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ABSTRACT

Although frequently encountered in many practical applications, singular nonlinear optimization has been always rec-
ognized as a difficult problem. In the last decades, classical numerical techniques have been proposed to deal with the
singular problem. However, the issue of numerical instability and high computational complexity has not found a satis-
factory solution so far. In this paper, we consider the singular optimization problem with bounded variables constraint
rather than the common unconstraint model. A novel neural network model was proposed for solving the problem of
singular convex optimization with bounded variables. Under the assumption of rank one defect, the original difficult
problem is transformed into nonsingular constrained optimization problem by enforcing a tensor term. By using the
augmented Lagrangian method and the projection technique, it is proven that the proposed continuous model is conver-
gent to the solution of the singular optimization problem. Numerical simulation further confirmed the effectiveness of
the proposed neural network approach.

Keywords: Neural Networks; Singular Nonlinear Optimization; Stationary Point; Augmented Lagrangian Function;

Convergence; LaSalle' s Invariance Principle Plain

1. Introduction

The nonlinear model with rank one defect is of great
importance for its singular nature. Follwing works of
Schnabel and Dan Feng [1-3], we have made great im-
provement for such problem by applying Tensor methods
by numerical solution [4,5]. For large-scale computational
problems, the computation of the classical numerical
method is still far from satisfactory.

In recent years, neural network approaches were
proposed to deal with classical nonlinear optimization
problems. Xia and Wang [6] presented neural networks
for solving nonlinear convex optimization with bounded
constraints and box constraints, respectively. Xia [7,8],
Xia and Wang [9,10] developed severa neural networks
for solving linear and quadratic convex programming
problems, monotone linear complementary problems,
and a class of monotone variational inequality problems.
Recently, projection neural networks for solving mono-
tone variational inequality problems are developed in
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[11-13] and recurrent neural networks for solving
nonconvex optimization problem have been also studied
[14,15]. It is regrettable that the study of singular non-
linear optimization problems in the neural network me-
thod have not been involved .

Recently, more attention were paid to the singular
optimization problems due to rea applications. For
example, in the problem of singular optimal control,
assume the state equation is depicted as

dx
ZoF(xut
& (x,u,t)

where x is an n-dimensional state vector and u is
an M -dimensional control vector, and the control
piecewise functions satisfy that |uj|£ M, j=12--m.
The cost functional is given as

- t
J ::(x(tf ).t )+_[tOfL(x,u,t)dt
for which the Hamiltonian functionis
H=L(xut)+2 F(xu,t).
According to the maximum’s principle, when the

control variables change in the constrain boundary, the

OJApPPS



286 R.D.GE ET AL.

minimum conditions of the optimal control function H
are derived as

oH . 0°H

M _0% >0
ou o°u
If on a given time interval [t,,t,]<[tyt, |, there
o°H

exists that det( J:O, then this becomes the so-

d%u
caled singular optimal control problem. The optimal
trgjectory corresponding to the segment called singular
arc. The numerical methods for solving such singular
control problem can be referred to [16,17].

Due to the inherent Parallel mechanism and high-
speed of hardware implementations, efforts to tackle
such problems by using neural systems are promising
and creative. Attempt was made for the first time in our
recent paper [18] to solve unconstraint singular optimiza-
tion problem, which turned out to be feasible and effect-
tive. In this paper, we further improve such result to the
case of singular optimization problem with bounded
variables constraint.

This paper is organized as follows. In Section 2, the
nonlinear singular convex optimization problem and its
equivalent formulations are described. In Section 3, a
recurrent neural network model is proposed to solve such
singular nonlinear optimization problems. Global con-
vergence of the proposed neural network is analyzed.
Finaly, in Section 4, several illustrative examples are
presented to evaluate the effectiveness of the proposed
neural network method.

2. Problem Formulation and Neural Design

Let Q={xeR"[I<x<hi. Assume f(x):Q—>R, is
a continuous differentiable convex function. Consider the
following unconstrained convex programming problem,

min  f(x)
st. 1<x<h

@

which can be easily transformed to equivalent non-
negative bounded convex programming problem by
using the such transformationas u=x-1,

min  f(x)

st. 0<x<c.

@

Let X" isthe unique optimal solution to (2). We will
discuss the solution of (2) under the following as-
sumptions.

Assumption 1 f(x) is both strictly convex and four
times continuous differentiable. For optimum point X,
there exists ve R" such that rank(sz(x*)):n—l
and Null (V*f(x'))={v}.

Assumption 2For” x = X", thereexists u'V?f (x)u >0
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for any nonzero ueR". Moreover, sz(x)" and
||V3f (x)" areall uniformly bounded.

Assumption 3 For any ve NuII(VZf(x*)), the
quantity

\vAli (x*)v4 évTVZ(vVZf (x*)v)v> 0.

(The reason for this assumption can be found, for
example, in[4].)

Lenma 1 For any peR" and p'vz0 ,
Ve NuII(VZf(x*)), (V*f(x)+pp") is nonsingular

Proof. It is easy to verify this result, thus its proof is
omitted here for the sake of saving space.

It is seen that when p in Lemma 2.1 take random
values, the condition p'v=0 is satisfied with pro-
bability 1.

Define function F(x) asfollows

F(x)=f(x)+h(x),
where

(x) = 1(X) V1 (x) (),

u(x)=(V2 (x)+ pp’) " p

where p'v#0.

According to the definition of F(x), we have the
following important result,

Lemma 2 For any A1>0, the Hessan matrix
VZF(x*) is positive definite. Moreover, if A is small
enough, "then V?F(x) is positive definite for any
xeR".

Proof. This conclusion can be proved easily according
to the resultsin [4] under Assumption A2. Thus the proof
isomitted here.

Because the Hessian matrix of f(x) is singular at
X" for (2), it is generally difficult to obtain idea con-
vergence results by conventional optimization algorithm
(see [1-4]). In order to overcome this difficulty, alter-
natively we deal with equivalent unconstrained convex
optimization problem as follows,

min  F(x)
st 0<x<c,

©)

for which we can establish the equivalent lemma as fol-
lows,

Lemma3 X isasolutionof (2) if and only if X" is
a solution of (3).

Further consider the difficulty caused by computing
the matrix inverse, we turn optimization question (3) into
the following equivalent constrained optimization pro-
blem.

min  g(xy)=f(x)+Ay'Vf(x)y

4
st. (V*f(x)+pp’)y=p O<x<c )
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Define Lagrange function of (4) asfollows,
L(xy,z)=f(x)+Ay'V?*f(X)y
zZ [(sz (x)+ ppT)y— p}

By Assumptions A2 and Lemma 2, it is easy to know
that the function g(x,y) is strictly convex. And based
on the Karush-Kuhn-Tucker sufficient conditions, the
KKT point (%,¥) of theformula(4) isaunique optimal
solution of the optimization question (4) and there exits
2e R" satisfiesthe following condition:

>0, if x =0,

(VXI:(x,y,z))i <0, if x =g,
=0, if0<x <g,

V,L(xy,2)=0,
V,L(xYy,2)=0,
XeQ= {Xe R"

0< xso}

Equivalently, the point (X%,¥,2) satisfies the fol-
lowing condition,

®)

In order to discuss the constrained programming pro-
blem (4), first, we define a augmented Lagrangian func-
tion of (4) asfollows

L(xy.zk)=f(X)+ 1y V?f(X)y
z' [(sz (x)+ ppT)y— p}

K 2 T 2
+§”(V f(x)+pp")y- pH , XeQ
where k>0 is a penalty parameter and z is an
approximation of the Lagrange multiplier vector. Hence,
the problem (4) can be solved by the stationary point of
the following problem,

0, L%k ®

Then, the condition (5) can be written as
(x=%)"V,L(%9,2,k)>0, xeQ,
V,L(%,2,k)=0, @

V,L(%9.2,k)=0

Now, we introduce the projection function F, as
follows,
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where
0, u <0,
P(u)=<u, ue€[0g], €)]
c, u>c

From the projection conclusion as shown in [19], the
first inequality of (7) can be equivaently represented as

PQ()?—aVXL(f(, 9,2, k))—f(:O,V(x >0.

So the optimal solution of (4) and the stationary point
of (6) meet with the conditions

x=PR, (x-aV,L(xy,2k)),Va >0,
V,L(xy,zk)=0
(V2E()+pp")y=p.

©)

3. Stability Analysis of the Neural Networ k
M odel

By Theorem 8 and Theorem 9 in [20], there exists a
constant k>0, such that if ¢"=(x,y",Z) is an
optimal solution of the problem (6), then (x",y") isan
optimal solution of the problem (4) and

XEQn:/I?ER" L(xY,zk)= f( )

Noticethat L(x,y,z)=L(xY,zKk). By the Lagrange
function defined above, we can describe the neura
network model by the following nonlinear dynamic
system for solving (10). The logical graph is shown in
Figure l.

%: % (X—aVxL(x,y,z))-
(x a(Vf(x)+/1V3f(x)yy+V3f(x)yz

+kV3 £ ( y( V2 (X)+ pp' y p)))—

g\t'=—ﬂVyL(x y,2)
:_,B(Z/WZ (x )y+( f(x)+ ppT)z

+k(V2 (%) + ppT)((sz (x)+pp")y- p))
Ez—ﬂVzL(x, Y, z):—ﬂ((vzf (x)+pp")y- p)
=) 1120
z,=s(w),k=12:-,n

(10)
where
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Figure 1. Logical graph of the proposed neural network model.

f,(x)) ,a>0,5>0

VE (x) =(f,(x), f,(X),+,

V() y= (V21 (X)y, V21, (%) ., VP 1 (%) y)T,

and the activation function s(-) is continuously
differentiable and satisfiesthat s'(-) > 0.

Itiseasy to seethat if ¢ =(x",y",z") isan optimal
solution of the problem (6), then it is a equilibrium point
of network (10). Conversely, if (X,y,z) is a
equilibrium point of network (10), it must be KKT point
of origina problem (4). To analyze the convergence of
the neural network (10), the following lemmas are first
introduced (see [19]).

Lemma 4 Assume that the set Qc R" is a closed
convex set, then the following two inequalities hold,

(P (x)- y’)T(x— P, (X))20, VX eR", yeQ
||PQ (x)- PQ(y’)" <|x-vy], vx,y'eR

where P,:R" — Q is a projection operator defined as
R (7) =min_ 7‘?"-

Lemma 5 For any initial point
(X(to).v(t,) . W(t,))e R , there exists a unique
continuous solution (x(t),v(t) w(t ))e R* for (10).
Moreover, x(t)eQ provided that x(t,)eQ . The
equilibrium point of (10) solves (5).

Proof: By Assumption A1,
ngx—aVXL x¥,zk))-x , V,L(xyzk) and
(V2 (x)+pp")y—p arelocally Lipschitz continuous.
According to local existence theorem of ordinary
differential equation, there exists a unique continuous
solution (x(t),v(t),w(t)) of (10)for (t,,T).

Next, let initia point X(t,)e Q. Since

Copyright © 2013 SciRes.

d
d—)t(+x P, (x—aVxXL(x,y,2)),

we have

d S s
j:o [d—i{(+ x}e ds= j:oe P, (Xx-avxL(xy,z))ds

Or equivaently,

x(t)=ex(t,)+e ft R, (x—aVxL(x,y,z))ds.

So, x(t)>0 providedthat x(t,)>0,
P, (x-aV,L(xy,zk))>0, and since

x(t) = e‘("“’)x(t0 )+et .[;eSPQ (x—aVxL(x,y,z))ds
<e)x(ty)+e (€ —€°)c

=c—(c-x(t,))e"™
<c

Thus, x(t)eQ providedthat x(t,)eQ.

Before establishing the convergence theorem, we need
the property of the following augmented Lagrangian
function.

Assumption 4 L(xy,z) satisfies the local mono-
tone property of following definition about X .

(x—x")T (VLX(X, Y, z)—VxL(x*, Y, z*))z 0.

Now we are ready to establish the stability and the
convergence results of network (10).

Theorem 6 Assume that f(x):R"—>R s
strictly convex and the fourth differentiable, and
¢ =(x",y",z") is a globa optima solution of the
problem (6), if the initial point (x(t,),Y(t).2(t,))
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with X(t,)eQ is chosen in a small neighborhood of
the equilibrium point, then the proposed neura network
of (10) is stable in the sense of Lyapunov and globally
convergent to the stationary point (x',y",z"), where
X" isthe optimal solution of (2).

Proof. We define V: Q— R asfollows:

V(x(1),¥(0). 2(0)
= L(x(t),y(t),z(t))- f (x)

We want to show that V is a suitable Lypunov
function for dynamic system (10), it is evident that

V(x(t),y(t),z(t))>i"x(t)_x* 2
(x(t). y(t).2(t)) = (x".y".2),

V(x*,y*,z*):O.

<112

+%"x(t)—x

Then
S N
dt ou dt oy dt oz dt

+(x—x*)T Pa((x-av, L(x,y,z))—x)/a
_z{i.d_mi.%.d_niﬁ.%j
oy, dv. dt 0z dw dt

+(x—x* )T P, ((x—aVXL(x, Y, z))—x)/a.

(11)

i=1

(P (x=aV,L(xy.2))-x
Consequently,
(R (x=V,L(x¥,2)) %) V,L(xy.2)
<R, (x-V,L(xy,2))
A fapex T v
+(x—x*)T(x Py (Xx-V,L(x Y,z

(13)

)/a.

Then, we obtain from (12), (13) and Assumption A4

A

d\t/(xy, <-— ||P x V,L(xY.2)

—(x—x*) V,L(xY,2)
—,B[V L(xY,2) ] GV,L(xy,z) (14)
-B[V.L( x,y,z] G,V,L(xY,2)
<0,
av

—(X*,y*,z*):O

dt (15)

Copyright © 2013 SciRes.

) (x—av,L(xy.2)-R

ET AL. 289
And denote that
=diag(s'(%),S (%), S (V)
= diag(s'(w;),s'(W,), -, (w,))
we have

oL d>§ oL dvy aL dw
dt ;(ax a oy S dt+6zi s(w) dt]

/a
- [VXL(X, Ys Z)}TE+[VyL(X, Y, z)] GV’E

+[V,L(x, y,z)]T G‘jvd—w

+(x—x*) Pa((x-av,L(xy.z

+(x- x) Pa((x-av,L(xy.2))- )/a
=[V.L(x Y.z )T ((x av, L(xy,2))- x)
+(x—x*) PQ((x—aVXL(x,y,z))—x)/a
—ﬂ[v L(x Y, z)]T GV,L(xY.2)
-B[V,L(xY.2) } G,V,L(xY,2).

(12)
In the first inequality of Lemma 4, let
X =x-aV,L(xy,z) and y' =X, then

% (x—av,L(x,y,2))) 2 0.

consequently, V(P(x(t)),y(t),z(t)) is  Lypunov

function, and by (14), it is evident that

av dx dv dw

— =0 —= —=0,—=

dt dt dt dt

By the Lypunov stability theory, systems (10) is

asymptotically stable. Therefore, when the initial point
(% Yo%) is obtain near to the equilibrium point, the
set ﬁx(t), y(t),z(t))|t zto} is bounded. By also using
LaSdll's invariant principle, the trgjectory of the neural
network (10) {(u(t),y(t),z(t))} will converge to the
maximum invariant subset of the following set

st

Assume again that X" ={xX(xy,z)e
have

}, then we

limdist(x(t), X")=0.
Specialy, when X* = {x} , we have
limx(t)=x".

too
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The proof is completed.

4. Numerical Examples

In order to verify the effectiveness of the presented
algorithm in this paper, three examples were selected
from the literature [21]. These Examples has been used
to check the effectiveness of the new algorithms (see [1-
5)).

For the first example, it is easy to verify that the
Hessian matrix of the object function f_ ( :—||F ||2

is rank one deficiency at the minimizer X" . For the last
two examples, the corresponding Hessian matrix is
nonsingular at the minimizer. In order to adapt them to
the singular case, we have adopt the same procedure as
proposed in [1] by introducing function transformation as
follows,

F(x):=F (x)-VF (x' ) A(ATA) " AT (x-x') (16)
where X" istherootof F(x)=0 and
F(x):R" > R", AeR™ A" =(1,1,---,1).
Now we can construct the relevant objection function
fo (%)
1 2
fo(X)= E”F (X)"
for which its Hessian matrix being rank one deficiency
and if the Interval [l,h] includes the root of the original
F(x), it can be checked that the root of the origina

F(x) is the minimizer of the optimization problem

min f (x),l <x<h .

Ex. 1: Modified Powell Singular Function:
a n=4m=4
b) fl(x) =% +10x;, + X,

f,(x)=5" (%~ x,)
fa(x): X +(X2 —2X3)2

f,(x)=10"%(x% - x,)°
c) f=0 attheminimizer X" =(0,0,0,0).
Ex. 2: Beadle Function:
a n=2m=3
b) fl(X)ZY1_)(1(1_X2)
fz(x):yz_xi(l_)(zZ)
f3(X)=y3—X1*(1—X§)
y, =15y, =225y, = 2.625

c) f=0 atheminimizer x"=(305).
Ex. 3: Modified Broyden Tridiagonal Function:

Copyright © 2013 SciRes.

ag? )T( 2%, )% —2%, +1
2(X)=(3-2%)% —% ~2%+2
f3(X)=(3-2%;) % — %, — 2%, +2
f(¥)=(3-2x)%, - %

c) f=0 attheminimizer x"=(1111).

Meanwhile, we compare the dynamic behavior of the
proposed model with the classical projection gradient
system [11] asfollows,

dx

dt
for which the Hessian matrix at the minimizer is
generally assumed to be nonsingular.

We use Matlab 7.0 to simulate the dynamics of the
corresponding systems. The integral curves are obtained
by using the ODE function odel5s for the numerical
integration. For the proposed system (10) (PR) and the
classical projection gradient system (10) (PG), we have
chosen the same initia point to numericaly solve the
ODEs.

For Ex.1, we choose X, =(01,0.9,1.5238,10.9605),
a=p=1 for both PR and PG and let y, and
Z, be some random values between 0 and 12. The
other parameters PR are chosen as |1=0, h=20,
A =0.0000001, k=3000. The results are shown in
Figures 2 and 3. It can be seen, in Figure 2, that the
integral curves response of PR converge to f,'s
minimizer x* =(0,0,0,0). On the contrary, as shown in
Figure 3, the curves of PG failed to converge to f’s
minimizer with the same initial point.

For Ex. 2, we choose |=0,h=3,1=0.000000%
X, =rand(1,6); k=5000,a = =1. Similar results are
obtained, i.e., the proposed system PR successfully

:PQ(x—anp(x))—x,a>0 (17)

7
6

5t

|

0 50 100 150

Figure2. Trajectory of x(t) for PR (Ex. 1).
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found the minimizer x" =(3,0.5) while the classical 22 '
system PG failed. The results are shown in Figures 4 Al
and 5 respectively.
Figures 6 and 7 show the corresponding results for Ex. 8
3 with initia conditions chosen as x, =(-1,-1,-1-1), 167

| =0,h=1, 4=0.000000], k=5000, «=1, #=100. 14l
The proposed system PR finally got the minimizer
X =(1,1,11), while the system PR got stuck al the 121
time. 1t
5. Concluding Remarks o8l
0.6
Singular nonlinear convex optimization problems have E
been traditionally studied by classical numerical methods.

In this paper, a novel neural network model was estab- 02; P = 50
lished to solve such adifficult problem. Under some mild
assumptions, the unconstrained nonlinear optimization Figure5. Trajectory of x(t) for PG (Ex. 2).
problem is turned into a constrained optimization prob-
lem. By establishing the relationship between KKT 5 ' ' ' 0
points and the augmented Lagrange function, a neural x1(l)
2
3 : ; 1t x3(t) Hl
X, (1) ﬁ —— X0
25 O]
| X0 || 05t
) x,(t)
0,
15+
1 K -0.5
0.5
o 100 200 300 200 500
0 L
Figure 6. Trajectory of x(t) for PR (Ex. 3).

_05 1 1
0 50 100 150

—] B0
0)

0.8 K"’—
x,(t)

3 0.6 q
x,(0
04+ q
2.5 b 02 |
0 . 4
2 |
0 50

Figure 3. Trajectory of x(t) for PG (Ex. 1).

T

1.5

1+

_1 1 1 1 1
0 100 200 300 400 500

0.5

Figure7. Trajectory of x(t) for PG (Ex. 3).

0

100 150 200 network model is successfully obtained. Global analysis
Figure4. Trajectory of x(t) for PR (Ex. 2). with illustrative examples supports the presented results.
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