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Abstract 
Genetic epidemiological studies have suggested that several genetic variants increase the risk for 
hypertension. It is likely that a number of genes rather than a single gene account for the herita-
bility of this complex disorder. However, the genetic analysis of hypertension produced complex, 
inconsistent and nonreproducible results, which makes it difficult to draw conclusions about the 
association between specific genes and hypertension. Material and methods: In this study, we 
aimed to analyze SNPs that had been investigated in hypertension. These SNPs were collected 
from text-mind hypertension, obesity and diabetic (T-HOD) data base program, during the period 
of 31 may 2016. SNPs lists which were reported with hypertension were collected in excel file 
sheet and processed for analysis using different types of bioinformatics tools and programs. Re-
sults: SNPs were evaluated for their deleterious effect on the protein function and stability, in the 
present study, 7 SNPs were predicted deleterious (A288S, M731T, R172C, R50Q, G460W, K197N, 
G75V). Mutation3D server showed 3 of mutations (STEA4, PLD2, AZIN2, rs28933400, rs2286672, 
rs16835244 genes and corresponding rsSNPs respectively) were found to increase risk to hyper-
tension. 
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1. Introduction 
Hypertension (elevated blood pressure levels exceeding 140/90 mmHg according to WHO criteria) is a common 
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complex disorder, which affects 15% - 20% of adult population in Western societies [1]. It is classified as primary 
(essential) or secondary hypertension. The former type is used to describe hypertension without a known pa-
thology. 

1.1. Genetics of Hypertension 
Genetic epidemiological studies have suggested that several genetic variants increase the risk for hypertension [2]. 
It is likely that a number of genes rather than a single gene account for the heritability of this complex disorder. 
However, the genetic analysis of hypertension produced complex, inconsistent and nonreproducible results, which 
makes it difficult to draw conclusions about the association between specific genes and hypertension [3]. 

1.2. T-HOD Data Base 
Text-mined Hypertension, Obesity and Diabetes candidate gene database (T-HOD), employed the state-of-art 
text-mining technologies, including a gene identification (GI) system [4] [5], a disease term recognition system 
and the disease-gene relation extraction system—HypertenGene [6]. Because gene names vary a great deal, dif-
ferent genes may contain the same name. Moreover, gene names may be ambiguous and easily confused with 
terms employed in other research fields. The employed GI system was designed to alleviate the above problems, 
which was used to recognize gene terms and link them to their corresponding Entrez Gene IDs using a collective 
entity linking approach [6]. For extracting hypertension-related genes, we formulated the task as a binary classi-
fication problem in HypertenGene: for each recognized disease-gene pair from sentences in an abstract, deter-
mine whether it is a key relation. HypertenGene applies a maximum entropy model with a set of features, such 
as n-gram, chunk, parse tree and template features. We then rank all extracted genes according to their probabil-
ity as calculated by the model. We extended and optimized the above systems to extract HOD genes in our 
T-HOD. 

1.3. SNP 
Single Nucleotide Polymorphism, causes the most common genetic mutation in human. Around 93% of human 
genes represent SNPs [7]. They are generating the majority of biological variations among individuals. SNPs 
can fall within the coding regions (coding SNPs) or non-coding regions of genes (noncoding SNPs), or in the 
intergenic region between two genes [8] [9]. While non-coding SNPs and intergenic may have a subtle impact 
[10], nonsynonymous coding SNPs have the major impact on individual by changing the protein sequence. The 
alterations that caused by these mutations on proteins sequences may alter protein function and structure [11]. 
Moreover these SNPs can affect the binding site for many transcriptional factors [10]. 

Normally, two different alleles, and also triallelic SNPs in which three different base variations may coexist 
within a population [11]. SNPs are been associated with many hereditary diseases like sickle cell anaemia, beta 
thalathemia and lung fibrosis [12]-[14]. Severity of disease or responds to treatment may be associated with ex-
istence of some types of SNPs [15]. Association studies can find relationship between different types of SNPs and 
diseases related to target populations [16]. The distribution of SNPs within human genome is not homogeneous, 
but the most SNPs are found within the non-coding region of the DNA, fewer are falling in the coding region, this 
is due to the natural selection mechanism adaptation [10] [15]. 

1.4. Biomedical Research 
SNPs’ has a greatest importance in biomedical research is for comparing regions of the genome between cohorts 
(such as with matched cohorts with and without a disease) in genome-wide association studies. SNPs have been 
used in genome-wide association studies as high-resolution markers in gene mapping related to diseases or normal 
traits. SNPs without an observable impact on the phenotype (so called silent mutations) are still useful as genetic 
markers in genome-wide association studies, because of their quantity and the stable inheritance over generations 
[17]. 

1.5. Disease 
A single SNP may cause a Mendelian disease, though for complex diseases, SNPs do not usually function indi-
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vidually, rather, they work in coordination with other SNPs to manifest a disease condition as has been seen in 
Osteoporosis [18]. All types of SNPs can have an observable phenotype or can result in disease. 

SNPs in non-coding regions can manifest in a higher risk of cancer [19], and may affect mRNA structure and 
disease susceptibility [20]. 

1.6. SNPs in Coding Regions 
Synonymous Substitutions by definition do not result in a change of amino acid in the protein, but still can affect 
its function in other ways. An example would be a seemingly silent mutation in the multidrug resistance gene 1 
(MDR1), which codes for a cellular membrane pump that expels drugs from the cell, can slow down translation 
and allow the peptide chain to fold into an unusual conformation, causing the mutant pump to be less functional 
[21]. 

1.7. Non-Synonymous Substitutions 
Missense-single change in the base results in change in amino acid of protein and its malfunction which leads to 
disease (e.g. c.1580G > T SNP in LMNA gene-position 1580 (nt) in the DNA sequence (CGT codon) causing the 
guanine to be replaced with the thymine, yielding CTT codon in the DNA sequence, results at the protein level in 
the replacement of the arginine by the leucine in the position 527 [22], at the phenotype level this manifests in 
overlapping mandibuloacral dysplasia and progeria syndrome) 

Nonsense-point mutation in a sequence of DNA that results in a premature stop codon, or a nonsense codon in 
the transcribed mRNA, and in a truncated, incomplete, and usually nonfunctional protein product (e.g. Cystic fi-
brosis caused by the G542X mutation in the cystic fibrosis transmembrane conductance regulator gene) [23]. 

2. Material and Methods 
2.1. Data Collection 
In this study we aimed to analyze SNPs that had been investigated in hypertension. These SNPs were collected 
from text-mind hypertension, obesity and diabetic (T-HOD) data base program, during the period of 31 may 
2016. The reported SNPs with hypertension were collected in excel file sheet and processed for analysis using 
different types of bioinformatics tools and programs. 

2.2. SNPs Analysis 
Functional effects of nsSNPs were predicted using different types of bioinformatics tools and programs, these 
program included SIFT (http://sift.jcvi.org/, http://provean.jcvi.org/index.php), PhD-SNP  
(http://snps.biofold.org/phd-snp/phd-snp.html), SNPs & GO (http://snps-and-go.biocomp.unibo.it/snps-and-go/), 
and MutPred (http://mutpred.mutdb.org/), furthermore polyphen was used to confirm PROVEAN results.  

2.3. Prediction of Functional SNPs by SIFT and PROVEAN 
SIFT is a sequence homology-based tool that sorts intolerant from tolerant amino acid substitutions and predicts 
whether an amino acid substitution in a protein will have a phenotypic effect. SIFT is based on the premise that 
protein evolution is correlated with protein function. Positions important for function should be conserved in an 
alignment of the protein family, whereas unimportant positions should appear diverse in an alignment [24]. 

Substitution of amino acid effects was predicted in protein function based on the conservation degree of the 
amino acid in the protein sequence, SIFT score of <0.05 is predicted by the algorithm to be damaged and >0.05 
is considered to be tolerated [25]. 

2.4. PROVEAN (Protein Variation Effect Analyzer) 
Is a soft ware that predict the amino acid substitution has any impact on the biological function of the protein, 
the assessment is based on PROVEAN score, where score of <−2.5 indicated that the protein variants is pre-
dicted have a deleterious effects, while the score of >−2.5 the variant is predicted to have a “neutral” effect. 
[26]. 
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2.5. Detection of Deleterious nsSNPs by PANTHER  
The PANTHER (Protein ANalysis THrough Evolutionary Relationships) Classification System was designed to 
classify proteins (and their genes) in order to facilitate high throughput analysis. In this study the amino acid 
sequences were analyzed using PANTHER program to classify proteins.  

2.6. PolyPhen-2 (http://Genetics.bwh.harvard.edu/pph/data/) 
PolyPhen-2 (Polymorphism Phenotyping v2) is a tool which predicts possible impact of an amino acid substi-
tution on the structure and function of a human protein using straightforward physical and comparative consid-
erations. In this study PolyPhen-2 program was used to classify proteins into deleterious and benign. 

2.7. SNP & GO  
It is a support vector machine (SVM), based on the method to predict accurately where the mutation is related to 
disease from the protein sequence. Protein sequence was prepared in FASTA format and processed for analysis, 
the output results was obtained as neutral or disease related variation, the RI (reliability index ) with value > 5 
indicate disease related effect on function caused by the mutation on the protein [27]. 

2.8. Prediction of Harmful Mutations by MutPred  
The MutPred server (http://mutpred.mutdb.org/), used to classify amino acid substitution (aas) as disease asso-
ciated or neutral, also it predict disease/deleterious amino acids. The output of MutPred contains a general score 
(G), the probability that the amino acid substitution is deleterious/disease-associated and top 5 property scores 
(p). 

2.9. Analysis of the Effects of nsSNPs on the Protein Stability by I-Mutant 2.0 and MUpro 
I-Mutant 2.0 is a SVM based tools, support vector machine based tool that leads to automatic protein stability 
change prediction which is caused by single point mutation. Positive ΔΔG value indicated that the mutated pro-
tein is of higher stability [28]. 

2.10. MUpro 
Is a support vector machine-based tool for the prediction of protein stability changes upon non-synonymous 
SNPs. A score < 0 means the variant decreases the protein stability; while, a score > 0 means the variant in-
creases the protein stability. 

2.11. Prediction of the Stability Effects upon Mutation in Both Domain  
Cores and Domain-Domain Interfaces 

ELASPIC is a novel ensemble machine learning approach that predicts the effects of mutations on protein fold-
ing and protein-protein interactions. The web server can be used to evaluate the effect of mutations on any pro-
tein in the Uniprot database, and allows all predicted results, including modeled wild-type and mutated struc-
tures, to be managed and viewed online and downloaded if needed. 

2.12. Structural Analysis 
The detection of nsSNPs Location in Protein Structure uses Mutation3D. Mutation3D (http://mutation3d.org) is 
a functional prediction tool for studying the spatial arrangement of amino acid substitutions on protein models 
and structures. This tool was used to analyse proteins structure for selected SNPs from hypertension data ac-
cording to T-HOD data base. 

2.13. Modeling Amino Acid Substitution, H-Bonding and Clash 
UCSF Chimera is a highly extensible program for interactive visualization and analysis of molecular structures 
and related data. Chimera (version 1.8) software was used to scan the 3D (three-dimensional) structure of spe-
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cific protein [29], Chimera (version 1.8) currently available within the Chimera package and available from the 
Chimera web site http://www.cgl.ucsf.edu/chimera/. 

2.14. Modelling Amino Acid Sequence Using ModWeb 
ModWeb: A Server for Protein Structure Modeling: was used to analyse and remodelling of protein sequences 
of Q687X5, P35611and Q9UBU3-2 proteins.  

2.15. M4T Server ver. 3.0 
Comparative Modelling uses a combination of multiple templates and iterative optimization of alternative 
alignments. 

2.16. Project HOPE 
Project HOPE is an easy-to-use web-server that analyses the structural effects of mutation of interest. The server 
was used to analyse protein sequences in this study. Project HOPE collecte and combine available information 
from a series of web-servers and databases and produced a mutation report complete with results, figures and 
animations. Where available Project HOPE will use the 3D structure of the protein but the server can also build 
a homology model if necessary. Other information sources include the Uniprot database and a series of DAS 
prediction servers [30]. 

3. Results  
The T-HOD data-base server was used to retrieve hypertension SNPs, a total of 282 rsSNPs, were analyzed using 
variants effects predictor, results showed that intron-variants 30%, down_stream_gene_variants 23%, non- 
codong transcript variants 15%, upstream gene variants 11%, messense variants 4%, regulatory region variants 
3%, 3 prime UTR variants 3%, 2%. The coding consequences represent missense variants 69%, synonymous 
variants 28%, stop-lost 2%, and coding sequence variants 1%. Only missense non-synonymous coding SNPs 
were chosen for further analysis. nsSNPS, and mutations position were displayed in Table 1. 

3.1. Prediction of Tolerated and Deleterious nsSNPs 
The all SNPS were submitted to SIFT program to predict their effects on protein, out of 282 rsSNPs screened 27 
rsSNPs were tolerated, 7 rsSNPS were damaging from which 4 were deleterious and 3 were neutral, SIFT 
couldn’t find 248 SNPs (Table 2). From the 7 damaging SNPs 3 were reported with essential hypertension 
(rs28933400, rs4961, and rs1981529). 

3.2. Deleterious nsSNPs by PROVEAN Server and PANTHER 
The above mentioned damaging 7 rsSNPS, were submitted to provean server, 4 of them were deleterious while 3 
were neutral. Significant correlation was found between SIFT and PROVEAN results, that the results of SIFT 

 
Table 1. This table shows rsSNPS, rotein ID, mutation and codons.                                                         

rsSNP Protein ID Amino acid change Polymorphism 

rs16835244 NP_443724 A288S Gca/Tca 

rs28933400 NP_000693 M731T aTg/aCg 

rs2286672 NP_002654 R172C Cgt/Tgt 

rs34911341 NP_001128413 R50Q cGa/cAa 

rs4961 NP_001110 G460W Ggg/Tgg 

rs5370 NP_001161791 K197N aaG/aaT 

rs1981529 NP_078912 G75V gGc/gTc 
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Table 2. Prediction effects on protein using SIFT, Polyphen and Panther.                                             

rsSNPs SIFT Score PROVEAN Score Polyphen Panther 

rs16835244 damaging 0 deleterios −2.792 benign probably damaging 

rs28933400 damaging 0 deleterios −4.465 possibly damaging probably damaging 

rs2286672 damaging 0 deleterios −2.511 benign probably benign 

rs34911341 damaging 0 deleterios −2.593 probably damaging probably damaging 

rs4961 damaging 0.03 neutral −2.31 probably damaging probably benign 

rs5370 damaging 0.01 neutral −0.928 possibly damaging probably benign 

rs1981529 damaging 0.03 neutral −1.937 benign  
 

showed 7 of the SNPs were damaging while PROVEAN detected 4 of the 7 SNPs were deleterious, SIFT and 
PROVEAN prediction may suggest protein disruption and function. Panther server was also used, out of the 7 
SNPs, 3 were probably damaging and the rest were benign (Table 2). 

3.3. Damaging nsSNPs Found by SNPs & GO, PHD-SNP  
SNPs & GO results showed that out of 7 SNPs 3 were predicted to have disease causing ability while the rest 
were neutral by PHD-SNP, by SNP & GO 2 of the SNPs were predicted to have causing disease ability (Table 3). 

3.4. Identification of Functional nsSNP 
Changes in protein stability were examined by I-mutant 2 and MUpro software programs. The results of 
I-mutant 2 showed that (A288S, M731T, R171C, R50Q, G460W, K197N, G75V) were predicted decreasing of 
the free energy of proteins except G460W was predicted to increase of the free energy of protein. MUpro results 
predict increase stability of protein in all of the variants (Table 4). 

3.5. Prediction of Functional Effects of nsSNP Using MutPred 
MutPred analysis was done to determine the degree of tolerance for each amino acid substitution on the basis of 
physio-chemical properties. Table 5 shows the results of MutPred. 

3.6. Prediction of Stability Effects upon Mutation in Both Domain  
Cores and Domain-Domain Interfaces by ELASPIC 

SNPs were classified according to their structural location, into core or interface, in the present study 3 variants 
were core structural location while the rest were not classified, detailed results of ELASPIC was displayed in 
Table 6. 

3.7. Distributions of nsSNPs by Mutation3D Server 
Results of Mutation3D indicated that 3 of mutations (STEA4, PLD2, AZIN2, rs28933400, rs2286672, 
rs16835244 genes and corresponding rsSNPs respectively) were found to be with a high risk to hypertension, 
they located in the protein domain, detailed results were displayed in Figures 1-6. 

3.8. Homology Modeling of New and Wild Amino Acids of Deleterious nsSNPs 
3D of protein structure is very important to verify the deleterious mutations and possible effects on the structure 
and function of protein, in this study 4 proteins were modelled by Chimera UCSF program 1.8, and H bonding 
inter-actions and clashes were calculated using Chimera 1.8 program. Modeller server [31]-[34] was used to 
create 3D structure protein for 3 proteins (Figures 7-34).  

4. Discussion  
In the present study we aimed to investigate SNPs which were reported with hypertension, and as we mentioned  
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Figure 1. rs4961 (G460W) SNP structure: mutation outside the core of protein.                                      

 

 
Figure 2. rs5370 (K197N) SNP structure: mutation not within the core of protein.                                     
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Figure 3. rs1981529 (G75V) SNP structure: mutation in the core of protein.                                          

 

 
Figure 4. rs2286672 (R172C) SNP structure: mutation in the core of protein.                                         
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Figure 5. rs16835244 (A288S) SNP structure: mutation in the core of protein.                                         

 

 
Figure 6. rs28933400 (M731T) SNP structure: mutation not within the core of protein.                                 
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Figure 7. rs1981529 (G75V) SNP structure: wild type in green (ribbon yellow).                             

 

 
Figure 8. rs1981529 (G75V) SNP structure: focused on wild type residue which present in green colour 
(ribbon yellow).                                                                                

 

 
Figure 9. rs1981529 (G75V) SNP structure: mutant type in red (ribbon yellow).                          
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Figure 10. rs1981529 (G75V) SNP structure: showed magnified view of mutant type in red (ribbon yellow).    

 

 
Figure 11. rs34911341 (A50Q) SNP structure: wild type green.                                        

 

 
Figure 12. rs34911341 (A50Q) SNP structure: this figure focused on the wild type Arg residue in green.       
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Figure 13. rs34911341 (A50Q) SNP structure: mutant red.                                              

 

 
Figure 14. rs34911341 (A50Q) SNP structure: mutant residue was magnified in red.                        

 

 
Figure 15. rs2286672 (A172C) SNP structure: wild type green colour.                                     
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Figure 16. rs2286672 (A172C) SNP structure: wild type green colour, 2Hbonding interactions were ob-
served.                                                                                     

 

 
Figure 17. rs2286672 (A172C) SNP structure: mutant type red colour.                                

 

 
Figure 18. rs2286672, shows mutant type in red colour. In this figure 2H bonding interaction in mutant re-
sidue.                                                                                     
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Figure 19. rs16835244 (A288S) SNP structure: wild type green.                                     

 

 
Figure 20. rs16835244 (A288S) SNP structure: the wild type was present in green colour, and 2 H-bonding 
interactions were observed.                                                                    
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Figure 21. rs16835244 (A288S) SNP structure: the mutant type SER was indicated in red colour.            

 

 
Figure 22. rs16835244 (A288S) SNP structure: magnified mutant SER residue was shown in red with 2 
H-bonding interactions.                                                                         

http://dx.doi.org/10.4236/oalib.1102839


A. Gassoum et al. 
 

OALibJ | DOI:10.4236/oalib.1102839 16 July 2016 | Volume 3 | e2839 
 

 
Figure 23. rs4961 (G460T) SNP structure: wild type green (ribbon yellow).                             

 

 
Figure 24. rs4961 (G460T) SNP structure: wild type green (ribbon yellow).                            

 

 
Figure 25. rs4961 (G460T) SNP structure: TRP mutant residue was present in red (ribbon yellow).          
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Figure 26. rs4961 (G460T) SNP structure: magnification of the mutated residue was shown in red (ribbon 
yellow).                                                                                      

 

 
Figure 27. rs28933400 (M731T) SNP structure: wild type green ribbon yellow.                         

 

 
Figure 28. rs28933400 (M731T) SNP structure: wild type green and ribbon yellow, 2 H-bonding interaction.    
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Figure 29. rs28933400 (M731T) SNP structure: mutant type red, ribbon yellow.                          

 

 
Figure 30. rs28933400 (M731T) SNP structure: mutant type shown in red colour and ribbon in yellow, 2 
H-bonding interaction was observed.                                                             

 

 
Figure 31. rs5370 (K197N) SNP structure: wild type was present in green colour.                         
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Figure 32. rs5370 (K197N) SNP structure: focused on the wild type which present in green colour.          

 

 
Figure 33. rs5370 (K197N) SNP structure: mutant type red.                                         

 
Table 3. Prediction of disease related mutation by PHD-SNP and SNP & GO.                                        

rsSNPs PHD_SNP RI SNP & GO RI 

rs16835244 disease 5 disease 0 

rs28933400 disease 3 disease 10 

rs2286672 disease 3 neutral 1 

rs34911341 neutral 1 unclassified  
rs4961 disease 0 neutral 4 

rs5370 neutral 3 unclassified  
rs1981529 disease 2 neutral 3 
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Figure 34. rs5370 (K197N) SNP structure: magnified mutant residue in red colour.                       

 
Table 4. This table shows protein stability prediction by I-Mutant and MuPro.                                                 

rsSNPs I-Mutant SVM2 DDG value MuPro Confidence score 

rs16835244 dicrease −1.24 increase stability −0.805949883 

rs28933400 dicrease −0.43 increase stability −0.793908856 

rs2286672 dicrease −1.18 increase stability 0.613637436 

rs34911341 dicrease −0.6 increase stability 0.707156682 

rs4961 increase 0.35 increase stability −0.791147359 

rs5370 dicrease −2.27 increase stability −0.928539952 

rs1981529 dicrease −1.54 increase stability 0.955986275 

 
Table 5. Summarizes MutPred results.                                                                         

Mutation Prob. deleterious Loss of sheet Gain of helix Loss of loop Glycos. S283 Gain of MoRF binding 

A288S 0.253 (P = 0.0228) (P = 0.0893) (P = 0.2897) (P = 0.4302) (P = 0.4656) 

M731T 0.937 (P = 0.1358) (P = 0.1466) (P = 0.1872) (P = 0.2205) (P = 0.2897) 

R50Q 0.581 (P = 0.0115) (P = 0.0921) (P = 0.132) (P = 0.1688) (P = 0.1894) 

K197N 0.075 (P = 0.02) (P = 0.0668) (P = 0.0997) (P = 0.1299) (P = 0.1579) 

G460W 0.078 (P = 0.0549) (P = 0.1312) (P = 0.1551) (P = 0.1736) (P = 0.1907) 

M731T 0.937 (P = 0.1358) (P = 0.1466) (P = 0.1872) (P = 0.2205) (P = 0.2897) 

G75V 0.388 (P = 0.0359) (P = 0.0477) (P = 0.0556) (P = 0.0609) (P = 0.1131) 
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Table 6. Predictions of mutation effects in protein function by using ELASPIC.                                        

rsSNPs ELASPIC ΔGwt ΔGmut ΔΔG 

rs16835244 core 195.996 196.748 −0.96341 

rs28933400 core 327.034 331.157 0.575316 

rs2286672 core 276.518 276.932 0.34204 

rs34911341 unclassified unclassified unclassified unclassified 

rs4961 unclassified unclassified unclassified unclassified 

rs5370 unclassified unclassified unclassified unclassified 

rs1981529 core 14.7475 13.7847 −0.87053 

 
before these SNPs were retrieved from T-HOD database web site. The methods used to assess nsSNPs (muta-
tions) in this study were based on different types of bioinformatics tools, describing pathogenicity and providing 
some clue on molecular level about the effect of mutations. It is very difficult to use one method or bioinformat-
ics tool to predict pathogenic effect of SNPs, so in the present study we used 12 different in cilico prediction ol-
garithim (SIFT, PROVEAN, PHD-SNP, Panther, MUpro, MutPred, I-Mutation2, polyphen, SNP & GO, Project- 
Hope, Chimera and modeller to sort tolerant and diseased SNPs. 

The findings of this study showed that 7 SNPs were damaged by using SIFT (A288S, M731T, R172C, R50Q, 
G460W, K197N, G75V) and 4 (A288S, M731T, R172C, R50Q) out of the seven SNPs were deleterious by 
PROVEAN, while 4 SNPs were found to be disease caused by PHD-SNP (A288S, R172C) and 2 SNPS (A288S, 
M731T, R172C, G75V and G460W) by using SNPS & GO. Polyphen results showed that 4 SNPS (M731T, 
R50Q, G460W, K197N) were probably and possibly damaging, moreover Panther results indicated A288S, 
M731T and G460W were probably damaging. I-Mutant Suite results showed that 6 mutations were decreasing 
protein stability (A288S, M731T, R172C, R50Q, K197N, G75V) while G460W showed increased stability of 
protein. By comparing output of the 6 above mentioned in-cilico bioinformatics tools, A288S, M731T, R172C, 
G75V, G460W, R50Q and K197N mutations were found functionally significant. Using MutPred to determine 
the degree of tolerance of each amino acid substitution on the bases of physo-chemical properties, results of this 
study showed that, A288S,R50Q, K197N and G460W were harmful with loss of sheet P = 0.0228, 0.0115, 0.02 
and 0.0549 respectively. Furthermore, these 7 SNPs were analysed by structurally and functionally by using 5 
bioinformatics tools; Chimera, Mutation 3D, PDB, modeller and ELASPIC. In the present study the “core” re-
sidues were found predominant within the mutations, this residues are defined as residues which are exposed in 
the monomeric protein but buried in the protein complex. Core residues are typically hydrophobic with a com-
position strongly divergent from the composition of the remainder of the protein surface [35] Core residues 
supply the bulk of the energy driving association by hydrophobic interactions [35] The hydrophobic interactions 
within the complex cause the core region to become tightly packed upon complex association with little room 
for conformational variability. For these reasons, the core residues are strongly conserved during evolution [36] 
and mutations in this region are usually more strongly unfavorable when compared to mutations at the periphery 
of the interface. Results of Mutation3D server showed 3 of mutations (STEA4, PLD2, AZIN2, rs28933400, 
rs2286672, rs16835244 genes and corresponding rsSNPs respectively) were found to be with a high risk to 
hypertension. Hydrogen bonding and clashes of the mutations A288S, M731T, and R172C showed different 
numbers of hydrogen bonding between mutant residue and wild type, the differences of H-bonding between the 
wild and mutant residues may indicated a significant effect on protein stability, these results were obtained by 
using Chimera program 1.8.  

rs28933400 
The mutant residue is smaller than the wild-type residue. The wild-type residue is more hydrophobic than the 

mutant residue. The mutated residue is located in a domain that is important for binding of other molecules. The 
mutated residue is in contact with residues in another domain. It is possible that the mutation disturbs these con-
tacts. 3D of protein of this mutation showed that the mutation was located in the core of protein, and this may 
increase the risk of hypertension. Moreover this mutation showed differences in H-bonding between the wild 
type and mutant type residues, and these differences may affect protein stability. 
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rs2286672 
The mutant residue is smaller than the wild-type residue. The wild-type residue was positively charged, the 

mutant residue is neutral. The mutant residue is more hydrophobic than the wild-type residue. The mutation is 
located within a domain. The mutation introduces an amino acid with different properties, which can disturb this 
domain and abolish its function. There is a difference in charge between the wild-type and mutant amino acid.  

The charge of the wild-type residue will be lost, and this can cause loss of interactions with other molecules or 
residues. The wild-type and mutant amino acids differ in size. The mutant residue is smaller, and this might lead to 
loss of interactions. The hydrophobicity of the wild-type and mutant residue differs. The mutation introduces a 
more hydrophobic residue at this position. This can result in loss of hydrogen bonds and/or disturb correct folding. 
3D of protein of this mutation showed that the mutation was located in the core of protein, and this may increase 
the risk of hypertension. Moreover this mutation showed differences in H-bonding between the wild type and 
mutant type residues, and these differences may affect protein stability. 

rs16835244 
The wild-type and mutant amino acids differ in size. The mutant residue is bigger than the wild-type residue. 

The wild-type residue was buried in the core of the protein. The mutant residue is bigger and probably will not fit. 
The hydrophobicity of the wild-type and mutant residue differs. The mutation will cause loss of hydrophobic 
interactions in the core of the protein. 3D of protein of this mutation showed that the mutation was located in the 
core of protein, and this may increase the risk of hypertension. Moreover this mutation showed differences in 
H-bonding between the wild type and mutant type residues, and these differences may affect protein stability. 

rs34911341 
There is a difference in charge between the wild-type and mutant amino acid. The charge of the wild-type 

residue will be lost, and this can cause loss of interactions with other molecules or residues. The wild-type and 
mutant amino acids differ in size. The mutant residue is smaller, and this might lead to loss of interactions. 

rs4961 
The wild-type and mutant amino acids differ in size. The mutant residue is bigger, this might lead to bumps. The 

torsion angles for this residue are unusual. Only Glycine is flexible enough to make these torsion angles, mutation 
into another residue will force the local backbone into an incorrect conformation and will disturb the local 
structure. 

rs5370 
The mutation is located within the signal peptide. This sequence of this peptide is important because it is rec-

ognized by other proteins and often cleaved of to generate the mature protein. 
The new residue that is introduced in the signal peptide differs in its properties from the original one. It is 

possible that this mutation disturbs recognition of the signal peptide. 
There is a difference in charge between the wild-type and mutant amino acid. The charge of the wild-type 

residue will be lost, and this can cause loss of interactions with other molecules or residues. The wild-type and 
mutant amino acids differ in size. The mutant residue is smaller, and this might lead to loss of interactions. 

rs1981529 
The wild-type and mutant amino acids differ in size; in addition to that the mutant residue is bigger than the 

wild-type residue. Moreover the mutation is located on the surface of the protein; mutation of this residue can 
disturb interactions with other molecules or other parts of the protein. The torsion angles for this residue are un-
usual. Only glycine is flexible enough to make these torsion angles, mutation into another residue will force the 
local backbone into an incorrect conformation and will disturb the local structure. 

5. Conclusion 
The available hypertension rsSNPs from T-HOD data base were retrieved, and then analyzed using different 
types of bioinformatics tools, and the predicted deleterious SNPs were evaluated for their deleterious effect on 
the protein function and stability. In the present study, 7 SNPs were predicted deleterious (A288S, M731T, 
R172C, R50Q, G460W, K197N, G75V). Mutation3D server showed that 3 of mutations (STEA4, PLD2, AZIN2, 
rs28933400, rs2286672, rs16835244 genes and corresponding rsSNPs respectively) were found to increase risk 
to hypertension. 
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