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Abstract 
The main purpose of this paper is to introduce the sequence space cesF(f, p) of sequence of fuzzy 
numbers defined by a modulus function. Furthermore, some inclusion theorems have been dis-
cussed. 
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1. Introduction 
The concept of fuzzy sets and fuzzy set operations were first introduced by Zadeh [1]. And subsequently several 
authors have discussed the properties of fuzzy sets such as fuzzy topological spaces, similarity relations and 
fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical programming and so on. Matloka [2] in-
troduced the bounded and convergent sequences of fuzzy numbers and studied their properties. Later on se-
quences of fuzzy numbers have been discussed by Diamond and Kloeden [3], Nanda [4], Esi [5] and many oth-
ers. 

Let ( ) { }:  is compact and convex set .n nC R A R A= ⊂  The space ( )nC R  has a linear structure induced by  

the operations1 

{ } { }: , and :A B a b a A b B A a a Aγ γ+ = + ∈ ∈ = ∈  

for A, B ∈ C(Rn) and γ ∈ R. The Hausdorff distance between A and B in C(Rn) is defined by 
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( ), max supinf ,supinf .
a A b B a A b B

A B a b a bδ∞
∈ ∈ ∈ ∈

 
= − − 

 
 

It is well-known that ( )( ),nC R δ∞  is a complete matric space. 

A fuzzy number is a function X: Rn to [0, 1] which is normal, fuzzy convex, upper semicontinuous and the 
closure of {X ∈ Rn: X(x) > 0} is compact. The above properties imply that for each 0 < α ≤ 1, the α-level set Xα = 
{X ∈ Rn: X(x) ≥ α} is a non-empty compact, convex subset of Rn, with support X0. If Rn is replaced by R, then 
obviously the set C(Rn) is reduced to the set of all closed bounded intervals ,A A A =    on R, and also 

( ) { }, max , .A B A B A Bδ∞ = − −  

Let L(R) denote the set of all fuzzy numbers. The linear structure of L(R) induces the addition X + Y and the 
scalar multiplication λX in terms of level α-sets, by 

[ ] [ ] [ ] [ ] [ ]andX y X Y X Xα α α α αλ λ+ = + =  

for each 0 ≤ α ≤ 1. 
R, the set of real numbers can be embedded in L(R) if we define ( )r L R∈  by 

( )
1, if
0, if

t r
r t

t r
=

=  ≠
. 

The additive identity and multiplicative identity of L(R) are denoted by 0  and 1 , respectively. Then the 
arithmetic operations on L(R) are defined as follows: 

( )( ) ( ) ( ){ }sup , ,X Y t X s Y t s t R⊕ = ∧ − ∈  

( )( ) ( ) ( ){ }sup , ,X Y t X s Y s t t R− = ∧ − ∈  

( )( ) ( ) ( ){ }sup , ,X Y t X s Y t s t R⊗ = ∧ ∈  

( )( ) ( ) ( ){ }sup , .X Y t X st Y s t R= ∧ ∈  

These operations can be defined in terms of α-level sets as follows: 

[ ] 1 1 2 2, ,X Y a b a bα α α α α ⊕ = + +   

[ ] 1 1 2 2, ,X Y a b a bα α α α α − = − −   

[ ]
{ }1,2 {1,2}

min , max ,i i i ii i
X Y a b a bα α α α α

∈ ∈

 ⊗ =   
 

( ) ( ) { }
1 11

1 1, , 0, 1, 2 ,iX a a a
α α α α− −−    = > ∈    

 

for each 0 < α ≤ 1. 
For r in R and X in L(R), the product rX is defined as follows: 

( ) ( )1 , if 0

0, if 0

X r t r
rX t

r

− ≠= 
=

. 

Defined a map by d: L(R) × L(R) → R by ( ) ( )0 1, sup ,d X Y X Yα α
α δ≤ ≤ ∞= . For X, Y ∈ L(R) defined X ≤ Y it  

and only if Xα ≤ Yα for any α ∈ [0, 1]. It is known that (L(R), d) is complete metric space [3]. 
The metric d has the following properties: 

( ) ( ), ,d cX cY c d X Y=  

for c ∈ R and 
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( , ) ( , ) ( , ).d X Y Z W d X Z d Y W+ + ≤ +  

A metric on L(R) is said to be translation invariant if ( ) ( ), ,d X Z Y Z d X Y+ + =  for all X, Y, Z, ∈ L(R). 
A sequence X = (Xk) of fuzzy numbers is a function X from the set N of natural number into L(R). The fuzzy 

number Xk denotes the value of the function at k ∈ N [2]. 
Let p = (pk) be a bounded sequence of strictly positive real numbers. If H = supkpk, then for any complex 

number ak and bk. 

( )pk pk pk
k k k ka b C a b+ ≤ +                              (1.1) 

where C = max(1, 2H–1). Also, for any complex number α , 

( )max 1, ,pk Hα α≤  [6].                               (1.2) 

2. Main Result 
Let f be a modulus function and p = (pk) be a bounded sequence of positive real numbers. We now introduce the 
Cesaro sequence set cesF(f, p) of sequence of fuzzy numbers using a modulus function f as follows: 

( ) ( ) ( ) ( )
1 1

1, : , 0 .
pkn

F
k k

n k
ces f p X X w F d X

n

∞

= =

   = = ∈ < ∞     
∑ ∑  

If ( )f x x= , then ( ) ( ), ,ces f p cesF p=  where  

( ) ( ) ( ) ( )
1 1

1: , 0 .
pkn

F
k k

n k
ces p X X w F d X

n

∞

= =

   = = ∈ < ∞  
   

∑ ∑  

Theorem 2.1. The set ( ),Fces f p  of sequence of fuzzy numbers is closed under the coordinate wise addi-
tion and scalar multiplication. 

Proof. Since it is not hard to see that the set ( ),ces f p  is closed with respect to the coordinate rise addition 
and scalar multiplication, so we omit the detail. 

Theorem 2.2. The set ( ),Fces f p  of sequence of fuzzy numbers is complete metric space with respect to 
the metric 

( ) ( )

1

1 1

1, ,
pk Mn

k k
n k

X Y f d X Y
n

δ
∞

= =

    =       
∑ ∑  

where M = max(1, suppk) and ( ) ( ),k kX X Y Y= =  are elements of the set ( ), .Fces f p  

Proof. One can easily establish that δ defines a metric on ( ),Fces f p  which is a routine verification, so we  

leave it to the reader. It remains to prove the completeness of the space ( ),Fces f p . Let ( )iX  be any Cauchy  

sequence in ( ), ,ces f p  where ( )0 1 3, , ,i i i iX X X X= 
. Then, for a give ε > 0, there exists a positive integer  

n0(ε) such that 

( ) ( )
1

0
1 1

1, , for all ,  .
pk Mn

i j i j
k k

n k
X X f d X X i j n

n
δ ε

∞

= =

    = < ≥      
∑ ∑            (2.1) 

We obtain for each fixed k N∈  from (2.1) 

( ) 0
1 1

1 , for every , .
pkn

i j M
k k

n k
f d X X i j n

n
ε

∞

= =

   < ≥  
  

∑ ∑              (2.2) 

Since for any fixed natural number T, we have from (2.2) 
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( ) 0
1 1

1 , for every , .
pkT n

i j M
k k

n k
f d X X i j n

n
ε

= =

   < ≥  
  

∑ ∑                    (2.3) 

Since f is continuous, we have from (2.3) that 

( )
, 1

1lim , 0
n

i j
k ki j k

f d X X
n→∞ =

   =  
  

∑ .                             (2.4) 

Since f is a modulus function, one can derive by (2.4) that  

( )
, 1

1lim , 0
n

i j
k ki j k

d X X
n→∞ =

  = 
 

∑  

which implies that for each fixed k, 

( )
,
lim , 0.i i

k ki j
d X X

→∞
=  

It means that (Xi) is a Cauchy sequence in L(R) for each fixed k ∈ N. Since L(R) is complete, (Xi) converges in  
LC(R) that is as .i

kX X i→ → ∞  Using these infinitely many limits, we define the sequence  

( )0 1 3, , , .X X X X=   Let as j → ∞  in (2.1), the we obtain ( ), .iX Xδ ε≤  To show that ( ), ,FX ces f p∈   

consider no ∈ N and j > k. Since 1pk
M

≤  for all k, then by using Minkowski’s inequality and the definition of  

modulus function f, we have 

( ) ( )( )
1

1

1 , , 0
o

pk Mn
i i
k k k

n
f d X X d X

n=

    ≤ +      
∑  

( )

( ) ( )

( ) ( )

1

1 1

1

1 1 1

1

1 1 1 1

1 , 0

1 1, , 0

1 1, , 0

o

o

o o

pk Mn n
i
k

n k

pk Mn n n
i i
k k k

n k k

pk pkMn nn n
i i
k k k

n k n k

f d X
n

f d X X f d X
n n

f d X X f d X
n n

= =

= = =

= = = =

          

     ≤ +        

            ≤ +                  

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

1
M

 

If follows that ( )1 1
1 , 0

pk
n i

n k kf d X
n

∞
= =

  
    

∑ ∑  is convergent, so that ( ),FX ces f p∈  and the space is  

complete. 
We now investigate some inclusion relations between ( ),Fces f p  spaces. 

Theorem 2.3. If p, q ∈ R+ and 0 ≤ p < q < ∞, then for any modulus function f, ( ) ( ), , .F Fces f p ces f p⊂  
Proof. Let ( ), .FX ces f p∈  Then 

( )
1 1

1 , 0 .
pkn

k
n k

f d X
n

∞

= =

   < ∞  
  

∑ ∑  

This implies that ( )1 , 0 1
pkn

k
k

f d X
n

  < ≤  
  

∑  for sufficiently large values of n, say on n≥  for some fixes  

no ∈ N. Since f is increasing and p < q, we have 
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( ) ( )
1 1 1 1

1 1, 0 , 0 .
o o

qk pkn nn n

k k
n k n k

f d X f d X
n n= = = =

      ≤ < ∞      
      

∑ ∑ ∑ ∑  

So, ( ), .FX ces f q∈  
Theorem 2.4. Let r, t ∈ R+ and ( )min ,p r t=  then for any modulus function f, 

( ) ( ) ( ), , , .F F Fces f p ces f r ces f t=   

Proof. It follows from Theorem 2.3 that 

( ) ( ) ( ), , , .F F Fces f p ces f r ces f t⊂   

For any complex number ( ), , ,pk r tα α α α≤  thus 

( ) ( ) ( ), , ,F F Fces f r ces f t ces f p⊂  

and then the proof is complete.  
Theorem 2.5. Let f and g be two modulus functions. Then the following relations hold: 
1) ( ) ( ) ( ), , , ,F F Fces f p ces g p ces f g p⊂ +  

2) ( ) ( ), , ,F Fces f p ces gof p⊂  

3) ( ) ( ) [ ) ( ) ( )If for all 0, ,  then , , .F Ff t g t t ces g p ces f p≤ ∈ ∞ ⊂  
Proof. 1) Let ( ) ( ), , .F FX ces f p ces g p∈   Since 

( ) ( ) ( ) ( ), 0 , 0 , 0 ,k k kf g d X f d X g d X    + = +      

one can easily see that ( ),FX ces f g p∈ +  and hence the result follows: 
2) Let ( ),FX ces f p∈ . Since g is continuous on [0, ∞), there exists an β > 0 such that g(β) = ε for all ε > 0.  

Since ( ),FX ces f p∈ , there exists a ko ∈ N such that ( ), 0kf d X β  <   for all k ≥ ko. Therefore, we can get 

( )( ) ( ), 0 .kg f d X g β ε  ≤ =   

From this, we can easily see that the ( ), .FX ces gof p∈  

3) Since ( ) ( )f t g t≤  for all [ )0, ,t ∈ ∞  we have ( ) ( ), 0 , 0k kf d X g d X   ≤    . This leads us to the con- 

sequence that ( ),FX ces g p∈  which implies that ( ), .FX ces f p∈  

Taking modulus function uf  instead of f in the space ( ), ,Fces f p  we can define the composite space  
( ),Fces f p  as follows: For a fixed u ∈ N, we may define 

( ) ( ) ( ) ( )
1 1

1, : , 0 .
pkn

F u u
k k

n k
ces f p X X w F f d X

n

∞

= =

    = = ∈ < ∞   
    

∑ ∑  

Theorem 2.6. Let f be a modulus function and v ∈ N. Then, 

1) ( ) ( ),F u Fces f p ces p⊂  if 
( )

lim 0.t

f t
t

β→∞ = >  

2) ( ) ( ),F F uces p ces f p⊂  if there exists a positive constant γ such that f(t) ≤ γt for all t ∈ [0, ∞). 

Proof. 1) Following the proof of the Proposition 1 of Maddox [7], we have 

( ) ( )
lim inf : 0
t

f t f t
t

t t
β

→∞

  = = > 
  

 

so, 0 ≤ β ≤ f (1). By definition of β we have βt ≤ f(t) for all t ≥ 0. Since f is increasing, then we have  
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( )2 2t f tβ ≤ . So by induction, we have ( ).v vt f tβ ≤  Let ( ),F vX ces f p∈  and using (1.20), we have 

( ) ( ) ( ) ( )
1 1 1 1 1 1

1 1 1, 0 , 0 max 1, , 0
pk pkpkn n n

v v vH v
k k k

n k n k n k
d X f d X f d X

n n n
β β

∞ ∞ ∞
− −

= = = = = =

        ≤ ≤        
        

∑ ∑ ∑ ∑ ∑ ∑  

and therefore ( ).FX ces p∈  
2) Since ( )f t tγ≤  for all [ )0,t ∈ ∞  and f is an increasing function, we have ( )u uf t tγ≤  for each v ∈ N. 

Let ( )FX ces p∈  and using (1.2), we have 

( ) ( ) ( )
1 1 1 1

1 1, 0 max 1, , 0
2

pk pkn n
u vH

k k
n k n k

f d X d X
n

α
∞ ∞

−

= = = =

    ≤    
    

∑ ∑ ∑ ∑  

and hence ( ), .F uX ces f p∈  
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