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Abstract 
Torsional vibrations of coated hollow poroelastic spheres are studied employ-
ing Biot’s theory of wave propagation in poroelastic solid. The dilatations of 
solid and liquid media are zero, therefore the frequency equation of torsional 
vibrations is same both for a permeable and an impermeable surface. The 
coated poroelastic sphere consists of an inner hollow poroelastic sphere 
bounded by and bonded to a sphere made of distinct poroelastic material. The 
inner sphere is designated as core and outer sphere as casing. Core and casing 
are bonded at the curved surfaces. The inner and outer boundaries of the 
coated hollow poroelastic sphere are free from stress and at the interface of 
core and casing the displacement and stresses are continuous. It is assumed 
that the each material of coated sphere is homogeneous and isotropic. The 
frequency equation of torsional vibrations of a coated poroelastic hollow 
sphere is obtained when the material of the core vanishes. Also a coated po-
roelastic solid sphere is obtained as the limiting case of the frequency equation 
of coated hollow poroelastic sphere when the inner radius of core approaches 
to zero. Non-dimensional frequency as a function of ratio of thickness of core 
to that of inner radius of core is determined and analyzed. It is observed that 
the frequency and dispersion increase with the increase of the thickness of the 
coating. 
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1. Introduction 

Wave propagation is the phenomenon of energy transfer. Due to stress wave 
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propagation the cracks are developed at the surface. To avoid the development 
of cracks on the surface of the material, the coating is provided on the material. 
Coating material is chosen with good tribological properties. The nature of con-
tact between different components determines the state of stress which controls 
the fretting. The coating delays the crack initiation and retards the crack propa-
gation. Paul [1] studied the radial vibrations of spheres of poroelastic material. 
Tajuddin [2] studied the torsional vibrations of finite composite poroelastic cy-
linders with two concentric cylindrical layers having a common curved surface 
and a solid composite poroelastic cylinder bonded end to end. Wisse et al. [3] 
presented the experimental results of guided wave modes in porous cylinders. 
Herbert Uberall [4] discussed the circumferential phase velocities for empty and 
fluid immersed spherical shells. Ahmed Shah and Tajuddin [5] studied the stress 
wave propagation in fluid filled poroelastic hollow spheres and made a compar-
ison with stress wave propagation in empty poroelastic hollow spheres. Sharma 
et al. [6] studied three dimensional stress free vibrations of viscothermoelastic 
hollow sphere. They showed that toroidal motion gets decoupled from rest of the 
motion and remains unaffected to temperature variations along with some other 
particular cases. Shanker et al. [7] presented the analysis of poroelastic compo-
site hollow spheres along with particular cases wherein rigid core and casing are 
considered.  

In the present analysis, torsional vibrations of coated hollow poroelastic 
spheres are studied. The dilatations of solid and liquid media are zero, hence the 
liquid pressure developed in solid-liquid aggregate is zero so that the frequency 
equation of torsional vibrations is same both for a permeable and an impermea-
ble surface. The frequency equation of a coated poroelastic solid sphere is ob-
tained as a limiting case of coated poroelastic hollow sphere. The plots of fre-
quency as a function of ratio of thickness of core to inner radius are presented 
for two types of coated hollow poroelastic spheres. There is increase in disper-
sion with the increase in thickness of the coating for the considered coated 
sphere. The torsional waves are non dispersive in thin coated poroelastic hollow 
sphere. The results of purely elastic solid are shown as a special case. 

The study of torsional vibrations of elastic solid is important in several fields, 
e.g., soil mechanics, transmission of power through shafts with flange at the end 
as integral part of the shaft. It is now recognized that virtually no high-speed 
equipment can be properly designed without obtaining solution to what are es-
sentially lateral or torsional vibration problems. Examples of torsional vibrations 
are vibrations in gear train and motor-pump shafts. Thus, from engineering 
point of view the study of torsional vibrations has greater interest. Such vibra-
tions, for example, are used in delay lines. Further, based on reflections and re-
fractions during the propagation of a pulse imperfection can be identified. This 
investigation is particularly applicable in Bio-Mechanics to identify and study 
the cracks in bones. 

2. Governing Equations 

The equations of motion of a poroelastic solid [8] in presence of dissipation (b) 
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where 2∇  is the Laplace operator, ( ), ,u v w=u  and ( ), ,U V W=U  are dis-
placements of solid and liquid respectively, e and ∈ are the dilatations of solid 
and liquid; A, N, Q, R are all poroelastic constants and ( ), 1, 2jk j kρ =  are the 
mass coefficients following [8]. The poroelastic constants A, N correspond to 
familiar Lame’s constants in purely elastic solid. The coefficient N represents the 
shear modulus of the solid. The coefficient R is a measure of the pressure re-
quired on the liquid to force a certain amount of the liquid into the aggregate 
while total volume remains constant. The coefficient Q represents the coupling 
between the volume change of the solid to that of liquid. The stresses jkσ  and 
the liquid pressure s of the poroelastic solid are  

( ) ( )2 ,  , , ,

,
jk jk jkNe Ae Q j k r

s Qe R

σ δ θ ψ= + + ∈ =

= + ∈
            (2) 

where jkδ  is the well-known Kronecker delta function and jke  are the strain 
components of poroelastic solid. 

3. Solution of the Problem 

Let ( , ,r θ ψ ) be spherical polar co-ordinates. Consider a coated (composite) 
hollow poroelastic sphere, in which the core (inner sphere) and the coating 
(outer sphere) each are homogeneous and isotropic. The inner radius of core is 
r1 and the outer radius of casing is r2 and also the interface lie at r a= . The po-
roelastic hollow sphere of one material is bounded by and bonded to a spherical 
coating of different material. The physical parameters related to core are denoted 
by * as a super script. For example, the shear modulus of coating is N and the 
core is N*. The outer and inner surfaces of the coated poroelastic sphere are free 
from stress and at the interface, the stresses and displacements are continuous. 
For torsional vibrations, the only non-zero displacement components of the sol-
id and liquid media are ( )0, ,0v=u , ( )0, ,0V=U  respectively. These displace-
ments are functions of r  and time t . When 0u = , 0w =  and v  is a func-
tion of r  and time t , the equations of motion (1) in spherical polar form re-
duces to  
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where 
2
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∂∂
. 

Let the propagation mode shapes of solid and liquid v  and V  are  
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( ) ( )i ie ,  e ,t tv f r V F rω ω= =                   (4) 

here ω  is the frequency of wave and i  is complex unity or 2i 1= − . Substitu-
tion of Equation (4) in Equation (3) results in 
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The second equation of (5) gives 

1
12 22 .F K K f−= −                          (7) 

Using Equation (7) into first equation of (5), we obtain  
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In Equation (9), 3V  is shear wave velocity [8] and 11K , 12K , 22 K  are de-
fined in Equation (6). Equation (8) is an equation that can be reduced to Bessel’s 
differential equation of fractional order. Hence the solution of Equation (8) is 

( ) ( ) ( )1 0 3 2 0 3 ,f r C j r C y rξ ξ= +                 (10) 

where 1C  and 2C  are constants and nj , ny  are Spherical Bessel functions of 
first and second kind respectively ( n  is the order of spherical harmonic).  

Thus the displacement of solid is 

( ) ( ) i
1 0 3 2 0 3 e .tv C j r C y r ωξ ξ = +                 (11) 

From Equation (4), it can be seen that the normal strains rre , eθθ  and eψψ  
are all zero. Therefore the dilatations of solid and liquid media each is zero. 
Hence the liquid pressure s developed in solid-liquid aggregate following Equa-
tion (2) is identically zero. Accordingly for torsional vibrations no distinction 
between a permeable and an impermeable surface is made. Considering the 
boundary to be stress free, the frequency equation obtained for torsional vibra-
tions is same for both permeable and impermeable surfaces. When 0u = , 

0w =  and v  is a function of r  and time t , the only non-zero stress rs θ  for 
solid is 

.r
v vN
r rθσ ∂ = − ∂ 

                      (12) 

The stresses and displacements of solid for the outer spherical shell (coating) 
and inner spherical shell (core) are  



S. A. Shah et al. 
 

22 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

i
1 11 2 12

* i
1 23 2 24

* i
1 31 2 32 1 33 2 34

* i
1 41 2 42 1 43 2 44

e ,

e ,

e ,

e ,

t
r

t
r

t
r r

t

C M r C M r

D M r D M r

C M r C M r D M r D M r

v v C M r C M r D M r D M r

ω
θ

ω
θ

ω
θ θ

ω

σ

σ

σ σ

= +  
= +  
− = + + +  

− = + + +  

    (13) 

where the elements ( )jkM r  are  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

11 3 1 3 0 3

12 3 1 3 0 3

13 14

*
* * * *

21 22 23 3 1 3 0 3

*
* * * *

24 3 1 3 0 3

31 11 32 12

33 23 34 24

41 0 3

,

,

0,    0,

0,   0,    ,

,

,   ,   

,   ,

,    

NM r N j r j r
r
NM r N y r y r
r

M r M r

NM r M r M r N j r j r
r

NM r N y r y r
r

M r M r M r M r

M r M r M r M r

M r j r

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ

= − −

= − −

= =

= = = − −

= − −

= =

= − = −

= ( ) ( )
( ) ( ) ( ) ( )

42 0 3

* *
43 0 3 44 0 3

,    

,    .

M r y r

M r j r M r y r

ξ

ξ ξ

=

= − = −

   (14) 

4. Frequency Equation 

Outer and inner surfaces of the coated hollow poroelastic sphere are assumed to 
free from stress and at the interface, the stresses and displacements are conti-
nuous. Thus the boundary conditions for the considered problem are  

2
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Since the considered vibrations are shear vibrations, the dilatations of solid 
and liquid media each is zero, thereby liquid pressures in outer and inner poroe-
lastic spherical shells s  and *s  developed in solid-liquid aggregate will be 
identically zero and no distinction between pervious and impervious surface is 
made. Thus by using the boundary conditions (15) and eliminating the constants 
C1, C2, D1, D2 we get the frequency equation  
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In Equation (16), the elements ( )jkM r  are defined in Equation (14). 
Now we consider two particular cases of the frequency Equation (16) in the 

following: 
(i) When inner radius of core approaches to zero, the considered problem re-

duces to the problem of torsional wave propagation in solid coated poroelastic 
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sphere. In this case, the frequency Equation (16) under suitable boundary condi-
tions reduce to  
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where the elements ( )jkM r  are defined in Equation (14). 
(ii) When the poroelastic material of the core vanishes, the considered prob-

lem reduces to the problem of torsional wave propagation in hollow poroelastic 
sphere and the frequency Equation (16) or (17) under suitable boundary condi-
tions, reduce to  
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By using the following relations [9] 
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Equation (18) is simplified to the form [Equation (17), Bulletin of Calcutta 
Mathematical Society, Volume.103, pp.161-170] presented in and studied by 
Ahmed Shah and Tajuddin [10]. 

5. Normalization of Frequency Equation 

For the purpose of analysis of the frequency Equation (16), we consider a non- 
dissipative medium where b = 0. It is convenient to introduce the following non- 
dimensional variables:  

2 2* **
*0 0 2

4 4 2 1* * *
3 3 10

,  ,  ,   ,   ,    ,    ,
V V rN N h ab a z z g g
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where * * * *2H P Q R= + + . Also *
0C  and *

0V  are reference velocities  
( *2 * *

0C N ρ= , *2 * *
0V H ρ= ) with * * * *

11 12 222ρ ρ ρ ρ= + + . The non dimensional 
form of frequency Equation (16) with the help of Equation (20) consists of non- 
dimensional frequency as a function of 1g  and 2g . Coated poroelastic hollow 
spheres with thin, moderately thick and thick coating are considered. Parameters 
of two types of coated poroelastic hollow spheres are used to compute the fre-
quency as a function of ratio of thickness of core to inner radius. These coated 
poroelastic hollow spheres are designated as “coated sphere-I” and “coated 
sphere-II”. Poroelastic hollow sphere made of water saturated sandstone [11] is 
coated with sandstone saturated with kerosene [12] and this coated poroelastic 
sphere is designated as coated sphere-I. Poroelastic hollow sphere made of kero-
sene saturated sandstone is coated by sandstone saturated with water and this 
coated poroelastic sphere is designated as coated sphere-II. The non-dimen- 
sionalised physical parameters of these coated poroelastic spheres are given be-
low: 
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Material Parameter 4a  4b  z  *z  

Coated Sphere-I 0.123 0.412 7.183 2.129 
Coated Sphere-II 0.780 0.234 1.142 3.851 

6. Numerical Results and Discussion  

Frequency equation of coated poroelastic spheres (16) is non-dimensionalised. 
For a given poroelastic material, Equation (16) constitutes a relation between 
non-dimensional frequency and ratio of thickness of core to inner radius for 
fixed values of 2g . Different values of g2, viz., 1.1, 1.5 and 3.0 are taken for nu-
merical computation. These values of 2g  represent thin coating, moderately 
thick coating and thick coating respectively. Since stress wave propagation is the 
phenomenon of energy transfer, hence it plays a major role in fretting. 

The phase frequency first three modes of coated poroelastic spheres-I and II 
are presented in Figure 1 for thin coating. From Figure 1 it is clear that the fre-
quency of coated poroelastic sphere-I is less than that of coated poroelastic 
sphere-II when 10.1 0.75h r< < . Then beyond 1 0.75h r = , the frequency of 
poroelastic sphere-II is less than that of the sphere-I. The first three modes in 
coated sphere-I and II are non-dispersive; and the frequency is almost constant 
or there is a small variation. 

Figure 2 shows the frequency of moderately thick coated spheres-I and II 
where we see that the frequency of coated sphere-I is more than coated sphere-II 
for each of the first three modes in 10.1 0.3h r< <  and beyond 1 0.3h r = ,, the 
frequency of coated sphere-II is more than that of coated sphere-I. Also we see 
that the first three modes in coated sphere-II are non-dispersive while these are 
dispersive in coated sphere-I. The frequencies of thick coated sphere-I and II are 
presented in Figure 3 and here we see that the first three modes in coated  
 

 
Figure 1. Frequency as a function of h/r1 (Thin Coating). 

 

 
Figure 2. Frequency as a function of h/r1 (Moderately Thick Coating). 
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Figure 3. Frequency as a function of h/r1 (Thick Coating). 

 
sphere-I and II are dispersive. Hence it can be concluded that modes are non 
dispersive in thin coated spheres and as the thickness increases, the modes be-
come dispersive. We also see there is increase in the frequency with the increase 
in thickness of the coating.  
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