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ABSTRACT 

The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation 
is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, the nonsingular 
positon solutions of the variable-coefficient modified KdV equation are firstly discovered analytically and graphically. 
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1. Introduction 

The differential nonlinear evolution equations (NLEEs) 
have been researched extensively in the past decades. 
Recently, investigators are shifting their focus in the 
NLEEs with variable coefficients as in [1]. It is found 
that NLEEs with variable coefficients can provide more 
powerful and realistic models than the ones with constant 
coefficients in describing more complex and real phe-
nomenon. It is shown that solitons of NLEEs with vari-
able coefficients can be effectively controlled through 
changing their variable parameters. 

In this paper, we will concentrate on a variable-coef- 
ficient modified KdV (vc-mKdV) equation 

2( ) ( ) ( ) ( ) 0,t xxx x xu t u t u u t u t u           (1) 

where , , , t  t  t  t are all time-dependent 
analytic functions. 

In fact, much attention has been paid to research on 
different forms of vc-mKdV equations. Particularly, as 
long ago as 1996, K. Porsezian investigated the N-soliton 
solution of a vc-mKdV equation is derived through the 
Hirota method in [2]. And the double-Wronskian-typed 
soliton of the vc-mKdV Equation (1) are constructed 
recently in [3]. 

Besides the soliton solution of NLEEs, another kind of 
solution called positon, is researched in lots of papers as 
well, such as [4-6]. As we know, positon relates very 
closely to soliton, i.e. the interdependence among spec-
tral parameters of soliton gives rise to positon, so we can 
also call positon “degenerate soliton” [7]. 

This letter is organized as follows. In Section 2, we 
construct the detailed Darboux Transformation and its 
determinant representation of Equation (1). Furthermore, 
the nonsingular positon and soliton-positon solutions of 
Equation (1) are derived firstly in Section 3, a series of 

pictures are also displayed for the better understanding. 
Section 4 is devoted to the conclusions and discussions. 

2. Darboux Transformation of the vc-mKdV 
Equation 

2.1. Lax pair of the vc-mKdV Equation 

It’s known that the Lax pair plays a vital role in studying 
the integrable properties of NLEEs such as the Hamilto-
nian structures, conservation laws, symmetry and Dar-
boux Transformations show in [7-10]. In the following 
research, we will use the lax pair presented in [3], which 
is constructed with the help of the Ablowitz-Kaup-New- 
ell-Segur (AKNS) approach under the following constraint 
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where 0 0C   is an arbitrary constant. We will choose 

0 1C   in this paper for simplicity. 
Then the linear eigenvalue problems for Equation (1) 

can be expressed as 
,  .x tM N                 (3) 

where  1 2,
Tf f  , T denotes the transpose of the ma-

trix, and M and N are shown as follows: 
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The spectral parameter   is independent of x and t. 
With constraint (2), it is easy to prove that the compati-
bility condition (also called the zero curvature equation) 
of Equations (3) and (4). 

 ,t xM N M N   0              (5) 

gives rise to Equation (1) for  by direct compu-
tation. The bracket represents the usual matrix commu-
tator, and the Lax pair (3) can guarantee the complete 
integrability of Equation (1). 

u v 

2.2. Three-fold Darboux Transformation for the 
vc-mKdV Equation 

First of all, we need to introduce the eigenfunctions 
which stasify the Lax pair (3) 

  1

2

k
k k

k

f

f



    

 


             (6) 

of all the eigenvalues k ,  we let k m1,2, ,6,k      
if  and kk m   . Additionally, the eigenfunctions 
are linearly independent i.e. k  and m  are linearly 
independent if . According to the knowledge of 
DT, with the help of Cramer's rule and iterative computa-
tions, the explicit new solutions  and  of the 
vc-mKdV Equation (1) can be derived as 
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where 
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Next, it's very easy to turn out that if , 
, 
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will be realized, so the three-fold DT of the vc-mKdV 
equation (1) is accomplished completely. Additionally, 
we can get the analogous expressions of  and  
when , so the two-soliton can be arrived as 
well. 

k=1,2,3,4

3. Positon and Soliton-positon Solutions of 
the vc-mKdV Equation 

Matveev expounded “positon” in [4] for the KdV equa-
tions. As we know, most of the known positon solutions 
are singular. For various important integrable systems 
such as the KdV equations and the mKdV equations, 
there is no nonsingular positon found, though [6] gives 
the nonsingular positon for the coupled KdV system. In 
this section, the positon solutions of the vc-mKdV Equa-
tion (1) will be displayed for the first time using the re-
sult obtained in section 2. It's happy that they are non-
singular. 

Choosing the zero seed solution of Equation (1), 
Equation (3) is solved by 
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with  1,2, ,6k k    are arbitrary spectral Parameters. 
In the construction of two-soliton solutions, if the 

second spectral parameter 3  is colse to the first spec-
tral parameter 1 , then the one-positon solution of vc- 
mKdV Equation (1) can be generated by doing the Tay-
lor expansion of the wave function (8b) to the first order 
up to 1 . That is to say, firstly, taking 3 1     in 
the used eigenvalue of the two-fold DT. Secondly, using 
the Taylor expansion of 3f  and 4f  up to the first order 
of  in terms of 1  . Finally, substituting these ma-
nipulations into the two-fold DT, we get the one-positon 
solution in the form of 

( )
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From Equation (9), we can know that ( )t  will 
change the amplitude of the positon solution, just as the 
plot (a) in Figure 1 vividly shown. What's more, there is 
no zero point in the denominator of Equation (9), that 
means this one-positon solution is nonsingular. Positons 
of KdV are defined as long-range analogues of solitons 
and are slowly decreasing, oscillating solutions in [5]. 
From Figure 1, it is clear that two peaks in one-positon 
separate according to a different way in the two soliton. 

Using the same method in the process of the positon 
above, fixing 5 , and calculating the limit 3 1  , we 
obtain the soliton-positon solution of vc-mKdV Equation 
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(1). Letting 3 1    , 5 1    ,and using the Tay-
lor expansion of 3f  and 4f  up to the first order, 5f  
and 6f  to the second order of  in terms of 1  , we 
get the two-positon solution of vc-mKdV Equation (1). 
Here the specific expressions of the soliton-positon and 
two-positon solutions aren't given out for saving space. 

Comparing (a) in Figure 2 with (a) in Figure 3, we 
can clearly see that two parts of the soliton-positon are 
propagating in a close way, and the third one is inde-
pendent, while each part of the two-positon will separate 
finally during their propagating, but the separation veloc-
ity is extraordinary slow. Comparming the plots (b) in 
Figures 1-3, it's easy to learn that the presences of solu-
tions are changeable by choosing the variable coeffi-
cients ( )t , ( )t , ( )t  to be different functions of t. 
Particularly, from Figures 2 and Figure 3, we know that 
the soliton-positon and two-soliton solutions are nonsin-
gular as well. 

4. Conclusions and Discussions 

In this paper, considering the vc-mKdV Equation (1), 
which is interesting both physically and mathematically, 
we derived its three-fold Darboux transformation in the 
form of determinant. Then the positon solutions, which 
have never been discovered in other papers are obtained. 
 

 

Figure 1. The dendity plots of one-positon of the vc-mKdV 
Equation (1) with (a)  = 0.5,1 . , ,0 1 1t 1     ; (b) 

. ,0 6 , sin( ),0 21 t t       . 

 

 

Figure 2. The dendity plots of soliton-positon of the 
vc-mKdV Equation (1) with   =-0.51 ,5     ,1, ,1 0 

1  ; (b) . , . ,1 50 51 0 71 , ,0 0t        . 

 

Figure 3. The dendity plots of two-positon of the vc-mKdV 
Equation (1) with (a) - . , = , = , = ;1 0 5 0 1 1     (b) . ,1 0 8    

, cos( ), .0 0 5t t     . 

 
Specifically, the one-positon, soliton-positon and two- 

positon solutions are all nonsingular. From the Figures 
1-3, it's interesting to obsrerve that these solutions exhibit 
the following novelty: when the variable coefficients 
depend on t, their profiles are changeful and the orbits 
are quite flexible rather than a straight line. We sincerely 
hope that these will be of use in the future study. 
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