\} = \{0\}$, where K^0 and \overline{K} are interior and closure of K respectively. ∂K denotes the boundary of K.

Definition 2. The set $K^* = \{ \phi \in R^n : (\phi, x) \geq 0 \forall x \in K \}$ is called the adjoint cone if it satisfies the properties (i)-(v) of definition 1.

The set $x \in \partial K$ iff $(\phi, x) = 0$ for some $\phi \in K^0$, $K_0 = K - \{0\}$.

Definition 3. A function $g : D \rightarrow R^n$, $D \subset R^+ \times R^n$ is said to be quasi monotone relative to the cone K if for each $t \in R^+$, $u, v \in D$ and $v - u \in \partial K$ imply that there exists $\phi \in K^0$ such that $(\phi, v - u) = 0$ and $(\phi, g(t,v) - g(t,u)) \geq 0$.

Consider the following sets:

$$
\mathcal{K} = \{ a \in C[0, R^+]) : a(0) = 0, a(r) \mbox{ is strictly increasing in } r \}$$
Definition 4. A function $V : R^* \times R^n \to K$ is said to belong to class L if:

1. $V(t, x)$ is a continuous function in $G_i = (t_{i-}, t_i), \forall u \in S(\rho, \phi_0)$;
2. $V(t, x)$ is Lipschitz continuous relative to cone K, in its second argument;
3. For each $i \in N$, $\lim_{t \to t_i} V(t, x) = V(t_i, 0, x) = V(t_i, x)$ and $\lim_{t \to t_i} V(t, x)$ exist.

And for $t \neq t_i : k = 1, 2, 3, \cdots$ we define derivative of the function $V(t, x)$ along the trajectory of the system (1) by

$$D^+ V(t, x) = \limsup_{h \to 0} \frac{1}{h} [V(t + h, x + hf(t, x)) - V(t, x)].$$

Now referring [5], let us define the following:

Definition 5. Let $\phi_0 \in K_0^*$. The function $V(t, x) \in L$ is said to be ϕ_0-weakly decrescent, if there exists a $\delta > 0$ and a function $\alpha \in L$ such that the inequality $(\phi_0, x) < \delta$ implies that $(\phi_0, V(t, x)) < \alpha(t, (\phi_0, x))$.

Definition 6. Let $\phi_0 \in K_0^*$. The function $V(t, x) \in L$ is said to be ϕ_0-strongly decrescent, if there exists a $\delta > 0$ and a function $\alpha \in L$ such that the inequality $(\phi_0, x) < \delta$ implies that $(\phi_0, V(t, x)) < \alpha((\phi_0, x))$.

Throughout in the paper it was assumed that $\phi_0 \neq 0$.

Let us consider the following comparison impulsive differential systems (referring [3] for Ordinary differential systems)

$$u' = g_1(t, u) \quad t \neq t_i$$
$$\Delta u = \xi_i(u(t_i)) \quad t = t_i$$
$$u(t_0) = u_0$$

and

$$w' = g_2(t, w) \quad t \neq t_i$$
$$\Delta w = \eta_i(w(t_i)) \quad t = t_i$$
$$w(t_0) = w_0$$

along with its perturbed system

$$w' = g_2(t, w) + p(t) \quad t \neq t_i$$
$$\Delta w = \eta_i(w(t_i)) + \gamma_i(t_i) \quad t = t_i$$
$$w(t_0) = w_0$$

where $g_1 \in PC[R^* \times K \to R^n]$ is quasi monotone non decreasing in its second argument and $\xi_i : K \to K$ is quasi monotone non decreasing satisfying $g_1(t, 0) = 0$, $\xi_i(0) = 0$, $g_2 \in PC[R^* \times K \to R^n]$, $\eta_i : K \to K$, $p : R^* \to R^n$, $\gamma_i : R^* \to K$, $g_2(t, 0) = \eta_i(0) = 0$, $p(t)$ and γ_i are to be chosen later such that $q(0) = \gamma_i(0) = 0$.

Definition 7. The zero solution of (1) is said to be ϕ_0-stable, if for every $\alpha > 0$ and for any $t_0 \in J$ there exists a positive function $\beta = \beta(t_0, \alpha) \in L$, which is continuous in t_0 for each α such that the inequality $(\phi_0, x_0) < \beta$ implies that $(\phi_0, r(t)) < \alpha$, $t \geq t_0$ where $\phi_0 \in K_0^*$ and $r(t)$ is the maximal solution of (1) relative to the cone K.

A. Sood, S. K. Srivastava
Definition 8. The zero solution of (1) is said to be integrally stable, if for every $\alpha \geq 0$ and for any $t_0 \in J$ there exists a positive function $\beta = \beta(t_0, \alpha) \in \mathcal{K}$, which is continuous in t_0 for each α such that for any solution $x'(t; t_0, x_0)$ of perturbed system (2), the inequality $\|x\| < \beta$ holds provided that $\|x_0\| \leq \alpha$ and for every $T > 0$, the perturbations $f'(t, x)$ and $I'_i(x)$, $i = 1, 2, 3, \cdots$ of RHS of (2) satisfy

$$\int_{t_0}^{t_0 + T} \sup_{s \in [t, s]} \|f'(s, x')\| ds + \sum_{k=0}^{\infty} \sup_{x \in K_{t_0}} \|I'_i(x')\| \leq \alpha.$$

Definition 9. The trivial solution of (1) is said to be integrally ϕ_0-stable, if for every $\alpha \geq 0$ and for any $t_0 \in J$ there exists a positive function $\beta = \beta(t_0, \alpha) \in \mathcal{K}$, which is continuous in t_0 for each α such that for any solution $x'(t; t_0, x_0)$ of perturbed system (2) and for $\phi_0 \in K_{t_0}$, the inequality $(\phi_0, x') < \beta$ holds provided that

$$\|\phi_0, x_0\| \leq \alpha$$

and, for every $T > 0$, the perturbations $f'(t, x)$ and $I'_i(x)$, $i = 1, 2, 3, \cdots$ of RHS of (2) satisfy

$$\int_{t_0}^{t_0 + T} \sup_{s \in [t, s]} \|f'(s, x')\| ds + \sum_{k=0}^{\infty} \sup_{x \in K_{t_0}} \|I'_i(x')\| \leq \alpha.$$

3. Main Results

Lemma 1: Consider the comparison system (3) and assume that

(i) $g_1 \in PC \left(R^1 \times K \to R^1 \right)$ where g_1 is quasi monotone non decreasing in its second argument;

(ii) $V \in \mathcal{L}$ such that $V \in PC \left(\mathcal{S}(\rho, \phi_0) \times K \right)$ and satisfies

$$\left(\phi_0, D^+ V(t, x) \right) \leq \left(\phi_0, g_1 \left(t, V(t, x) \right) \right)$$

for $t \neq t_0 : k = 1, 2, \cdots$

(iii) $\xi \in \mathcal{K}$ such that $(\phi_0, V(t_0 + 0, x + I_k(x))) \leq \xi_k(\left(\phi_0, V(t, x) \right))$ for $t = t_0 : k = 1, 2, 3, \cdots$

Let $r(t : t_0, u_0)$ be the maximal solution of (3) existing on J. Then for any solution $x(t, t_0, x_0)$ of (1) existing on J, we have $(\phi_0, V(t, x(t))) \leq (\phi_0, r(t : t_0, u_0))$ provided that $(\phi_0, V(t_0 + 0, x_0)) \leq (\phi_0, u_0)$.

Proof: Let $x(t : t_0, x_0)$ be the solution of (1) existing for $t \geq t_0$ such that $(\phi_0, V(t_0 + 0, x_0)) \leq (\phi_0, u_0)$.

Define $m(t) = (\phi_0, V(t, x(t)))$ for $t \neq t_k$ such that $m(t_0) = (\phi_0, V(t_0 + 0, x_0)) \leq (\phi_0, u_0)$. Then for small $h > 0$, we have

$$m(t + h) - m(t)$$

$$= (\phi_0, V(t + h, x(t + h))) - (\phi_0, V(t, x(t))) = (\phi_0, V(t + h, x(t + h)) - V(t, x(t)))$$

$$= (\phi_0, V(t + h, x(t + h)) - V(t + h, x(t) + h f(t, x(t)))) + V(t + h, x(t) + h f(t, x(t))) - V(t, x(t))$$

$$= (\phi_0, V(t + h, x(t + h)) - V(t + h, x(t) + h f(t, x(t)) + h f(t, x(t)))) + V(t + h, x(t) + h f(t, x(t))) - V(t, x(t))$$

$$+ (\phi_0, V(t + h, x(t) + h f(t, x(t))) - V(t, x(t)))$$

$$\leq \|\phi_0\| \left| V(t + h, x(t + h)) - V(t + h, x(t) + h f(t, x(t))) \right| + h \left(\phi_0, \frac{V(t + h, x(t) + h f(t, x(t))) - V(t, x(t))}{h} \right)$$

$$\leq M \|\phi_0\| \left| V(t + h, x(t) - h f(t, x(t))) \right| + h \left(\phi_0, \frac{V(t + h, x(t) + h f(t, x(t))) - V(t, x(t))}{h} \right),$$

where M is the Lipschitz constant in (t_{k-1}, t_k).
Therefore we have
\[
\frac{m(t+h)-m(t)}{h} \leq [\phi_0] M \left(\frac{x(t+h)-x(t)-h f(t,x(t))}{h} + \left(\phi_1, \left[\frac{V(t+h,x(t)+h f(t,x(t))) - V(t,x(t))}{h} \right] \right) \right)
\]
\[
\frac{m(t+h)-m(t)}{h} \leq [\phi_0] M \left(\frac{x(t+h)-x(t)-f(t,x(t))}{h} + \left(\phi_1, \left[\frac{V(t+h,x(t)+h f(t,x(t))) - V(t,x(t))}{h} \right] \right) \right)
\]
\[
\Rightarrow D^m m(t) \leq \left(\phi_0, D_{(t)}^0 V(t,x(t)) \right) \leq \left(\phi_0, g_1(t,V(t,x)) \right)
\]
Also \(m(t_0^+) \leq \left(\phi_0, u_0 \right) \) and \(m(t_0^+) = \left(\phi_0, V(t_0^+, x(t_0^+)) \right) = \left(\phi_0, V(t_0^+, x(t_0^+)) + I(x(t_0^+)) \right) \leq \left(\phi_0, \tilde{g}_k(V(t_0^+, x)) \right).

Then by theorem (1.4.3) in [6], we observe the desired inequality
\[
\left(\phi_0, V(t,x(t)) \right) \leq \left(\phi_0, r(t:t_0,u_0) \right) \quad \text{for all} \quad t \geq t_0.
\]

Theorem 1: Let us assume the following:

1. Let \(f \in PC \left[R^r \times R^s \rightarrow R^s \right] \) and \(I_k \in C \left[R^s \rightarrow R^s \right] : k = 1, 2, 3, \cdots \)
2. There exist \(V_i(t,x) \in L, V_i(t,0) = 0 \) such that
 (i) \(V_i \) is \(\phi_0 \)-weakly decrescent
 (ii) For \(t \neq t_k : k = 1, 2, 3, \cdots \) the inequality
 \[
 \left(\phi_0, D_{(t)}^0 V_i(t,x) \right) \leq \left(\phi_0, g_1(t,V_i(t,x)) \right) \quad \text{holds for all} \quad (t,x) \in S(\rho, \phi_0), \ t \neq t_k
 \]
where \(g_1 \) monotone non decreasing in its second argument
 (iii) \(\left(\phi_0, V_i(t,x+I_k(x)) \right) \leq \left(\phi_0, \tilde{g}_k(V_i(t,x)) \right) \) for all \((t,x) \in S(\rho, \phi_0), \ t = t_k : k = 1, 2, 3, \cdots \)
where \(\tilde{g}_k \) is monotone non decreasing, satisfying \(\tilde{g}_k(x) \geq x \)

3. For any number \(\mu > 0 \) there exists \(V_{2,\mu}^1(t,x) \in L, V_{2,\mu}^1(t,0) = 0 \) such that
 (iv) \(b \left((\phi_0, x) \right) \leq \left(\phi_0, V_{2,\mu}^1(t,x) \right) \leq \left(\phi_0, a(\phi_0, x) \right) \) \((t,x) \in S(\rho, \phi_0) \cap S^C(\mu, \phi_0) \) where \(a, b \in K \)

(v) For \(t \neq t_k : k = 1, 2, 3, \cdots \) the inequality
 \[
 \left(\phi_0, D_{(t)}^0 V_i(t,x) + D_{(t)}^{(1)} V_{2,\mu}^1(t,x) \right) \leq \left(\phi_0, g_2 \left(t, V_i(t,x) + V_{2,\mu}^1(t,x) \right) \right)
 \]
holds for any
\[
(t,x) \in S(\rho, \phi_0) \cap S^C(\mu, \phi_0)
\]
where \(g_2 \in PC \left[R^r \times K \rightarrow R^r \right] \) is monotone non decreasing in its second argument.

(vi) \(\left(\phi_0, V_i(t^+_k, x + I_k(x)) + V_{2,\mu}^1(t^+_k, x + I_k(x)) \right) \leq \left(\phi_0, \eta_k \left(V_i(t_k, x(t_k)) + V_{2,\mu}^1(t_k, x(t_k)) \right) \right) \) for
\[
(t_k, x) \in S(\rho, \phi_0) \cap S^C(\mu, \phi_0), k = 1, 2, 3, \cdots
\]
where \(\eta_k \in K, \ \eta_k(x) \geq x \)

4. The system (3) and (4) have solutions, for any initial point \(t_0 \geq 0 \).

5. For any initial point \((t_0, x_0) \in R^r \times R^r \), the system (1) has solution.

Let the zero solution of (3) be \(\phi_0 \)-stable, and scalar IDE (4) is integrally \(\phi_0 \)-stable, then the system (1) will be integrally \(\phi_0 \)-stable.

Proof: Since \(V_i(t,x) \in L \) is \(\phi_0 \)-weakly decrescent, therefore there exists a \(\rho_1 > 0 \ (\rho_1 < \rho) \) and a function \(\psi_i \in C \mathcal{K} \) such that the inequality \(\left(\phi_0, x \right) < \rho_1 \) implies that
\[
\left(\phi_0, V_i(t,x) \right) < \psi_i(t, (\phi_0, x))
\]
where \(\phi_0 \in K_0^+ \).
Let $t_0 \geq 0$ be a fixed time. Choose a number $\alpha > 0$ such that $\alpha < \rho_1$.

As $V_1(t, x), V_2^{(\mu)}(t, x) \in \mathcal{L}^r$, there exist Lipschitz constants M_1 and M_2 of $V_1(t, x)$ and $V_2^{(\mu)}(t, x)$ respectively. Let $(M_1 + M_2) \rho_1 = \alpha$.

As the zero solution of (3) is ϕ_0-stable, therefore the positive function $\delta_1 = \delta_1(t_0, \alpha_t)$ for each α_t such that the inequality $(\phi_0, u_0) < \delta_1$ implies that

$$
\left(\phi_0, r(t : t_0, u_0)\right) < \frac{\alpha_1}{2}, \quad t \geq t_0
$$

where $r(t : t_0, u_0)$ is the maximal solution of (3)

As $\psi_1 \in C\mathcal{K}$, there exists $\delta_2 = \delta_2(\delta_1) > 0$ and hence $\delta_2 = \delta_2(t_0, \alpha_t)$ such that

$$(\phi_0, u) < \delta_2 \Rightarrow \psi_1(t, (\phi_0, u)) < \delta_1.
$$

Again in view of the fact that the perturbations in (5), depend only on t and system (4) is ϕ_0-integrally stable, there exists a function $\beta_0 = \beta_0(t_0, \alpha_t) \in \mathcal{K}$, continuous in t_0 for each α_t (take in particular $\alpha_t = b(\alpha_t)$) such that for every solution $w^*(t : t_0, w_0)$ of perturbed system (5), the inequality

$$
(\phi_0, w^*(t : t_0, w_0)) < \beta
$$

holds provided that $(\phi_0, w_0) \leq \alpha_t$ and for every $T > 0$, the perturbation terms $p(t)$ and γ_k satisfy

$$
\int_0^T p(s) ds + \sum_{k_i < \alpha_t < k_i + \gamma} \gamma_k(t_i) \leq \alpha_t.
$$

Since $b \in \mathcal{K}$, $\lim_{s \to \infty} b(s) = \infty$ let us choose $\beta_0 = \beta_0(t_0, \alpha_t) > 0$ such that $b(\beta_0) \geq \beta_0$ and $\beta > \psi_2(\alpha)$ where $\psi_2 \in \mathcal{K}$ is a function satisfying $\psi_2(\alpha) < \rho_1$.

Select $\delta_3 = \delta_3(\alpha_t, \beta_0)$, $\alpha_t < \delta_3 < \min\left\{\delta_2, \rho_1\right\}$ such that the inequalities

$$
a(\delta_3) < \frac{\alpha_1}{2} \quad \text{and} \quad \psi_2(\delta_3) < \beta
$$

hold

Let $x^*(t; t_0, x_0)$ be the solution of (2). Now we will prove that if the inequalities (6) and (7) are satisfied then

$$
(\phi_0, x^*(t : t_0, x_0)) < \beta, \quad t \geq t_0
$$

If possible let this be false. Therefore there exists a point $t' > t_0$ such that

$$
(\phi_0, x^*(t')) \geq \beta \quad \text{and} \quad (\phi_0, x^*(t)) < \beta, \quad t \in [t_0, t')
$$

Case 1: Let $t' \neq t_k$ for any $k = 1, 2, 3, \cdots$. Then the solution $x^*(t; t_0, x_0)$ is continuous at t'. Therefore

$$
(\phi_0, x^*(t')) = \beta
$$

In this case first we note that $(\phi_0, x^*(t')) > \delta_3$.

For if $\phi_0, x^*(t') \leq \delta_3$, then by the choice of δ_3 we get $\psi_2(\phi_0, x^*(t')) < \beta$ which is a contradiction to (15).

Now let us consider the interval $[t_0, t')$

Subcase 1.1: Let there exists $t_0^* \in (t_0, t')$, $t_0^* \neq t_k$ such that $\delta_3 = (\phi_0, x^*(t_0^*))$ and

$$
(t, x(t)) \in S(\beta, \phi_0) \cap \mathcal{S}^c(\rho, \phi_0) : t \in [t_0^*, t')
$$

If $r_1(t : t_0^*, u_0)$ is the maximal solution of (3) with $u_0 = V_1(t_0^*, x_0(t_0^*))$, then in view of the assumptions (ii) and (iii) of theorem, using lemma 1, we obtain

$$
(\phi_0, V_1(t, x(t : t_0^*, x_0))) \leq (\phi_0, r_1(t : t_0^*, u_0)) : t \in [t_0^*, t')
$$
where \(x(t; t_0, x_0) \) is a solution of (1), starting at \(t_0 \).

As \(\delta_3 = \left(\phi_0, x' \left(t_0' \right) \right) \) is chosen therefore we have \(\left(\phi_0, x' \left(t_0' \right) \right) = \delta_3 < \delta_2 \) and \(\left(\phi_0, u_0 \right) = \left(\phi_0, V_1 \left(t_0', x' \left(t_0' \right) \right) \right) \) by using (8) and then (10), we get

\[
(\phi_0, u_0) = \left(\phi_0, V_1 \left(t_0', x' \left(t_0' \right) \right) \right) \leq \psi_1 \left(t_0', \left(\phi_0, x' \left(t_0' \right) \right) \right) < \delta_i
\]

Now \(\left(\phi_0, V_1 \left(t, x \left(t; t_0, x_0 \right) \right) \right) \leq \left(\phi_0, r_1 \left(t; t_0, u_0 \right) \right) ; \) by virtue of (9) gives:

\[
\left(\phi_0, V_1 \left(t, x \left(t; t_0, x_0 \right) \right) \right) \leq \left(\phi_0, r_1 \left(t; t_0, u_0 \right) \right) < \frac{\alpha^2}{2} \quad \text{for } t \in \left[t_0', t' \right]
\]

Now from inequality (13) and condition (iv) of theorem, we get

\[
\left(\phi_0, V_2^{(a)} \left(t_0', x' \left(t_0' \right) \right) \right) \leq a \left(\phi_0, x' \left(t_0' \right) \right) < \frac{\alpha^2}{2}
\]

Let us define the function \(V : R^+ \times R^+ \to K, \; V \in L \) by \(V(t, x) = V_1(t, x) + V_2^{(a)}(t, x) \)

Now, for \(t \in \left[t_0', t' \right] \) and \(t \neq t_0 \), \((t, x) \in S(\beta, \phi_0) \cap S^C(\alpha, \phi_0) \), in view of (v) of theorem and lipschitz condition on \(V_1 \) and \(V_2^{(a)} \), we have

\[
\left(\phi_0, D_2 \left(t \right) V \left(t, x \right) \right) = \left(\phi_0, D_2 \left(t \right) V_1 \left(t, x \right) + D_2 \left(t \right) V_2^{(a)} \left(t, x \right) \right)
\]

\[
= \left(\phi_0, \limsup_{k \to 0} \frac{1}{h} \left[V_1 \left(t + h, x + h \left[f \left(t, x \right) + f' \left(t, x \right) \right] \right) - V_1 \left(t, x \right) \right] \right) + \left(\phi_0, \limsup_{k \to 0} \frac{1}{k} \left[V_2^{(a)} \left(t + k, x + k \left[f \left(t, x \right) + f' \left(t, x \right) \right] \right) - V_2^{(a)} \left(t, x \right) \right] \right)
\]

\[
= \left(\phi_0, \limsup_{k \to 0} \frac{1}{h} \left[V_1 \left(t + h, x + h \left[f \left(t, x \right) + f' \left(t, x \right) \right] \right) - V_1 \left(t, x + h f \left(t, x \right) \right) \right] \right) + \left(\phi_0, \limsup_{k \to 0} \frac{1}{k} \left[V_2^{(a)} \left(t + k, x + k \left[f \left(t, x \right) + f' \left(t, x \right) \right] \right) - V_2^{(a)} \left(t, x \right) \right] \right)
\]

\[
= \left(\phi_0, \limsup_{k \to 0} \frac{1}{h} \left[V_1 \left(t + h, x + h \left[f \left(t, x \right) + f' \left(t, x \right) \right] \right) - V_1 \left(t, x + h f \left(t, x \right) \right) \right] \right) + \left(\phi_0, \limsup_{k \to 0} \frac{1}{k} \left[V_2^{(a)} \left(t + k, x + k \left[f \left(t, x \right) + f' \left(t, x \right) \right] \right) - V_2^{(a)} \left(t, x \right) \right] \right)
\]

\[
\leq \left\| M_1 \right\| \left\| M_2 \right\| \sup_{x \in \left[t; T^**, \beta \right]} \left\| f' \left(t, x \right) \right\| + \left\| M_1 \right\| \left\| M_2 \right\| \sup_{x \in \left[t; T^**, \beta \right]} \left\| f' \left(t, x \right) \right\| + \left(\phi_0, D_1 \left(t \right) V_1 \left(t, x \right) \right) + \left(\phi_0, D_2 \left(t \right) V_2^{(a)} \left(t, x \right) \right)
\]

\[
= \left(\phi_0, g_2 \left(t, V \left(t, x \right) \right) \right) + \left\| M_1 + M_2 \right\| \sup_{x \in \left[t; T^**, \beta \right]} \left\| f' \left(t, x \right) \right\| \quad \text{where } T^* = t' - t_0
\]
For the impulsive differential system (5) which is the perturbed system of (4), set the perturbations on RHS of (5) as

$$p(t) = (M_1 + M_2)\|\phi_0\| \sup_{x \in \Omega \cap \left(0, t - \alpha \right]} \|f^* (t, x)\|$$

and

$$\gamma_k (t_k) = (M_1 + M_2)\|\phi_0\| \sup_{x \in \Omega \cap \left(0, t - \alpha \right]} \|I^*_k (x)\|$$

Therefore (19) and (20) can be written as

$$\left(\phi_0, D_{C^a}^* V (t, x)\right) \leq \left(\phi_0, g \left(t, V (t, x)\right)\right) + p(t)$$

and

$$\left(\phi_0, V \left(t_k + 0, I_k (x) + I^*_k (x)\right)\right) \leq \left(\phi_0, \eta \left(V \left(t_k, x(t_k)\right)\right)\right) + \gamma_k (t_k).$$

If we consider the comparison system (5) with maximal solution $r^* \left(t; t^*_0, w^*_0\right)$, through the point $\left(t^*_0, w^*_0\right)$ where $w^*_0 = V \left(t^*_0, x \left(t^*_0\right)\right)$, using (19), (20) and lemma 1, we get

$$\left(\phi_0, V \left(t, x \left(t; t_0, w_0\right)\right)\right) \leq \left(\phi_0, r^* \left(t; t^*_0, w^*_0\right)\right)$$

where H is the interval of existence of maximal solution

$$r^* \left(t; t^*_0, w^*_0\right)$$

Now by using the inequality (7) for $T = t^* - t^*_0$ in the interval $t \in \left[t_0^*, t^*\right]$ and from the choice of α_i,

$$\int_{t_0}^{t^*} p(s) ds + \sum_{k \in \mathbb{N} \cap \left(0, t^*\right]} \gamma_k$$

$$= \|\phi_0\| \left(M_1 + M_2\right) \int_{t_0^*}^{t^*} \sup_{x \in \Omega \cap \left(0, t - \alpha \right]} \|f^* (s, x)\| ds + \|\phi_0\| \left(M_1 + M_2\right) \sum_{k \in \mathbb{N} \cap \left(0, t^*\right]} \sup_{x \in \Omega \cap \left(0, t - \alpha \right]} \|I^*_k (x)\|$$

$$= \|\phi_0\| \left(M_1 + M_2\right) \int_{t_0^*}^{t^*} \sup_{x \in \Omega \cap \left(0, t - \alpha \right]} \|f^* (s, x)\| ds + \sum_{k \in \mathbb{N} \cap \left(0, t^*\right]} \sup_{x \in \Omega \cap \left(0, t - \alpha \right]} \|I^*_k (x)\|$$

Let us choose a point $T^* > t^*$ such that

$$\int_{t_0}^{T^*} p(s) ds + \frac{1}{2} (T^* - t^*) p(T^*) < \alpha_i.$$
Now let us define a continuous function \(p^*(t) : [t_0, \infty) \to \mathbb{R} \) given by

\[
p^*(t) = \begin{cases}
p(t) & : t \in [t_0, t^*] \\
p(t') \frac{(t-T^*)}{t'-T} & : t \in (t', T^*] \\
0 & : t \geq T^* \end{cases}
\]

and the sequence of numbers.

\[
y_k^* = \begin{cases} y_k & : t_k \in (t_0, t^*] \\
0 & : t_k > t^* \end{cases}
\]

We see that if (7) holds then from (22), for every \(T > 0 \)

\[
\int_{t_0}^{t+T} |p^*(s)| ds + \sum_{k: t_k \geq t+T} |y_k^*| < \alpha_i
\]

let \(r^{**}(t : t_0, w_0) \) be the maximal solution of (5), through the point \((t_0, w_0)\) where the perturbations terms are defined by \(p^*(s) \) and \(y_k^* \). Note that here we have \(r^{**}(t : t_0, w_0) = r^*(t : t_0, w_0) ; t \in [t_0, t^*] \).

From inequalities (17) and (18) we see, \((\phi_k, V(t_0, x^*(t_0))) = V_k, V_1(t_0, x^*(t_0)) + V_2^{(\alpha)}(t_0, x^*(t_0)) < \alpha_i \) i.e. \((\phi_0, w_0^*) \leq \alpha_i \)

(24)

and hence from (11), we get

\[(\phi_0, r^{**}(t : t_0, w_0)) < \beta_i \text{ for } t \geq t_0. \]

(25)

Now from the choice of \(\beta_i \), inequalities (21), (25) and condition (iv) of statement of theorem, we get

\[b(\beta) \geq \beta_i > (\phi_k, r^{**}(t : t_0, w_0)) = (\phi_k, r^*(t : t_0, w_0)) \geq (\phi_k, V(t', x^*(t'; t_0, w_0))) \]

\[= (\phi_k, V_1(t', x^*(t'; t_0, w_0))) + V_2^{(\alpha)}(t', x^*(t'; t_0, w_0)) \geq (\phi_k, V_2^{(\alpha)}(t, x^*(t'; t_0, w_0))) \]

\[\geq b((\phi_0, x^*(t'; t_0, w_0))) = b(\beta) \]

which yields \(b(\beta) > b(\beta) \), a contradiction and thereby the inequality (14) is valid for \(t \geq t_0 \).

Subcase 1.2: Let there exist a point \(t_k \in (t_0, t^*) \) for some \(k = 1, 2, 3, \ldots \) such that \(\delta_3 = (\phi_k, x^*(t_k)) \) and \((t, x^*(t)) \in S(\beta, \phi_0) \cap S^C(\rho, \phi_0) ; t \in [t_k, t'). \)

Choose \(\delta_3 \) satisfying \(\delta_3 < \delta_3 < \beta \) with \(\delta_3 = (\phi_k, x^*(t_0, t_0, x_0)) ; t_k \neq t \in (t_0, t') \) Now if we take \(\delta_3 \) in place of \(\delta_3 \) and repeat the proof of subcase 1.1 we arrive at contradiction that assures the validity of (14).

Case 2: If \(t' = t_k \) for some \(k \in N \) then from (15),

\[(\phi_k, x^*(t_k)) \geq \beta \quad \text{and} \quad (\phi_k, x^*(t_k)) < \beta, \ t \in [t_0, t_k) \]

\[(\phi_k, x^*(t_k)) = (\phi_k, x^*(t_k)) \]

Let us select \(\beta = \beta(\beta_k) > 0 \) such that \(b(\beta) \geq \sup_k (\phi_k, \eta_k (r^{**}(t : t_0, w_0))) \)

Now by adopting the procedure as in case 1, we get the inequalities (21) and (25). Then by using these inequalities along with the conditions (iv) and (vi) of the statement of theorem, we have
\begin{align*}
&\quad b(\beta) \geq \sup_{k} \left(\phi_0, \eta_k \left(r^\ast \left(t_k; t_0, w^*_0 \right) \right) \right) \geq \left(\phi_0, \eta_k \left(r^\ast \left(t_k; t_0, w^*_0 \right) \right) \right) \geq \left(\phi_0, \eta_k \left(V \left(t_k, x^\ast \left(t_k \right) \right) \right) \right) \\
&\quad \geq \left(\phi_0, \eta_k \left(V \left(t_k, x^\ast \left(t_k \right) \right) \right) \right) \geq \left(\phi_0, \eta_k \left(V \left(t_k, x^\ast \left(t_k \right) \right) \right) \right) \geq b(\beta)
\end{align*}

and that again is a contradiction. Therefore inequality (14) is valid.

Thus in all the cases, validity of (14) proves that system (1) is integrally ϕ_0-stable.

4. Conclusion

Results in [1] [4] [7] have been exploited and extended to establish the new type of stability i.e. integral ϕ_0-stability for the impulsive differential systems. Sufficient conditions are obtained by employing comparison principle and piecewise continuous cone valued Lyapunov functions.

References

