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ABSTRACT 

A general formula for 4-point  -Ary approximating subdivision scheme for curve designing is introduced for any ar-
ity 2  . The new scheme is extension of B-spline of degree 6. Laurent polynomial method is used to investigate the 
continuity of the scheme. The variety of effects can be achieved in correspondence for different values of parameter. 
The applications of the proposed scheme are illustrated in comparison with the established subdivision schemes. 
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1. Introduction 

Subdivision modeling methods are effective algorithms 
to generate continuous curves and surfaces from a dis-
crete set of control points by subdividing them according 
to some refining rules, recursively. Repetition of this 
process produces a very good approximation to the curve 
or surface defined by the original set of control points. In 
recent years, the subject of subdivision gained popularity 
due to some new applications, such as in the 3D anima-
tion industry. The next venture is to introduce these 
methods to be more consistent and efficient to the world 
of geometric modeling in the industry. 

Approximating schemes were first developed by Rham 
and Chaikin [1,2]. Consequent to this, a lot of work has 
been done by different authors in the field of binary sub-
division schemes, but the research communities are in-
terested in introducing higher arity schemes (i.e. ternary, 
quaternary, ...n-ary) which give better result and less 
computational cost.  

In late 80,s with the help of wavelet theory, a relation-
ship between subdivision scheme and the “mask” of re-
finable function have been developed. Lian [3,4] has 
introduced 3, 4, 5 and 6-point a-ary interpolating 
schemes. In these research papers, Lian used wavelets 
theory, a relatively new subject area that has been deeply 
studied for the last two decades or so, and found many 
successful applications. Lian [5] also offered 2m and (2m 
+ 1) -point interpolating a-ary schemes for curve design-
ing. In 2009, Mustafa and Khan [6] for the first time in-
troduced a new 4-point quaternary approximating subdi-
vision scheme. Mustafa and Najma [7] presented same 
perspective for constructing (2b + 2) and (2b + 4) -point 

n-ary interpolating and approximating schemes. Ghaffar 
et al. presented unified 3-point  -ary approximation 
schemes and discussed various properties [8]. This moti-
vates us to present 4-point  -ary approximating scheme 
with high smoothness and more degree of freedom for 
curve designing. One of the main objectives of current 
work is to extend “The B-Spline of degree 6” to 4-point 
 -ary approximating subdivision scheme.  

This paper is organized as follows: General form of 
4-point  -ary subdivision scheme is constructed in Sec-
tion 2. The family of 4-point  -ary approximating 
scheme, basic properties and analysis are presented in 
Section 3. Comparison of 4-point  -ary schemes is 
given in Section 4. Finally conclusion is given in Section 
5. 

2. Main Results 

In this section, we are introducing family of 4-point 
 -ary approximating subdivision scheme for curve de-
signing for any arity 2  . This family is the extension 
of B-spline of degree six i.e. (4-point approximating sub-
division scheme): 
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If there exist a unique −sequence  that de-
scribes the “two scale equation” 
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of scaling function  . Then corresponding to this - 
sequence, let us introduce the notation 
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Due to the development of the wavelet theory, the 
schemes (1) can be easily re-discovered by the scaling 
functions 4  satisfying the two-scale equations 
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By taking the Fourier transforms of (4), we arrive at 
the following two-scale equations of 4  
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This normalization simplifies to the following Fourier 
transform formulation: 
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By taking  and , we 
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Now, if we allow the scaling factor, denoted by a, to 
be , and denote such a scaling function denoted by 2
a , then the Fourier transforms of two-scale equation of 
a  becomes 
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3. Family of 4-Point a-Ary Schemes 

In this section, we discuss only three 4-point schemes. 
For setting 2,3a   and 4 in (7), we obtain three poly-
nomials  aP z a 4  with following sets of coef-
ficients called the mask of the 4-point binary, ternary and 
quaternary schemes, respectively. 
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Order of continuities of the above schemes is given in 
Table 1. One can easily find the order of continuity over 
the parametric intervals by using the approach of [9]. 

3.1. Support of Basic Limit Function 

The basic function of a subdivision scheme is the limit 
function of the proposed scheme for the following data 
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The following theorem is related to the support of ba-
sic limit functions of the 4-point a-ary scheme. 

Theorem 1. The basic limit functions of 4  pro-
posed 4-point a-ary approximating schemes have support 
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Table 1. The order of continuity of proposed 4-point a-ary schemes for certain ranges of parameter. 
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Figure 1. (a-c) represent the basic limit functions of the 4-point binary, ternary and quaternary schemes, respectively. 
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 Proof. Since the basic function is the limit function of 
the scheme corresponding to (7) for the data (11), its 
support width “s” can be determine by computing how 
far the effect of the non-zero vertex 0

0f  will propagate 
along by. As the mask of a-ary 4-point scheme is 4 1a   
long sequence by centering it on that vertex; the dis-
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 At the first subdivision step we see  

3.2. Precision Set 
that the vertices on the both sides of 1

0f  at 
4 1

2

a 
 are 

For approximating schemes, we do not expect new verti-
ces to be lie on the same curve as old ones, so it is nec-
essary to look to see whether all the vertices lie on a 
common curve. We can calculate the order of precision 
by using the technique as given in [10]. 

the furthest non-zero new vertices. At each refinement,  

the distances on both sides are reduced by the factor 
1

a
.  

At the next step of the scheme, this will propagate along  
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Lemma 2. The scheme (3.1) has cubic precision. 
Proof. We carry out this result by taking our origin the 

middle of an original span with ordinate 
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where   represents the differences of the vertices. 
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Thus the scheme has cubic precision.  
For this analysis we observe that the scheme (8) is de-

signed so that it has cubic precision for any value of . 
While the schemes (9) and (10) have cubic precision for  

w

any value of w and with the special values 
1

w
3

  and 

1
w

2
 ,  the schemes have quartic precision, respectively. 

4. Comparison and Application 

In this section, we show that the popular existing schemes 

are special cases of our proposed family of schemes (8)- 
(10). 
 With the special values of parameter ( w 0  and 

1
w

4
 ), the subdivision schemes generated by B-splines  

of degree 4 and 6, respectively, are obtained from the 
schemes (8). 
 Moreover, the proposed scheme (8) is a generalized 

scheme, as the mask of the proposed scheme coincides  

with the mask of schemes [9,11-13] after setting 
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35
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in (9), the proposed 4-point scheme can also be consid-
ered as the general form of the stationary 4-point ternary 
approximating schemes of [8,13,16], respectively. 

 For substituting 
21

w
8

   , the obtained mask of  

scheme (10) coincides with mask of the famous 4-point 
quaternary scheme of Ko [17]. 

Here we compare our proposed schemes with the ex-
isting binary, ternary and quaternary schemes (see Table 
2). It is observed that the continuity and approximation 
order of proposed schemes are better than the existing 
schemes. Moreover, Figure 2 is exposed to show the role 
of free parameters when the schemes (8)-(10) applied on 
discrete data points. In Figure 2(a), black, red and blue 
lines show the visual smoothness of the binary scheme 

at the parametric values 
1

0,
8

w w   and 
1

2
w  , re-

spectively. In Figure 2(b), blue, green, black and red 
lines show the visual smoothness of the ternary scheme 

at the parametric values 
1

1, , 0
2

w w w     , and 

1

2
w  , respectively. In Figure 2(c), blue, green, 

black and red lines show the visual smoothness of the 
quaternary scheme at the parametric values 1,w    

1
,

2
w w 0    and 

1

2
w  , respectively. From Figure 

2, we conclude that the behavior of the limiting curve 
acts as tightness/looseness when the values of free pa-
ameter vary. r
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Table 2. Comparison of 4-point ternary schemes. 

Type Support Scheme Order Cn 

Binary 4-point [18] Inte ng rpolati 6 4 1 

Binary 4-point [19] Interpolating 4 6 1 

Binary 4-point [12] Approximating 7 4 2 

Interpolating Ternary 4-point [20] 5 4 1 

Interpolating 5 3 Ternary 4-point [21, 3] 1 

Interpolating  Ternary 4-point [22] 5  2 

Interpolating 5 Ternary 4-point [3] 3 1 

Ternary 4-point [16] Approximating 4 5.5 2 

Approximating 5 4 Quaternary 4-point [17] 2 

Approximating 4 Quaternary 4-point [6] 5 3 

Approximating 7 3 Binary 4-point proposed 5 

Approximating 5 Ternary 4-point proposed 5.5 3 

Approximating 5 5 Quaternary 4-point proposed 3 
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Figure 2. ectively. 
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