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ABSTRACT 

The first-order small slope approximation is applied to model the scattering strength from a rough surface in underwater 
acoustics to account for seafloor for high frequencies from 10 kHz to hundreds of kilohertz. Emphasis is placed on 
simulating the response from two-dimensional anisotropic rough surfaces. Several rough surfaces are described based 
on structure functions such as the particular sandy ripples shape. The scattering strength is predicted by the small slope 
approximation and is first compared to a well known bistatic method, interpolating the Kirchhoff approximation and the 
small perturbations model, assuming that the rough interface is isotropic. Results obtained from the two different mod-
els are similar and show a higher level in the specular direction than in the other directions. For an isotropic surface, 
changing the propagation plane gives similar results. Then, SSA, which lets us adapt the structure function of the 
roughness straight away, is tested trough several anisotropic surfaces. In a longitudinal direction of ripples, the scatter-
ing strength is mostly in the specular direction, whereas in the transversal direction of ripples, the scattering strength 
prediction shows high values for different angular directions. Thus the scattering strength is spread in a very different 
way strictly related to the particular features of the ripples. Combine our results, indicates the importance of taking into 
account the anisotropy of a surface in a scattering prediction process, taking into account the positions of the emitter 
and of the receiver which are naturally significant when predicting scattering strength. 
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1. Introduction 

Acoustics scattering from the ocean bottom is a subject 
of interest for many remote sensing acoustic sensing ma- 
rine activities, such as classification of seabed, or map- 
ping of ecosystem habitat [1,2]. To these purposes, high 
frequency tools, as single beam or multibeam echosound- 
ers or side scan sonars, are used to assess the bottom rou- 
ghness and improve the knowledge of the environment 
[3,4]. However if such systems can generally provide a 
detailed image of the bottom, the relationship between 
the acoustic measurements and the physical parameters 
of the bottom is strongly dependent on the type of envi- 
ronment, and in particular the type of bottom roughness. 
To gain more insights into scattering phenomena, it is 
needed to develop and use pertinent scattering models 
considering the roughness of seabeds. The investigation 
of the interest and efficiency of one of these models, the 
so-called Small Slope Approximation (SSA) is addressed 
in this paper. This choice has been made based on the  

possibility of taking into account different types of rough 
surface as well as due to the direct link between rough- 
ness and scattering which of importance in a perspective 
of roughness inversion, thus for predicting roughness 
trough scattering data. 

The seafloor is either isotropic or anisotropic. Practi-
cally speaking, the roughness of the bottom can vary from 
smooth surfaces to anisotropic highly varying surfaces as 
a function of surface heights and of acoustic wavelength. 
There are already well-known theoretical methods for 
predicting roughness scattering from rough surface. One 
of the most common models is based on the Kirchhoff 
approximation [5,6] and need large curvature of the rough 
interface compared to the acoustic wavelength. Another 
widely used model is based on the small perturbation me- 
thod [7,8] and is valid only when the small-scale rough- 
ness is smaller than the acoustic wavelength. Then a com- 
posite model has been derived to avoid limitations of the 
two previous scattering models [9,10], but is only valid  
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for monostatic cases and isotropic rough seafloors. Jack- 
son and coworkers [10-12] have modified the monostatic 
method to obtain a bistatic model which only works for 
isotropic surfaces. This model can be seen as the inter- 
polation between to other models, the Kirchhoff ap- 
proximation (KA) and the small perturbations method 
(SPM). KA predicts scattering in the specular direction 
whereas SPM is used for predicting in the other direc- 
tions. This model was used by Choi et al. [13,14] for com- 
paring theory with real data obtained from their meas- 
urements above ripple field. Nevertheless their compare- 
sons showed that the orientation of the measurement pla- 
ne compared to the direction of the ripples has a great ef- 
fect on the scattering. Thus they conclude on the need of 
considering the anisotropic state of a surface into the scat- 
tering process. 

To take into account the anisotropy of the seabed, 
which is the basic motivation of this paper, the small 
slope approximation, originally developed by Vorono- 
vich [15], is interesting since it allows to consider vari-
ous anisotropic rough interfaces via the two-dimensional 
structure function. This method has been elaborated as a 
unifying method able to reconcile small perturbations 
method and Kirchhoff approximation [16]. Theoretical 
expressions have been developed at different orders by 
Thorsos and Broschat in [17,18] without taking into ac- 
count quasi-periodic seafloors and further studied by 
Gragg et al. and Jackson et al. [19,20] in the case of iso- 
tropic interfaces. 

The main concern is to better understand how a sandy 
sediment with directional features can impact the acous- 
tic propagation and scattering by using the SSA and by 
modifying the roughness structure of the seafloor. For 
instance, ripples, which are close to a periodic surface, 
are a complicated type of rough interface. They are not 
always perfectly periodic, They may be dependent on 
particular parameters like currents and/or waves, their 
shape changes with time, and so on. Experiments have 
already been done to measure such surfaces under certain 
conditions [21], whereas theoretical descriptions of rip- 
ples are not global and are different from one type of 
ripples to another. For modelling the seafloor, a random 
process is assumed and depends on a height covariance 
which takes into acount particular features of the wanted 
rough surface. Characteristics of the rough surface are, 
for instance, related to rms-height, to the correlation len- 
gths in different direction, to the wavelength of the sine 
shape function, and so on, depending on the height co- 
variance of interest. 

This paper is organized as follows. Section 2 describes 
the configuration of the scattering problem, shows in 
details how the roughness of a relief is taken into account 
in the scattering process and the main expressions of the 
small slope approximation are described. The structure 

function is directly related to the scattering method. In 
Section 3, different rough surfaces are evaluated. The 
small slope approximation is used with different types of 
reliefs, from the simplest case to a more complicated ca- 
se: first an isotropic surface is tested, based on sediment 
parameters, often used for dealing with isotropic sedi- 
ment, that is why the method is compared to another one, 
chosen as a reference. The results validate the use of the 
small slope approximation in this isotropic test case. Then 
results are obtained from different anisotropic cases, one 
from a surface based on a Gaussian distribution, second 
from a rough surface interface with a quasi-periodic shape 
we developed. We finally discuss the effects of the relief 
on the predictions of the roughness scattering strength. 

2. Modelling of Scattering Strength from a 
Rough Surface 

2.1. Context and Geometry 

The geometry of the scattering model is depicted in Fig-
ure 1 in terms of incident and scattered waves. 

ki and ks are respectively the incident and scattered 
wave vectors. 

 zi, k i ik K               (1) 

 zs, k s sk K               (2) 

where Ki and Ks are the transverse components of the 
incident and scattered waves in the (x, y)-directions, so 

 i xi yiK k ,k  and  s xs yK k ,k



s . These wave com-

ponents depend on the acoustic wavenumber, k, on the 
grazing incident angle i 0 ,90     and on the grazing 

scattered angle  s 0 ,180   . The azimuth angles are  

 
 

incident 
wave 

scattered 
wave 

z 

Ki
Ks

x

 

Figure 1. Configuration of the scattering problem with the 
incident wave vector i , the scattered wave vector ks, the 
grazing incident angle θi, the azimuth incident angle i

k
 , the 

grazing scattered angle θs and the azimuth scattered angle 

s . 
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where  C r  and  C 0  are respectively the height co-  also taken into account and change with positive anti-
clockwise angles    i s, 0 ,180      in our simulations. 
The vertical component in the z-direction, kzi and kzs,  

variance at the position r and at zero lag. The two-di- 
mensional covariance is defined as follows. 

respect  2 2 2
z xk k k k        C h h  r r r r           (5) 

y . These terms are used to  

with  the mean and r  the lag. One should notice 
that for a zero lag the autocorrelation is equal to 1 for 
 C r  divided by its variance. 

solve the scattering problem from a rough surface which 
statistical descriptions follow. Figure 2 shows examples 
of various angular configurations of interest for the dif- 
ferent simulations presented in Section 3. One of the most typical isotropic structure functions is 

based on the grain sediment [9-12]. It is parameterized by 
a power-law spectrum and is defined by the following 
expression 

2.2. Modelling of the Isotropic and Anisotropic 
Surfaces via the Structure Function 

     
   

2
2 22π Γ 2 2

1 Γ 1i i

w
D D r r




  


 

 
r     (6) 

The water and the seafloor are separated by a rough in-
terface. In our context, this surface is considered plane on 
the average and is defined as 

where r is the distance, w2 the spectral strength, 
 2 2 2    with 2  the spectral exponent Γ  is the 

gamma function. Nevertheless, to be able to change the 
roughness by modifying the correlation lengths, Lx and Ly 

respectively in the x- and y-directions, and the rms- 
height of the surface directly, two main structures func-
tions are of interest in this study. One of the structure 
function, Dg is based on a Gaussian distribution. This type 
of distribution is well known when simulating scattering 
strength from a rough surface [6,8]. 

 z h r                 (3) 

where  ,x yr  is the position on the  , x y -plane, h 
is the deviation of the interface relative to its means 
plane , z is usually considered as a random process. 
To take into account the relief, its isotropic or anisotropic 
feature, when simulating scattering strength by a rough 
surface, the structure function is defined by Equation (4). 

0z 

    D C C r 0 r            (4) 
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Figure 2. Angular configurations for different cases of interest: (top left) configuration for an isotropic surface as a function 
of the scattered angle s ; (top right) configuration for an isotropic surface as a function of the scattered azimuth angle s ; 

(bottom left) configuration for an isotropic surface as a function of the scattered angle s  into two different planes, the (x, 

z)-plane for i 0 s= = and the (y, z)-plane for i 90  s= = ; (bottom right) configuration for an anisotropic surface as a 

function of the scattered azimuth angle s  for different azimuth incident angle i . 
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r 
           (7) 

The structure function Dg is used either to model an 
isotropic surface or an anisotropic surface, depending on 
the values applied to the correlation lengths, Lx and Ly, 
respectively in the x and y directions. To deal with a part 
of periodicity and directionality of an interface, such as 
sandy ripples, we suggested another structure function, 
Dp which is based on a sine function. 

 

    
2 2

2 2π
2 1 cos cos sin e x y

p

x y

L L
rms p p

p

D

h x y 


       

r


  

 

(8) 
The structure function Dp is used to model a rough 

surface with periodic features, thus the surface is anisot- 
ropic and respect few statistical properties but mandatory 
such as the second-order stationary of the surface and 
that the surface is ergodic. In case of ripples, we assume 
that they do not change due to a particular event. Sur- 
faces based on this structure function are in the following 
of this paper called ripples. The terms p and p are re-
spectively the angle for the direction of the periodic sine 
shape and the wavelength of the sine function. The cor-
relation lengths Lx and Ly allow to get a rough surface 
with periodic features more or less disordered. 

Combining the three different structure functions al- 
low us to simulate particular rough seafloors for predict- 
ing scattering strength.  is appropriate for a ran- 
dom rough surface made of a sediment which roughness 
properties have been estimated [10,12].  is ap- 
propriate either for testing isotropic or anisotropic rough 
surfaces but without any feature about directionality or 
periodicity. Thus Dp which takes into account a quasi- 
periodic rough surface, is of interest since the effect on 
an acoustic wave is expected to be different from other 
types of anisotropic surfaces, and would give relevant 
information concerning the approach used to analyze the 
effect of sandy ripples. 

 iD r

 gD r

To get one realization of a surface based on one of the 
previous structure functions, thus on one of the height 
covariances, first a Gaussian white surface is produced. 
Then its Fourier transform is weighted by the square root 
of the spectrum based on a chosen height covariance. 
Finally, the inverse Fourier transform gives one realiza- 
tion of the rough surface. The process to get a relief is 
summarized by Equation (9) 

     1r F F F Bh C       
r 

where F is the Fourier transform, F–1 the inverse Fourier 

3 shows one realization of an isotropic surface 
ba

sotropic sur-
fa

ation of an anisotropic sur-
fa

        (9) 

transform and B a Gaussian white noise. As an illustra- 
tion, we present in the following three examples of rough 
surfaces. 

Figure 
sed on a Gaussian distribution which features are 

similar for all (x, y)-directions. Thus for such a surface, 
scattering model can be simplified from a two dimen-
sional problem to one dimensional case. 

Figure 4 shows one realization of an ani
ce based on a Gaussian distribution, but with different 

features depending on the direction. In the y-direction, 
the correlation length is longer, thus the surface has got a 
smoother shape compared to the x-direction where the 
correlation length is smaller. 

Figure 5 shows one realiz
ce based on the structure function  pD r . Other hei- 

ght fluctuations are observed. They ar to the expo-
nential part of the structure function and they are related 
to the choice of very long correlation lengths versus 

e due 

p  
in this case. The direction and the periodicity of the relief 
depend on p  and p  respectively.  
 

 

Figure 3. One realization of an isotropic surface, 5 m  5 m,  ×
based on a Gaussian distribution (i.e. height covariance re- 
lated to the structure function Dg(r)), with Lx = Ly = 20 cm, 
hrms = 5 cm. 
 

 

Figure 4. One realization of an anisotropic surface, 5  × 5 

rms

 m
m, based on a Gaussian distribution (i.e. height covariance 
related to the structure function Dg (r)), with Lx = 20 cm, Ly 
= 20 cm, h  = 5 cm. 
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Figure 5. One realization of an anisotropic surface, 5 m × 5 m, based on a sine function (i.e. height covarianc elated to the 
structure function D (r)), with L  = L  = 300 cm, h  = 5 cm, λ  = 20 cm, φ  = 30˚. 

n

odelling of Scattering Strength with SSA-1 

e r
p x y rms p p

 
In the following simulations with such a type of relief, 

lo ger correlation lengths i.e. 100 mx yL L   will be 
used to get a large surface mostly dependent on the sine 
shape. 

2.3. M

The scattering problem is analyzed trough the scattering 
strength, SS, which is defined in decibel (dB) as: 

   
 

  

10

10

,
, , , 10 log s s sI

SS
 

   
 

  
,

10 log , , ,

i i s s
i i i

i i s s

I

m

 

   

 
 



 (10) 

where iI is the incident intensity, sI  is the scattered 
intensity and m is the dimensionless scattering coefficient. 
The latter parameter represents how the acoustic wave is 
scattered from the rough surface (ref. at 1 m-distance 
over a 1 m2 surface). In this study, m is evaluated by us-
ing the first-order small slope approximation [12, 
15,17,19] and is written as : 

 

 
 
         

2 2

24
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, , ,i i s sm    

, , ,

4π

e e d d
zs zi zs zi

spm i i s s

zs zi

k k D k k D
i

k A

k k

e x y

   

                

 




 
   

  
 

r
K r

 

(11) 

where   is the waveve  

 

    xs xi ys yiK k k , k k   ctor 

difference,  ,x yr  is the position on the  ,x y -plane 

and  D r  is the structure function defined in the pre-

 
viou  (see Equation (4)). In this study, scattering 
from sediment volume and multiple scattering are 
not considered, whereas losses of energy due to trans- 
mission into the sediment (from homogeneous or strati- 

s section

fied seafloor) are considered through  spm i i s sA , , ,    . 
Assuming that the sediment is fluid, this parameter de- 
pends on the plane wave reflection coefficients and on 
the incident and scattered waves as Equation (12) [12,22]. 
where   is the density ratio between sediment and wa-
ter,   is the wavenumber ratio between sediment and 
water, R is the plane-wave reflection coefficient depend-
ing either on the grazing incident angle i  or on the 
grazing scattered angle s . One should note that the 
first-order small slope approximation coefficient could 
be shared into two major parts. Before the integral in 
Equation (11), sediment characteristics are defined, thus 
losses due to sediment are taken into account. Then the 
integral is related to the roughness of the seafloor which 
is the cause of the surface scattering phenomenon. 

Concerning the choice of the roughness into the scat- 
tering model, our interest is to change easily the type of 
roughness when predicting scattering. The small slope 
approximation allows us to modify directly the height 
statistics, either by using true measurements of a rough 
surface or by using theoretical model to describe the ap-
proximation of first order is compared to a well-known 
bistatic method based on an isotropic surface, thus the 
effect of the isotropic roughness are shown. Then, SSA-1 
is analyzed based on an anisotropic rough surface ob- 
tained by a Gaussian distribution. Finally, the model is 
used with another anisotropic roughness we suggested in  
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roughness. This modelling approach differs from many 
computations where anisotropy is directly implemented 
in the scattered field. The advantage of providing the 
roughness straightaway is also related to the unique limi- 
tation of SSA of first order: the elevation slopes have to 
e small enough. This is an asset compared to other scat-

 the scattering strength obtained with 

r structure function described by Equa- 
atic 
SA 

and  analyzed 

 Then

b
tering models where limitations are more numerous. To 
avoid shadow at very small grazing angles, higher orders 
of the SSA method could be considered [17,18]. Never- 
theless the model of first order is relevant because the 
scattering coefficient is directly related to the roughness 
statistics and makes a roughness inversion process possi- 
ble. In order to keep this ability and to take into account 
the limitation, the validity area compared to the type of 
roughness should always be kept in mind when analyzing 
the scattering data. 

3. Simulations: A Parametric Study 

This section is organized as follows: first the small slope 
this paper. The anisotropy of a rough surface is first ex- 
amined, then the complexity of the anisotropic roughness 
is enhanced through
SSA-1. 

3.1. Study 1: Analysis of SSA-1 Compared to 
Jackson et al. Model (Case of Di(r)) 

The small slope approximation is used to predict rough- 
ness scattering from an isotropic surface based on the 
particula   iD r  
tion (6) and always used in prediction by the bist
model developed by Jackson et al. [11,12]. Both S

Jackson et al. models are first compared to
the efficiency of SSA-1 assuming a basic environment 
made of sediment (fine sand or coarse sand) and based 
on an isotropic rough surface.  scattering predictions 
are performed into different propagation planes, through 
a change of the scattered azimuth angle, to examine the 
properties of isotropy on scattering strength.  

Two types of sediment, fine sand and coarse sand, are 
used as examples. The properties of these sediments are 
given in the following Table 1. 

Figure 6 shows the prediction of the scattering stren- 
gth, SS, as a function of the scattered angle s  in one 
plane such as 0i s   , for two kinds of sedi

s) and

ments, 
fin

ith symbol  com- 
pa

e sand (lines with circles) and coarse sand (line with 
squares). The predictions of the roughness scattering are 
made with SSA (dashed line w

red to the bistatic model developed by Jackson et al. 
(full line with symbols) [11]. First of all, for two types of 
sediment and fo ifferent models, the scattering 
strength is higher in the specular direction for s i

r the two d
   

and decreases to a minimum value at grazing scattered 
angles. Then, apart from the specular direction and due to 
the particularity of each sediment (roughness dimensions  

Table 1. Sediment parameters. 

Parameters Fine sand 
Coarse 
sand 

density ratio ρ 1.451 2.231 

compressional sound speed cp [m/s] 1660 1876 

loss parameter δp 0.01602 0.01638 

roughness spectral exponent γ2 3.25 3.25 

roughness spectral strength w2 24m     8.6 × 10–5 2.2 × 10–4 

 

 

Figure 6. Predictions and comparisons (SSA-1 versus the 
bistatic Jackon’s model) of scattering strength, SS, as a 
function of the scattered angle θs for coarse sand (lines with 
squares) and for fine sand (lines with circles) for f = 30 kHz, 
θi = 30˚, φi = φs = 0˚. 
 
and losses), the scattering strength is mainly higher for a 
coarse sand than for a fine sand. For both types of sedi- 
ment, predictions are very close between SSA and the 
other bistatic model for most of the scattered angles. The 
small differences, about less than 2 dB, appear at par-
ticular scattered angles around s 20   and around 

s 60   for these test cases. One should notice that the 
bistatic model developed by Jackson et al. is based on the 
interpolation of both the Kirchhoff approximation and 
the small perturbations method (KA being used in the 
specular direction and SPM in th rections). The e other di
change from KA to SPM appear, in these simulated pre-
dicttions at scattered angles approximately around s 20   
and around s 60  , which match the angles where differ-
ences were found. The small slope approximation being a 
unified method, small variations may be observed at the 
particular angles of interpolation of the other method. 

Figure 7 shows the predictions of scat ering strength 
as a function of azimuth angle s

t
  for the two types of 

sediments, between SSA and the other isotropic bistatic 
model, used in the previous test case. The incident and 
scattered angles are equal such as i s 30   , with an 
azimuth incident angle set to i 0  . For both coarse  
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Figure 7. Predictions and comparisons (SSA-1 versus the 
bistatic Jackon’s model) of scattering strength, SS, as a 
function of the scattered azimuth angle φs for coarse sand 
(lines with squares) and for fine sand (lines with circles) for 
f = 30 kHz, θi = θs = 30˚, φi = 0˚. 
 
sand and fine sand, and for the two different models, the 
scattering strength is higher at very low azimuth angles, 
with a maximum value for s 0   

en th
nd than fo
from
a

 wavel
r than th

ic mod

which match with 
the specular direction. Th e scattering strength is 
mainly higher for a coarse sa r a fine sand, par- 
ticularly in a direction away  the specular direction
and this feature has to be rel ted to the roughness char

ength, the sediment 
ade of fine sand is smoothe e coarse sand, thus 

 
- 

acteristics of each sediment (coarse sand rougher than fine 
sand) as well as to the losses parameters (fine sand at- 
tenuates acoustic waves more than coarse sand). For one 
given frequency, i.e. one given
m
the energy is spread in more directions for the coarse 
sand case. Finally, both predictions from SSA and pre- 
dictions from the other bistat el are very similar, 
especially at angles equal to the specular angle (around 

s 0  ) and at scattered azimuth angles higher than 60˚. 
Small differences, less than 2 dB, appear at azimuth scat- 
tered angles around s 30  . These angle area match 
the ones corresponding to the interpolation between KA 
and SPM. 

Similarities of the simulations and very small differ- 
ences of the same kind have been observed for other si-
mulated cases where the type of sediment, or the fre- 
quency, and so on, were modified. Contrary to the bista- 
tic model developed by Jackson et al., the small slope 
approximation is a unified method of the KA and SPM 
characteristics, that is why comparisons between SSA 

 other bistatic model were first of interest. Then 
one advantage of the small slope approximation, through 
the expression given tion (11), is that different 
structure functions can be implemented directly with this 
model. Com

and the

by Equa

bine these primary results, based on an iso-

tropic surface, allows to implement more complicated 
seafloors in the scattering process through the other 
structure functions  rgD  and  rpD . 

3.2. Study 2: Analysis of SSA-1 with an  
Anisotropic Surface 

3.2.1. Case of a 2-D Gaussian Structure  
Function Dg(r) 

A Gaussian distribution through the structure function Dg 
is first used to model roughness (see the corresponding 
relief in Figure 4). The correlation length in the x-direc- 
tion varied from the one in the y-direction such as 
k 12xL   and k 20yL  . The variations of the height 
are taken into account in kh = 1.5 with k the wavenumber. 
For a fixed value o Lx andf kh, 

ing as a function of the scattered angle 

k  kLy respect the limita- 
pes [18]. 
s scatter- 

tion of SSA, that is assuming small surface slo
Figure 8 shows the prediction of the roughnes

s , i 70  ,

i s

 into 
two different planes, in the (x, z)-plane with 0   , 

thand in the (y, z)-plane wi  i s 90    (see Figure 2 
for the angular configurations of the planes). For predic-
tions into the two different planes, the maximum value is 
obtained in the specular direction for s i 70   . Then 
the scattering strength decreases to a minimum values 

 at graz s. In the (y, z)-plane of Figure 8, 
the scattering strength covers a narrow band around 70˚, 
such as an scattered angle area about 30˚ at –10 dB. In 
the (x, z)-plane, the energy is spread in more directions, 
such as the scattered angle area is equal to 80˚ at –10 dB. 
This phenomenon follows the expected b ha in the 
direction where the surface is smoother, the scattered 
energy is distributed around the specular direction whereas 
for rougher surfaces, the energy is spread in more direc- 
tions. 
 

obtained ing angle

e viour: 

 

Figure 8. Prediction of scattering strength, SS, as a function 
of the scattered angle θs, for θi = 70˚; (line with circles) φi = 
φs = 0˚ thus for a plane where the correlation length is 
smaller kLx = 12; (line with squares) φi = φs = 90˚ thus for a 
plane where the correlation length is longer kLy = 20. 
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Figure 9 shows the scattering predictions, SS, as a 
function of the azimuth angle s , and depend on 

i s 70    and i 0  

ation lengt

. Two sim lations are compa- 
red. One is based on the anisotropic surface used previous- 

rel hs are 2  and 0

u

xLly which cor k 1 k 2yL  . 
ropic surface, 

both the 
12

The second 
such as co
x-direction a

simu sed 
rrel hs ilar in 
nd t -direction, with 

lation is ba
ation lengt
he y

on an
 are sim

 isot

k kx yL L  . For
d in the

 
a ximum  the isotropic c

specular direct
se, the ma

ion for s

 value is obtaine
0   and decreases with higher 

values of s . Th e  e scattering
180

 str ngth shows a minimum
values for s 

obtained in 


 case, the m

, thus in the 
axim

backward 
 value 

direction. For 
scattering 

s 0
the anisotropic
strength is 

um
the specular direction 

of the 
for   , 

then it decreases to a minimum around s 100   and 
finally increases in the backward direction for s 180  . 
Nevertheless, the value in the backward direction (–22 dB 
at s 180  ) is much lower than the value in the specu- 
lar direction (about –5 dB fort 0s  ). The scat tering 
strength is spread differently between simulations with 
an isotropic surface and with an anisotropic surface. The 
scattering strength is slightly higher in the specular direc-
tion, between s 0   and s 25  , of the anisotropic 
case, as well as for azimuth angles between s 150   
and s 180  . On the contrary, between s 25   and 

s 150  , scattering strength from the anisotropic case 
is lower than from the isotropic case, with 10 dB differ-
ence at s 90  . 

In the isotropic case, the scattering problem could be 
simplified to one direction which is not suitable in the 
anisotropic case since the entire surface induces an effect 
on the roughness scattering phenomenon. 
 

 

Figure 9. Prediction of the scattering strength, SS, as a 
function of the scattered azimuth angle φs, with θ  = θ  = 70˚, 

 = 0˚; (line with circles) different correlatio
i s

n lengths Lx ≠ 
y, (kLx = 12 and kLy = 20); (line with squares) Lx = Ly, (kLx 

= kLy = 12). 

3.2.2. Case of a 2-D Quasi-Periodic Structure  
Function Dg(r) 

The third type of structure function is now used for si-
mulating the small slope approximation (see the corre-
sponding relief in Figure 5) in the case of a quasi-perio 
dic relief such as a sandy bottom made of ripples. Scat- 
tering predictions are based on the structure function D  
defined by Equation (8), with a wavelength of 

φi

L

p

p 20 cm  , 
a rms height of 5 cm, a zero deviation angle of p 0  

m . The inci-
 

and large correlation lengths
dent wave is defined by

 100x yL L 
60 i 

pre
of the 

 tw
), with 

 and a frequency 
dictions of th

scattered angle 
o planes, in th

i s 0

of 50
e scattering

sθ . Scatter- 
e (x, z)-plane

 

 

kHz. Figure 10 shows  
strength as a function 
ing strength is given into
(dashed line in Figure 10   

Figu
, and in the
re 10) with

 
(y, z)-plane (line with squares in  

i s 90   . One should note that, in this test case, the 
(x, z)-plane in the transversal direction of the ripples (the 
acoustic waves propagate perpendicularly to the ripples 
directions) whereas the (y, z)-plane is in the longitudinal 
direction of the ripples (the acoustic waves pr
parallel to the ripples directions). Configurations o

gation planes are 

opagate 
f these 

propa depicted in Figure 2. 
The scattering strength shown in Figure 10 and de-

pending on the (y, z)-plane, is spread in a narrow band 
around 60˚ (about 5˚ at –10 dB), which is the specular 
direction. In this direction, the surface is much smoother 
and mainly depend on the correlation length 100 mLy  . 
Such a scattering behaviour, most of the acoustic  
spread in the specular direction, is expected for a smooth 
surface. Then in the (x, z)-pla , the scattering strength 
varies strongly as a function of the scattered angle s

 energy

ne
 , 

with eleven maximum values around 10 dB down to –40 
dB in this test case. The variation from one maximum 
 

 

 

Figure 10. Prediction of the scattering strength, SS, as a 
function of the scattered angle θs, θi = 60˚; (dashed line) φ  = 
φs = 0˚ thus propagation plane in the transversal direction 
to the ripples; (line with squares) φi = φs = 90˚ thus propa-
gation plane in the longitudinal direction to the ripples. 

i
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value to one minimum one is very fast, about 5˚ of dif-
ference to go from one extreme value to the other. Fur-
thermore, the angular lag between two maximum scat-
tering strengths is approximately 10˚, particularly for 
scattered angles between s 50   and s 150  

ned for 
. It in-

creases a bit for scattering st s obtairength s 50   
and s 150  . These 
shape of the roughness and thus through its structure 
function since the acoustics wavelength (3 cm for 50 Hz) 
is of order of the ripples dimensions (rms height of 5 cm 
and wavelength of 20 cm). 

Figure 11 shows scattering strength, SS, as a function 
of the azimuth scattered angle 

variations can be related to the 

s  for three different 
azimuth incident angles i 0  , i 45   and i 90  

 θs =θi = 
r the angu-

. 
The incident and scattere d by
60˚ with a 50 kHz-freque  fo

d an
ncy (see 

gles are define
Figure 2

lar configuration). The rough surface is similar to the 
quasi-periodic sandy ripple relief used in the previous 
simulation, based on the structure function Dp defined by 
Equation (8), with a wavelength of p 20 cm  , a rms 
height of 5 cm, a zero deviation angle of p 0   and 
large correlation lengths 100 mx yL L  . 

For i 0  , most of the energy is spread in the for-
ward direction (around the specular direction for s 0  ) 
and in the backscattering direction ( i 180   For an 
incident wave at i 45  , maxima are around  
and 

).

s 45  
s 135  , which are respectively the forward and 

the backward directions. For i 90   a maximum stren- 
gth appears at s 90   which is the forward direction, 
and also at 70˚ and 110˚. They correspond to positions of 
the scattered wave between the transversal and the lon- 
gitudinal directions of the quasi-periodic relief. In this 
simulated case, the scattering strength is still higher if  
 

 

Figure 11. Prediction of the scattering strength, SS, as a 
function of the scattered azimuth angle φs, θs = θi = 60˚; (line 
with squares) φi = 0˚; (dashed line) φi = 45˚; (line with circles) 
φi = 90˚. 

incident and scattered waves are in a same plane, the 
amount of energy spread in the backward direction is 
also important and scattering strength appear also in di- 
rections which are out from the forward and backward 
ones. Compared to the previous anisotropic case, the dis- 
tribution of energy is different and is closely related to 
the structure function which has been modified from a 
Gaussian case to a quasi-periodic case. Thus directional- 
ity and periodicity of a seabed seem to be relevant on the 
scattering strength distribution. 

4. Discussion 

The first order small slope approximation is used to pre-
dict sound scattering by an anisotropic rough surface. 
With this model, we address the effects of seabed rough- 
ness with particular attention being given to simulation

y to change the roughness structure, either by 

smoother direction of the 
surface, the scattering strength obtained considering one 

 would be spread around the specular 
 

he scattering strength is predicted differently 
fr

 

 
of the two-dimensional height structure function. The 
model is restricted by the usual small slopes assumptions, 
e.g., no sharp edges. The interest of this model is the 
possibilit
using measured heights or theoretical heights. The re- 
placement of such a surface by the one used in this study 
with a directional feature enhances the complexity of the 
numerical integral of SSA but expands the field of appli- 
cations.  

Predictions of the scattering strength from an anisot- 
ropic surface based on Gaussian distribution have shown 
that the choice of the positions of a source and a receiver 
compared to the rough isotropic surface is important and 
give different information. In a 

propagation plane
direction. On the contrary, for a propagation plane placed
in a rougher direction, the scattering strength is spread in 
more directions. For an anisotropic surface, the entire 
two-dimensionnal statistics of the surface should be kept 
instead of simplifying the model, to avoid inaccurate es- 
timation of the scattering strength. Furthermore, assume- 
ing an unknown surface, the differences obtained in the 
different propagation planes may be of interest for analy- 
zing the seafloor from the scattering strength data. Then, 
combine results obtained from the anisotropic surface 
based on a quasi-periodic structure function, indicate as 
well the importance of taking into account the anisotropy 
in a model used for estimating the scattering energy dis-
tribution. T

om one propagation plane to another one. A seafloor 
with a particular anisotropic shape shows a scattering be- 
haviour different from another particular anisotropic sea- 
floor, i.e. a Gaussian distributed surface is different from 
a surface with a quasi-periodic shape and thus their sta- 
tistics are dissimilar, that is why, in case of the rip-
ple-shaped surface and for prediction as a function of the 
scattered angle, several values appear with approximately 
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the same level and thus for different scattered angles. In 
this case, for a propagation plane in the transversal direc- 
tion of the ripples, the specular direction is not the direc- 
tion of interest. On the contrary, this direction is of im- 
portance for the simulations made in the propagation 
plane in the longitudinal direction of the quasi-periodic 
shape. Again, the results show the effect of choosing the 
position of the emitter and receiver compared to the rou- 
ghness of the surface. Nevertheless, these very high-chang- 
ing values, predicted by SSA-1 should be minimized in 
practice, since sonars or transducers depend on their own 
directivity, thus give an average value of the scattering 
strength.  

Simulations and literature have shown the requirement 
of combining directionality of the anisotropy in the scat- 
tering model to correctly predict scattering strength in all 
directions. To better analyze these conclusions, tank ex- 
periments are required in order to model the appropriate 
structure function and validate the scattering process de- 
scribed in this paper, since data obtained from a control- 
led environment are always of interest to better under- 
stand a physical problem. It would be word worth also 
predicting roughness instead of roughness scattering via 
the structure function by extraction of this component. 
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