Images of Linear Block Codes over $F_q + uF_q + vF_q + uvF_q$

Jane D. Palacio, Virgilio P. Sison
Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna, Philippines
Email: jdpalacio@uplb.edu.ph, vpsison@uplb.edu.ph

Received 2013

ABSTRACT

In this paper, we considered linear block codes over $F_q + uF_q + vF_q + uvF_q$, where $q = p^m$, $m \in \mathbb{N}$. First we looked at the structure of the ring. It was shown that R_q is neither a finite chain ring nor a principal ideal ring but is a local ring. We then established a generator matrix for the linear block codes and equipped it with a homogeneous weight function. Field codes were then constructed as images of these codes by using a basis of F_q. Bounds on the minimum Hamming distance of the image codes were then derived. A code meeting such bounds is given as an example.

Keywords: q-ary Images; Distance Bounds

1. Introduction

Let p be a prime number, $m \in \mathbb{N}$, $q = p^m$ and F_q denote the Galois field with q elements. During the late 1990s, C. Bachoc used linear block codes over $F_p + uF_p$ for constructing modular lattices. Its success motivated the study of linear block codes over finite chain rings $F_p + uF_p$. And many of the results from these studies have been extended over finite chain rings of the form $F_q + uF_q + vF_q + uvF_q$. Such rings can be seen as natural extensions of $F_p + uF_p$.

In this work, we will analyze linear block codes over R_q. The structure of the ring will be discussed in Section 2. The generator matrix of linear block codes over R_q and weight functions defined on R_q will be tackled in Section 3. The q-ary images of these linear block codes and bounds on its minimum Hamming distance will be presented in Sections 4 and 5, respectively. Lastly, a code meeting these bounds is given in Section 6.

2. Preliminaries and Definitions

Structure of the Ring $F_q + uF_q + vF_q + uvF_q$

Let R_q denote the ring $F_q + uF_q + vF_q + uvF_q$ whose elements can be uniquely written as $a + bu + cv + duv$ where $a, b, c, d \in F_q$. An element of R_q is a unit if and only if $a \neq 0$. The ring has $q + 5$ ideals namely $(0), (uv), (v), (u, v), R_q, (u + jv)$ where $j \in F_q$. R_q is not a principal ideal ring since the maximal ideal (u, v) is generated by u and v. The cardinality of the ideals are $|uv| = q, |v| = |u + jv| = q^2, |(u, v)| = q^3$, and $|R_q| = q^4$.

The lattice of ideals is shown in Figure 1. As can be seen in the lattice of ideals, R_q is not a finite chain ring. But it is a local, Noetherian and Artinian ring. All zero divisors are the elements of $(u, v) \setminus (0)$ and its units are the elements of $R_q \setminus (u, v)$.

Figure 1. Lattice of ideals of $F_q + uF_q + vF_q + uvF_q$.
Clearly, the ring is isomorphic to \(F_q[x,y]/(x^2+y^2-xy) \). It is also isomorphic to the ring of all \(4 \times 4 \) matrices of the form
\[
\begin{pmatrix}
a & b & c & d \\
0 & a & 0 & c \\
0 & 0 & a & b \\
0 & 0 & 0 & a
\end{pmatrix}.
\]

Moreover, \(R_q \) is Frobenius with generating character \(\chi : R_q \rightarrow T, a+bu+cv+duv \mapsto e^{\frac{2\pi i}{q}tr(a)} \) where \(tr \) denotes the trace map on \(F_q \) and \(T \) is the multiplicative group of unit complex numbers.

Further, \(R_q \) is a vector space over \(F_q \) with dimension 4. A basis of \(R_q \) over \(F_q \) is given by the set \(\{1,u,v,uv\} \) which we will refer to as the polynomial basis of \(R_q \).

Another basis considered in this work is
\[
\{1+u+v+uv,1+v+uv,1+u+uv,1+u+v\}.
\]

3. Linear Block Codes over \(F_q + uF_q + vF_q + uvF_q \)

Any linear block code over a finite commutative ring \(R \) has a generator matrix which can be put in the following form
\[
G = \begin{pmatrix}
a_{1,k_1} & A_{1,2} & A_{1,3} & \cdots & A_{1,j+1} \\
a_{2,k_1} & a_2 & A_{2,3} & \cdots & a_2 & A_{2,j+1} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{j,k_1} & a_j & A_{j,3} & \cdots & a_j & A_{j,i+j+1}
\end{pmatrix}
\]

(1)

where \(A_{i,j} \) are binary matrices for \(i > 1 \) and are matrices over \(R_q \) for \(i = 1 \). A code of this form has \(\prod_{i=1}^{j}[a,R]^i \) elements, where the \(a_i \)'s define the nonzero equivalence classes \([a_1],[a_2],\cdots,[a_i] \) under the equivalence relation on \(R \) defined by
\[
a - b \iff a = bu \quad \text{for a unit } u \in R
\]
\[
a_i R = \{x|v = ar \quad \text{for some } r \in R\};
\]

and the blanks in \(G \) are to be filled with zeros.

A linear block code \(B \) of length \(n \) over \(R_q \) is an \(R_q \)-submodule of \(R_q^n \). \(B \) has a generator matrix which can be put in the form shown in Figure 2 where \(A_{1,i} \)

are \(k_i \times k_j \) matrices over \(R_q \), \(D_{1,i} \) are \(k_i \times k_j \) matrices over \(F_q \) and the blank parts of \(G[B] \) are to be filled with zeros. Moreover, \(B \) has \(q^{k_i} \cdot q^{21} \cdot q^{k_i+3} \) codewords where \(t = \sum_{i=2}^{q+1} k_i \). A linear block code over \(R_q \) is free if and only if \(k_i = 0 \) for all \(i = 2,\cdots,q+3 \).

Now, we equip \(B \) with two weight functions namely the usual Hamming metric and a homogeneous weight function.

Lemma 2.1. (T. Honold, [2]) Let \(R \) be a Frobenius ring with generating character \(\chi \), then every homogeneous weight \(w_{\text{hom}} \) on \(R \) can be expressed in terms of \(\chi \) as follows
\[
w_{\text{hom}} = \Gamma \left[1 - \frac{1}{R'} \sum_{y \in R'} \chi(xy) \right] \tag{1}
\]

where \(R' \) is the group of units of \(R \).

Theorem 2.1. A homogeneous weight \(w_{\text{hom}} \) on \(R_q \) is given by
\[
w_{\text{hom}} (x) = \begin{cases}
\Gamma & \text{if } x \in R_q \setminus \{uv\} \\
q & \text{if } x \in \{uv\} \setminus \{0\} \\
0 & \text{otherwise}
\end{cases} \tag{2}
\]

Proof: Let \(x = a + bu + cv + dv \in R_q \). Now, using the previous lemma, every homogeneous weight on \(R_q \) can be expressed as
\[
w_{\text{hom}} = \Gamma \left[1 - \frac{1}{(q-1)q} \sum_{y \in R} \chi(xy) \right]
\]

Case 1. Let \(x \in R_q' \). There are \((q-1)q^2 \) units having the same \(d \), for any \(d \in F_q \). But there are \(p^{n-1} \) elements of \(F_q \) that has trace \(j \), for any \(j \in F_p \). Hence,
\[\sum_{y \in R_q^o} \chi(xy) = (q-1)q^2 \left(p^{m-1} \right) \sum_{j \in F_p} e \frac{2 \pi i j}{p}. \]

But \(\sum e \frac{2 \pi i j}{p} = 0 \). So, \(w_{\text{hom}} = \Gamma. \)

Case 2. Let \(x \in (uv) \setminus \{0\} \). For every \(a \in F_q^o \), there are \(q^2 \) units of the form \(y = a + bu + cv + duv \). Now, \(p^{m-1} \) of these have the same trace value \(j \), for any \(j \in F_p \) while there are \(p^{m-1} - 1 \) of them with trace zero. Hence,

\[\sum_{y \in R_q^o} \chi(xy) = q^3 \left(p^{m-1} \right) \sum_{j \in F_p} e \frac{2 \pi i j}{p} + q \left(p^{m-1} - 1 \right). \]

But \(\sum e \frac{2 \pi i j}{p} = -1 \). So, \(w_{\text{hom}} = \frac{q}{p-1} \Gamma. \)

Case 3. Let \(x \in (u,v) \setminus (uv) \). There are \(q-1 \) elements of \((u,v) \setminus (uv) \) that have the same coefficient for \(uv \). For each element \(x \in (u,v) \setminus (uv) \) appears \(q \) copies in the multiset \(\{xy \mid y \in R_q^o, x \in (u,v) \setminus (uv)\} \). Moreover, there are \(p^{m-1} \) elements of \(F_q^o \) that have trace \(j \), for any \(j \in F_p \). Hence

\[\sum_{y \in R_q^o} \chi(xy) = (q-1)q \left(p^{m-1} \right) \sum_{j \in F_p} e \frac{2 \pi i j}{p} = \Gamma. \]

We extend this to \(R_q^o \) naturally: if \(x = (x_1, x_2, \ldots, x_n) \) then \(w_{\text{hom}}(x) = \sum_{i=1}^n w_{\text{hom}}(x_i) \). The homogeneous (resp. Hamming) distance between any distinct vectors \(x, y \in R_q^o \), denoted by \(d_{\text{hom}}(x, y) \) (resp. \(d_{\text{H}}(x, y) \), is defined as \(w_{\text{hom}}(x-y) \) (resp. \(w_{\text{H}}(x-y) \)). We will denote the minimum homogeneous distance (resp. Hamming) distance by a linear block code over \(R_q \) by \(d_{\text{hom}} \) (resp. \(d_{\text{H}} \)).

4. The \(q \)-ary Images of Linear Block Codes over \(F_q + uF_q + vF_q + uvF_q \)

Let \(h_0, h_1, h_2, h_3, h_4 \) be distinct elements of an ordered basis of \(R_q \). Then any element of \(R_q \) can be written in the form \(\sum_{i=1}^4 a_i h_i \). Define the mapping \(\phi : R_q \rightarrow F_q \)

\[\sum_{i=1}^4 a_i h_i \mapsto (a_1, a_2, a_3, a_4) \]

We then extend \(\phi \) to \(R_q^o \) coordinate-wise: if \(x = (x_1, x_2, \ldots, x_n) \) and \(x_i = \sum_{j=1}^4 a_{ij} h_j \) then \(\phi(x) = (a_{11}, \ldots, a_{14}, a_{21}, \ldots, a_{24}, a_{31}, \ldots, a_{34}, \ldots, a_{n1}, \ldots, a_{n4}) \).

It is easy to show that \(\phi \) is an \(F_q \)-module isomorphism.

Theorem 4.1. If \(B \) is a linear block code over \(R_q \) of length \(n \), then \(\phi(B) = \{ \phi(x) \mid x \in B \} \) is a linear block code over \(F_q^o \) with length \(4n \).

Proof: First we show that for every \(x \in B, \phi(x) \in F_q^o \).

Let \(x = (x_1, x_2, \ldots, x_n) \in B \). Since \(\phi(x_i) \in F_q^4 \) for any \(i = 1, 2, \ldots, n \), then \(\phi(x) \in F_q^4 \). Next we show that \(\phi(B) \) is a subspace of \(F_q^4 \). Let \(s \in F_q^4 \) and let \(y, y_1 \in \phi(B) \). Then there exist \(x, x_1 \in B \) such that \(y = \phi(x) \) and \(y_1 = \phi(x_1) \). But \(sy + y_1 = \phi(sx + x_1) \) since \(\phi \) is a module homomorphism. Since \(sx + x_1 \in B \), \(sy + y_1 \in \phi(B) \). Thus, \(\phi(B) \) is a subspace of \(F_q^4 \).

Theorem 4.2. Let \(G[B] \) be the generator matrix of \(B \) given in Figure 2. Then \(\tilde{G} [\phi(B)] \) has a generator matrix that is permutation-equivalent to the matrix given in Figure 3.

![Figure 3. Generator Matrix of \(\phi(B) \).](image-url)
Proof: Let B have a generator matrix given in Figure 2. Then for every $c \in B$, c can be expressed as yG where $y \in R_q^k$, $k = \sum_{i=1}^{k} k_i$, that is, $c = \sum_{i=1}^{k} s_i z_i$ where $s_i \in R_q$ and the z_i's are the k rows of $G[B]$. Using any basis of R_q^n, c can further be written

$$\sum_{i=1}^{k} \sum_{j=1}^{k} d_{i,j} z_i z_j + \sum_{i=1}^{k} \sum_{j=1}^{k} b_{i,j} u z_i + \sum_{i=1}^{k} \sum_{j=1}^{k} c_{i,j} v z_i + \sum_{i=1}^{k} \sum_{j=1}^{k} d_{i,j} u v z_i.$$

Now,

$$\phi(c) = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{i,j} \phi(z_i) + \sum_{i=1}^{k} \sum_{j=1}^{k} b_{i,j} \phi(u z_i) + \sum_{i=1}^{k} \sum_{j=1}^{k} c_{i,j} \phi(v z_i) + \sum_{i=1}^{k} \sum_{j=1}^{k} d_{i,j} \phi(u v z_i).$$

Hence, $S = \{ \phi(z_i), \phi(u z_i), \phi(v z_i), \phi(u v z_i) | i = 1, 2, \ldots, k \}$ spans $\phi(B)$. But

- $v z_i = 0$ whenever $i = k_i + 1, \ldots, k_i + k_i$ or $i = k - k_y + 1, \ldots, k$;
- $u z_i = 0$ whenever $i = k_i + k_i + 1, \ldots, k_i + k_i + k_i$ or $i = k - k_y + 1, \ldots, k$;
- $u v z_i = 0$ whenever $i > k_i$; and
- $u z_i = j v z_i$ for some $j \in F_q^*$ whenever $i = \sum_{i=1}^{k} k_i + 1, \ldots, \sum_{i=1}^{k} k_i$ for some i.

Define the set β as the resulting set once the undesirable cases listed above are deduced from the set S. Notice that the elements of β are the rows of the matrix given in Figure 3 we will denote by M. Now, define B_i as the matrix that consists of the rows

$$4 k_i + 2 \sum_{i=2}^{k} k_i + 1, \ldots, 4 k_i + 2 \sum_{i=2}^{k} k_i$$

of M so that M can be written in the form

$$\begin{pmatrix}
B_1 \\
B_2 \\
\vdots \\
B_{k+1}
\end{pmatrix}.$$

We wish to show that the rows of M are linearly independent. Without loss of generality, let $k_i = 1$ for all i. Consider a row of B_i. Clearly, it cannot be expressed as a linear combination of rows from any of the B_j's, $j > i$. We know that $\phi(1), \phi(u), \phi(v), \phi(u v)$ are linearly independent and so any nonzero linear combination of these vectors is not the zero vector. Thus, any row of B_i cannot be written as a linear combination of rows of any of the B_j's, $j \leq i$. Hence, the rows of M are linearly independent.

The succeeding theorems are direct consequences of Theorem 4.2.

Corollary 4.3. If B is free with rank k, then $\phi(B)$ is free with rank $4k$.

Corollary 4.4. Let B be a free rate k/n linear block code over R_q with generator matrix (I_A), then the generator matrix of the q-ary image of B with respect to the basis $\{1 + u + v + uv, 1 + v + uv, 1 + u + uv, 1 + u + v\}$ is permutation-equivalent to

$$\begin{pmatrix}
0 & I_k & I_k & E + F + H & D + E & D + F & D + H \\
I_k & 0 & I_k & 0 & D + E & 0 & D \\
I_k & 0 & 0 & D + F & D & 0 & F \\
I_k & 0 & 0 & I_k & D & 0 & 0 \\
\end{pmatrix}$$

where $A = D + Eu + Fv + Huv$.

5. Distance Bounds of the Images of Linear Block Codes over $F_q^u + uF_q^v + vF_q^w + uvF_q^w$

The minimum distance of a code gives a simple indication of the goodness of a code. A field code can correct at most $\frac{\delta - 1}{2}$ errors where δ is its minimum Hamming distance. Hence, we are interested with upper bounds of the minimum Hamming distance of the images of the linear block codes over R_q. For the succeeding discussions, let B be a rate k/n linear block code over R_q. Also, we denote by δ the minimum Hamming distance of $\phi(B)$.

Theorem 5.1. (Singleton-type Bound) Let B be free. Then

$$\delta \leq 4(n - k) + 1.$$

The above theorem is a direct consequence of Corollary 4.3 and the Singleton Bound for codes over fields while the next theorem is a direct consequence of the Plotkin Bound for codes over fields.

Theorem 5.2. (Plotkin-type Bound) Let B be free. Then

$$\delta \leq \left\lfloor \frac{4^{k-1}}{q^{k-1}} (q - 1) (4n) \right\rfloor.$$

The next bound is in terms of the average homogeneous weight Γ on F_q and the minimum Hamming distance of B.

Theorem 5.3. (Rains-type bound) For a code B,

$$d_H \leq \delta \leq 4 d_H.$$

Proof: Note that δ is bounded above by $4n$. If for every $x \in B, w_H(B) = d_H$ then $\delta \leq 4 d_H$. Now, δ is bounded below by d_H since 1 is the minimum nonzero value of the Hamming weight on F_q. Thus, inequality (4) holds.

Now, we use the concept of subcodes of B generated by x as defined by V. Sison and P. Sole in [4]. The subcode of B generated by $x \in B$, denoted by B_x, is the set
\{ax \mid a \in R \}$. A generalization of the Rabizzoni bound was derived in [4]. Here we prove a parallel bound for linear block codes over R_q. The proof presented here is based on the proof in [4].

Lemma 5.4. Let $x \in B, x \neq 0$. B_x is free if and only if $|B_x| = q^4$.

Proof: (\Rightarrow) Let B_x be free then the equation $ax = 0$ has only the trivial solution. In particular, $(a-b)x = 0 \Rightarrow a = b$, that is, $a \neq b$ implies $ax \neq bx$. Thus, $|B_x| = q^4$.

(\Leftarrow) Let $|B_x| = q^4$. Then for any nonzero a and b, $a \neq b \Rightarrow ax \neq bx$. That is, $(a-b)x = 0 \Rightarrow a = b$. But x generates B_x by definition. So, B_x is free.

The next statement is a direct consequence of the cardinality of the ideals of R_q

Corollary 5.5. Let $x \in B$. Then

- $x \in (uv)^n \backslash \{0\}^n$ if and only if $|B_x| = p^n$;
- $x \in (u+jv)^n \backslash (uv)^n$ or $x \in (v)^n \backslash (uv)^n$ if and only if $|B_x| = p^{2n}$;
- $x \in (u,v)^n \backslash S$ if and only if $|B_x| = p^{3n}$ where $S = \bigcup_{j \in F_q} (u+jv)^n \cup (v)^n$.

Theorem 5.5. (*Rabizzoni-type Bound*) Let x be a minimum Hamming weight codeword. Then

$$\delta \leq \delta_x \leq \left[\frac{|B_x|}{|B_x|-1} \frac{q-1}{q} 4d_H \right]. \quad (5)$$

Moreover, if $|B_x|$ is free, then

$$\delta \leq \delta_x \leq \left[\frac{q^3}{q^3-1} \frac{(q-1)}{q} 4d_H \right]. \quad (6)$$

Proof: Let x be a minimum Hamming weight codeword in B then consider subcode B_x. Let δ_x denote the minimum Hamming distance of $\phi(B_x)$. The minimum Hamming distance of B_x is still d_H since B_x is a subcode of B. Also $\phi(B_x)$ is a subcode of $\phi(B)$ with $\delta \leq \delta_x$. The effective length of $\phi(B_x)$ is $4d_H$ coming from the d_H nonzero positions in x. Direct application of the Rabizzoni bound results to inequality (5) holds. By Lemma 5.4, inequality (6) follows.

6. Example

Consider the free rate-1/4 self-orthogonal code B over R_2 generated by $G = (1 + v 1 + u + v 1 + u + v)$. If $G = (1 A)$ then $I_1 = 1, D = (1 1 1), E = (0 0 1), F = (1 1 0)$ and $H = (0 0 1)$. A codeword in B either has homogeneous weight 0, 4, or 8. The minimum Hamming distance of B is 4. The binary image of B was obtained with respect to the basis

$$\{1+u+v+uv, 1+v+uv, 1+u+uv, 1+u \}.$$

<table>
<thead>
<tr>
<th>Table 1. Comparison of bounds for δ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singleton-type</td>
</tr>
<tr>
<td>Plotkin-type</td>
</tr>
<tr>
<td>Rains-type</td>
</tr>
<tr>
<td>Rabizzoni-type</td>
</tr>
</tbody>
</table>

Using Corollary 4.4, $G[\phi(B)]$ is permutation-equivalent to

$$
\begin{align*}
01111110010000001110 & 0 \\
10101010000001111101 & 1110000011110001110 & 0 \\
10011110000011110000 & 00000011111 & 1110001110 \\
10011110000011110000 & 00000011111 & 1110001110
\end{align*}
$$

The image code has a minimum Hamming distance of 8 and is self-orthogonal. In Table 1, we can see that B meets the upper bound of the Plotkin-type and Rabizzoni-type bound.

REFERENCES

