Photocatalytic Destruction of Methylene Blue on Ag@TiO$_2$ with Core/Shell Structure

Yu-Wen Chen*, Der-Shing Lee

Department of Chemical and Material Engineering, Nanocatalysis Research Centre, National Central University, Jhong-Li, Taiwan
Email: *ywchen@cc.ncu.edu.tw

Received 13 April 2014; revised 18 May 2014; accepted 23 June 2014

Copyright © 2014 by authors and OALib.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

A series of Ag@TiO$_2$ catalysts with core-shell structure were successfully synthesized by a sol-gel method. The samples were prepared by a sol-gel method using silver nitrate, hydrazine, cetyltrimethylammonium bromide and titanium tetra-isopropoxide as the starting materials. The catalysts were characterized by ICP-MS, XRD, TEM, HRTEM and XPS. The results indicated that the silver core was in metallic state and the TiO$_2$ shell was in anatase state. The size of Ag nanoparticles in core was about 5 and 10 nm, and the shell size of titanium dioxide was 10 and 20 nm. The core was single crystalline Ag nanoparticle and the shell was made up of many TiO$_2$ nanoparticles. The photocatalytic activity of Ag@TiO$_2$ was much higher than that of bare TiO$_2$. Large amounts of hydroxyl groups were present on the surface of TiO$_2$. The catalysts which were treated by hydrothermal method had the higher lattice oxide percentage and higher photocatalytic activities. The core-shell structure can prevent Ag from aggregation.

Keywords
Green Catalyst, Photocatalyst Titania, Silver

1. Introduction
Titanium dioxide is the most successful photocatalyst that has attracted the interest of researchers for many decades because of its chemical stability, low cost, excellent degradation for organic pollutants and nontoxic property [1]-[4]. Heterogeneous photocatalytic oxidation is a promising technique for the complete oxidation of dilute pollutants in waste gas stream. The organics can be oxidized to H$_2$O and CO$_2$ at room temperature with TiO$_2$ catalyst in air when illuminated with UV light or near UV light. The UV light excites electrons from the valen-
ny. Noble metal deposition method was widely used to enhance the photocatalytic activity of TiO₂. Pt and Ag deposited on TiO₂ film using chemical vapor deposition method have been studied by many researchers and Ag/TiO₂ showed a better photocatalytic activity than other catalysts [9]-[17]. Noble metal nanoparticles such as silver and gold are known to exhibit size-dependent specific optical, electric and catalytic [18]-[19] properties [20], and surface plasmon absorption [21].

The literature reports showed that noble metals doped on TiO₂ surface could enhance the photocatalytic activity, by acting as an electron trap; thereby promoting interfacial charge transfer processes in the composite system [22]-[25]. However, in a long run, there is a possibility of dissolution, corrosion and reaction of metals during the photocatalytic reaction, which limits the efficacy of photocatalysts. An effective way to solve these short comings is to use a core/shell structure in which the noble metal nanoparticles perform as cores, and TiO₂ acts as a shell [26]-[28]. Wang et al. [28] reported a sol-gel method to prepare Ag@TiO₂ which is active for destruction of methylene blue (MB). However, the effects of Ag loadings and hydrothermal treatment on the photocatalytic activity of TiO₂ have not yet examined in detail.

The preparation parameters such as pH, heating time, and heating temperature plays a vital role in the synthesis of Ag@TiO₂ by a sol-gel titanium dioxide sol. The preparation by chemical reduction of noble metal salt also needs to control the precursor concentration. Preparation conditions and concentration of reducing agent to control the size of noble metal particles in the mixture after the reaction should consider the temperature and heating time to have core-shell structure [29]-[33]. Hirakawa and Kamat [20] have studied charge separation and catalytic activity of Ag@TiO₂ in detail. However, they did not get high crystallinity of TiO₂ shell. It is important to have anatase TiO₂. In this study, we used hydrothermal method to obtain anatase TiO₂ instead of using high temperature treatment.

Dye pollutants were discharged from textile industry which is one of the reasons for environment contamination [34]-[35]. The waste pollutants within water in the ecosystem perturbed the aquatic life because of eutrophication. Methylene blue was atypical dye pollutant in textile industry. The structure of MB is shown in Figure 1.

In this study, Ag@TiO₂ nanoparticles were synthesized by a sol-gel method and treated by hydrothermal method to form a core-shell structure. The aim of this study was to develop an optimum method to prepare core-shell structure which has a high activity to destruct MB under UV light irradiation. The photocatalytic activity of these materials was treated by the photodegradation of methylene blue in water.

2. Experimental Procedures

2.1. Material

The precursors for silver and titania are silver nitrate (Sigma-Aldrich) and titaniumtetra-isopropoxide (TTIP; Sigma-Aldrich), respectively. The reducing agent used in the preparation method is hydrazine solution (Sigma-Aldrich). Cetyltrimethyl ammoniumbromide (CTAB; Sigma-Aldrich) was used as the protective agent, while ethanol (JT Baker) was used as the solvent for TTIP. All reagents used in this study were analytical grade.

2.2. Synthesis of Ag@TiO₂

At first, different amounts of 100 mM aqueous hydrazine solution were added into 1 mM CTAB solution. Preparation of silver clusters was by reduction of silvernitrate. Different amounts of 50 mM AgNO₃ were added into the above mixture. The final composite was stirred for 30 min at room temperature to reach high dispersive state in this solution. The TTIP was dropped into ethanol and then the solution was slowly added to the Ag nanoparticle suspension under stirring for several minutes to yield a suspension of silver-titania composite nanoparticles.

Figure 1. Structure of methylene blue (MB).
The excess solvent was removed by rotary evaporation until the Ag@TiO₂ powder was produced. The mixture was divided into two parts. One was treated by hydrothermal method in a Teflon-lined autoclave at 180°C for 12 h, and the other one was stayed at room temperature, instead of hydrothermal condition. The products were recovered by centrifugation, and then washed with distilled water to remove residues and finally dried at 50°C in an oven overnight. The powder was grinded and Ag@TiO₂ was obtained. The molar ratios of the chemicals were based on TTIP, and the TTIP concentration to prepare Ag@TiO₂ nanoparticles as listed in Table 1; in which HT stands for the catalyst treated by hydrothermal method. The volume of ethanol was changed to get different concentrations of TTIP.

2.3. Characterization

Inductively-coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), transmission electron microscopy (TEM), selective area electron diffraction (SAED), high resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS) were used to characterize the Ag@TiO₂ samples. UV-Vis spectroscopy (UV-Vis) was used to measure the methylene blue (MB) concentrations of the samples before and after reaction.

2.3.1. ICP-MS

The real silver content was analyzed by ICP-MS (PE-SCIEX ELAN 6100DRC). A CEM MDS-2000 (CEM, Matthews, NC, USA) microwave apparatus equipped with Teflon vessels was used to digest the powder samples.

2.3.2. XRD

XRD experiments were performed using a Siemens D5000 powder diffractometer using CuKα₁ radiation (1.5405 Å) at a voltage and current of 40 kV and 30 mA, respectively. The sample was scanned over the range 2θ = 20° - 80° at a rate of 0.05°/min to identify the crystalline structure. Samples for XRD were prepared as thin layers on a sample holder.

2.3.3. TEM and HRTEM

The morphologies and particle sizes of the samples were determined by TEM on a JEM-2000 EX II operated at 160 kV and HRTEM on a JEOL JEM-2100 operated at 160 kV. Initially, a small amount of sample was placed into the sample tube filled with a 95% methanol solution and after agitating under ultrasonic environment for 10 min, three drops of the dispersed slurry was dipped onto a carbon-coated copper mesh (200#) (Ted Pella Inc., CA, USA), and dried in the vacuum oven at 25°C for 1 day. Images were recorded digitally with a Gatan slow scan camera (GIF). Based on the several images of TEM or HRTEM, more than 100 particles were counted and the sized is tribution graph was made.

2.3.4. XPS

The XPS spectra were recorded with a Thermo VG Scientific Sigma Probespectrometer. The XPS spectra were collected using Al Kα radiation at a voltage and current of 20 kV and 30 mA, respectively. The base pressure in the analyzing chamber was maintained in the order of 10⁻⁹ torr. The spectrometer was operated at 23.5 eV pass energy and the binding energy was corrected by contaminant carbon (C 1s = 284.6 eV) in order to facilitate the comparisons of the values among the catalysts and the standard compounds. Peak fitting was done using XPSPEAK 4.1 with Shirley background and 30:70 Lorentzian/Gaussian convolution product shapes.

2.4. Degradation of Methylene Blue

0.02 g Ag@TiO₂ samples were added into 200 mL 10 ppm MB solution. Reactions were carried out in the circular container by top scattering of UV light. The light source was from two 1.5 W UVC lamps (254 nm; Germicidal lamp from Sankyo Denki Co., Ltd.). At given time intervals, the analytical samples were taken from the mixture and immediately centrifuged and then filtered through a 0.22-μm Milliporefilter to remove the particles. The concentration of MB blue in water was determined by a UV-Vis spectrophotometer (Varian Cary 300). Liquid samples were loaded in a quartz cell, and the spectra were collected against barium sulfate standard. There action setup is shown in Figure 2. The photodegradation efficiency (X) can be calculated as following equations:
Table 1. Molar ratios of precursors used in the preparation of various Ag@TiO$_2$ catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>AgNO$_3$</th>
<th>N$_2$H$_5$OH</th>
<th>CTAB</th>
<th>TTIP</th>
<th>Ethanol</th>
<th>Conc. of TTIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.01</td>
<td>0.02</td>
<td>0.004</td>
<td>1</td>
<td>171.12</td>
<td>100 mM</td>
</tr>
<tr>
<td>B</td>
<td>0.005</td>
<td>0.01</td>
<td>0.004</td>
<td>1</td>
<td>171.12</td>
<td>100 mM</td>
</tr>
<tr>
<td>C</td>
<td>0.005</td>
<td>0.01</td>
<td>0.004</td>
<td>1</td>
<td>102.67</td>
<td>167 mM</td>
</tr>
<tr>
<td>D</td>
<td>0.005</td>
<td>0.01</td>
<td>0.004</td>
<td>1</td>
<td>136.9</td>
<td>125 mM</td>
</tr>
<tr>
<td>HT-A</td>
<td>0.01</td>
<td>0.02</td>
<td>0.004</td>
<td>1</td>
<td>171.12</td>
<td>100 mM</td>
</tr>
<tr>
<td>HT-B</td>
<td>0.005</td>
<td>0.01</td>
<td>0.004</td>
<td>1</td>
<td>171.12</td>
<td>100 mM</td>
</tr>
<tr>
<td>HT-C</td>
<td>0.005</td>
<td>0.01</td>
<td>0.004</td>
<td>1</td>
<td>102.67</td>
<td>167 mM</td>
</tr>
<tr>
<td>HT-D</td>
<td>0.005</td>
<td>0.01</td>
<td>0.004</td>
<td>1</td>
<td>136.9</td>
<td>125 mM</td>
</tr>
</tbody>
</table>

where A_0 is the initial absorbance of reference MB solution and A is the revised absorption considering MB after photo irradiation. Equation (2) was used for elimination of blank effect and correction the consequence of photodecomposition. A_b is absorbance of blank and A_s is the absorbance of sample.

3. Results and Discussion

Metal core-oxide shell structures were prepared by one pot synthesis that involved reduction of metal ions and hydrolysis of TTIP in methanol. Ag$^+$ ions were reduced by hydrazine, followed by the slow hydrolysis of TTIP to form a shell around the metal core. As Ag$^+$ ions are reduced by hydrazine to form small metal particles, they quickly interact with the CTAB. The condensation polymerization of TTIP slowly progresses on the surface of Ag particles to yield TiO$_2$ shell.

The stability of Ag@TiO$_2$ was confirmed by checking the stability in an acidic solution (HNO$_3$). The Ag cluster was readily dissolved in HNO$_3$ acidic solution (pH = 2). Ag@TiO$_2$ was quite stable in HNO$_3$ solution. The stability test in acidic solution confirms that the TiO$_2$ shell on the Ag core was uniform and provided the protection against acid induced corrosion. The samples were also tested by high temperature calcinations. Ag particle size did not increase, indicating that Ag core was protected and constrained by TiO$_2$ shell.

3.1. ICP-MS Results

Ag loading in the sample was measured by ICP-MS. The nominal Ag loadings of the samples were 0.67 wt% and 1.33 wt%, respectively. The real Ag loadings in the samples are tabulated in Table 2. The results show that only 60% - 80% of the original Ag was deposited in the sample, i.e., 20% - 40% silver cations in the starting material were not deposited in the solid product. All Ti cations were converted to TiO$_2$ because TTIP is very easy to react with water.
Table 2. Actual silver loading on titania based on ICP-MS results.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Nominal (wt%)</th>
<th>Actual (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ag</td>
<td>Ag</td>
</tr>
<tr>
<td>A</td>
<td>1.33</td>
<td>1.10</td>
</tr>
<tr>
<td>B</td>
<td>0.67</td>
<td>0.411</td>
</tr>
<tr>
<td>C</td>
<td>0.67</td>
<td>0.480</td>
</tr>
<tr>
<td>D</td>
<td>0.67</td>
<td>0.456</td>
</tr>
<tr>
<td>HT-A</td>
<td>1.33</td>
<td>1.33</td>
</tr>
<tr>
<td>HT-B</td>
<td>0.67</td>
<td>0.66</td>
</tr>
<tr>
<td>HT-C</td>
<td>0.67</td>
<td>0.517</td>
</tr>
<tr>
<td>HT-D</td>
<td>0.67</td>
<td>0.483</td>
</tr>
</tbody>
</table>

3.2. XRD

Figure 3 shows the XRD patterns of all samples. It is obvious that after hydrothermal treatment, the crystallinity of the sample increased significantly, as expected. The samples after hydrothermal treatment exhibited four characteristic peaks for the (101), (004), (200), and (105) planes of anatase TiO$_2$ at $2\theta = 25.3^\circ$, 37.8$^\circ$, 48.1$^\circ$ and 53.9$^\circ$. No rutile phase was observed. The peak was not very intense, inferring that the crystallite size was small. This matches our objective to make nanocrystallite. The crystallite size of TiO$_2$, calculated by the Bragg’s equation, was 6 nm. The XRD patterns of the samples also exhibited three characteristic peaks for the (111), (200), and (220) planes of face-centered cubic (fcc) Ag at $2\theta = 38.1^\circ$, 44.3$^\circ$ and 64.4$^\circ$. No peak corresponding to AgO was observed. Because the Ag particle size was small, the peak was almost invisible. The crystallite size of Ag was only about 3 - 4 nm. The color of the sample became darker when the sample was treated by hydrothermal condition. It was attributed to crystallization of Ag metal.

3.3. TEM/HR-TEM

The core/shell structure of materials such as shape, particle size and size distribution were analyzed by TEM. The TEM photographs shown in Figure 4 show the core/shell morphology of the samples. The dark spot is Ag. The Ag particles were surrounded by TiO$_2$ shell. The size of Ag core was about 3 - 5 nm, and the shell thickness of TiO$_2$ was 5 - 10 nm. The core was a crystalline Ag nanoparticle and the shell was made up of many TiO$_2$ nanoparticles. It should be noted that it was easier to form Ag@SiO$_2$ than Ag@TiO$_2$, because TTIP was too reactive with water.

Figure 5 shows the typical HR-TEM image of the Ag@TiO$_2$ (HT-A sample). The value in the parentheses is the distance of lattice in database, and the other number is the distance of lattice in the photograph. The Ag particle was very small. The HR-TEM photographs also shows that the silver was (111) plane in Miller index and the titanium dioxide was anatase structure of (101) plane in Miller index. No other plane was found.

Figure 6 shows the diffraction images of the sample HT-C. The result clearly shows that Ag and TiO$_2$ are well-crystalline after hydrothermal treatment, in accordance with XRD results. The other samples also showed the same results.

3.4. XPS

Figure 7 shows the XPS spectra of Ag 3d in all samples. Each silver species shows two peaks, which was assigned to Ag 3d$_{5/2}$ and Ag 3d$_{3/2}$. The peaks for bulk metallic silver are centered at 368.2 eV and 374.2 eV, while the peaks for Ag$_2$O are 367.8 eV and 373.8 eV and for AgO are 367.4 eV and 373.4 eV [8]. The intensity of XPS peak for Ag increased with increasing Ag loading, as expected. The distributions of these peaks are sharp and with symmetry, inferring that there was only one chemical state in Ag. Ag is in metallic state. The binding energies of Ag shifted to lower energy, indicating that Ag particles had strong interaction with TiO$_2$, and the excited electrons in TiO$_2$ transferred to Ag particles. The catalysts treated by hydrothermal method shifted less than those without hydrothermal treatment.
Figure 3. XRD patterns of various Ag@TiO₂ samples.

Figure 4. TEM images of Ag@TiO₂. (a) HT-A, (b) A, (c) HT-B, (d) B, (e) HT-C, (f) C, (g) HT-D, (h) D. HT stands for the catalyst treated by hydrothermal method.

The binding energies of Ti⁺⁺ 2p₁/₂ and Ti⁺⁺ 2p₃/₂ are centered at 458.6 eV and 464.4 eV, respectively [36] [37]. The spectra of Ti 2p region of the samples are shown in Figure 8. Because these peaks are sharp and with symmetry, one can conclude that there is only one chemical state in Ti. The results show that Ti in Ag@TiO₂ was in...
Ti\(^{4+}\) valence state. In other words, only anatase TiO\(_2\) was present and Ag did not change the electronic state of Ti. Since very small amount of Ag was used, therefore it is difficult to change the binding energy of Ti.

Two peaks are evident in O 1s core level spectra of the samples as shown in Figure 9. According to the literature, the binding energies of O\(^{2-}\) and OH\(^-\) are centered at 530.2 eV and 532.0 eV, respectively [37]. The peaks of O\(^{2-}\) and OH\(^-\) all shifted to lower binding energy level at 530.1 eV and 531.7 eV, respectively. The atomic percentages of O\(^{2-}\) and OH\(^-\) in Ag@TiO\(_2\) were calculated from XPS peak areas and are tabulated in the Table 3. The atomic ratio of O\(^{2-}\) to OH\(^-\) in Ag@TiO\(_2\) was around 4:1. The catalysts which were treated by hydrothermal method had the higher lattice oxide percentage, indicating that they had higher crystallinity. The results also demonstrated that large amount of hydroxyl groups were present on the surface of the samples. Under UV irradiation, the surface hydroxyl groups were converted to hydroxyl radicals, which are crucial for the photocatalytic activity.
The splitting between Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$ was 5.8 eV, indicating Ti existed as Ti$^{4+}$ in the as-prepared TiO$_2$ and Ag/TiO$_2$ film [36]. No peaks due to Ti$^{3+}$ were observed, indicating that TiO$_2$ was not reduced during UV irradiation process. As expected, TiO$_2$ was very stable in reaction. The deconvoluted O 1s spectra of TiO$_2$ and Ag/TiO$_2$ are presented in Figure 9. The characteristic O 1s peak located at 530.6 eV was ascribed to the lattice O$_2^-$ of TiO$_2$. The assignment of the peak at 532.3 eV was ambiguous. It has been attributed to adsorbed oxygen, surface oxygen vacancies, hydroxyl group, and absorbed water [38]-[45]. Here, we assigned this peak to hydroxyl group existed on the surface of the TiO$_2$ and Ag/TiO$_2$ film. The ratio of peak area at 532.3 eV versus total O 1s peak area could express the relative content of hydroxyl group. The corresponding ratios of the two films are listed in Table 1. It shows that the content of the surface hydroxyl group for Ag/TiO$_2$ film was higher than that of bare TiO$_2$.

The explanation for the different amounts of surface hydroxyl groups was as following. Under UV irradiation, the electrons in the valence band (VB) of TiO$_2$ could be promoted to the conduction band (CB). Therefore the
Table 3. Binding energies of various chemical species present in Ag@TiO2 and the percentage of different oxygen species.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Ag 3d 3d5/2 (eV)</th>
<th>3d3/2 (eV)</th>
<th>Ti 2p 2p3/2 (eV)</th>
<th>2p1/2 (eV)</th>
<th>O 1s OH− (eV)</th>
<th>%</th>
<th>O2− (eV)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT-A</td>
<td>367.23</td>
<td>373.25</td>
<td>464.08</td>
<td>458.33</td>
<td>531.57</td>
<td>33.35%</td>
<td>530.16</td>
<td>66.65%</td>
</tr>
<tr>
<td>A</td>
<td>368.30</td>
<td>374.31</td>
<td>464.97</td>
<td>459.25</td>
<td>532.23</td>
<td>34.65%</td>
<td>530.65</td>
<td>65.35%</td>
</tr>
<tr>
<td>HT-B</td>
<td>367.46</td>
<td>373.38</td>
<td>464.27</td>
<td>458.56</td>
<td>531.36</td>
<td>20.34%</td>
<td>530.04</td>
<td>79.66%</td>
</tr>
<tr>
<td>B</td>
<td>367.33</td>
<td>373.40</td>
<td>464.24</td>
<td>458.51</td>
<td>531.67</td>
<td>30.40%</td>
<td>530.17</td>
<td>69.60%</td>
</tr>
<tr>
<td>HT-C</td>
<td>367.44</td>
<td>373.50</td>
<td>464.47</td>
<td>458.75</td>
<td>531.66</td>
<td>19.94%</td>
<td>520.14</td>
<td>80.06%</td>
</tr>
<tr>
<td>C</td>
<td>367.31</td>
<td>373.41</td>
<td>464.30</td>
<td>458.59</td>
<td>531.71</td>
<td>20.67%</td>
<td>530.17</td>
<td>79.33%</td>
</tr>
<tr>
<td>HT-D</td>
<td>367.45</td>
<td>373.48</td>
<td>464.52</td>
<td>458.80</td>
<td>531.59</td>
<td>18.75%</td>
<td>530.18</td>
<td>81.25%</td>
</tr>
<tr>
<td>D</td>
<td>367.29</td>
<td>373.34</td>
<td>464.32</td>
<td>458.61</td>
<td>531.61</td>
<td>31.79%</td>
<td>529.96</td>
<td>68.21%</td>
</tr>
</tbody>
</table>

Figure 9. XPS analysis for O 1s.

holes were formed in the valence band. The holes were assumed to be trapped by lattice oxygen atoms on the surface of the TiO2 film [38]-[47]. The trapped hole was thought to weaken the bond between the titanium atom and the lattice oxygen atom. As a result, such oxygen atom was liberated to create oxygen vacancies [46]-[49]. After the UV irradiation of the catalyst, the TiO2 and Ag@TiO2 films became super-hydrophilic. Water molecules could be absorbed onto the samples easily. The absorbed water molecules occupied the vacancy sites to reduce the surface energy even if it was present in almost negligible amounts. There was a strong interaction between the vacant sites and the absorbed water molecules, resulted in releasing a proton to a nearby oxygen atom and formed two hydroxyl groups [50]-[55].

3.5. Photoactivity Test

The degradation curves of MB on Ag@TiO2 nanoparticles are shown in Figure 10. All the Ag@TiO2 samples were more active than the bare TiO2, indicating that Ag is a good cocatalyst. The presence of Ag could suppress electron-hole recombination, thereby increasing the photocatalytic activity. Among these samples, all of Ag@TiO2 catalysts had a higher photodegradation rate of MB than bare TiO2. It can be contributed to a Schottky energy barrier formed by the combination of Ag clusters and TiO2 shells. The interface can attract light-induced electrons from the semiconductor TiO2 to reduce electron-hole recombination. Ag core should be reduced to Ag metal because AgO cannot serve as a Schottky energy barrier [56]-[60].
For explain of this results, silver and TiO$_2$ have different work functions, ($\Phi_{TiO_2} = 4.2$ eV, $\Phi_{Ag} = 4.6$ eV). When silver comes in contact with TiO$_2$, electrons will transfer from TiO$_2$ to silver. These electrons transferred to silver and loaded on the surface of silver will be scavenged by the electron acceptor, thus decreases there combination between electron and hole and silver atoms act as electron traps. It is well known that the electron-hole recombination is the main reason for low efficiency of TiO$_2$ photocatalysis [1]-[6]. Therefore, the existence of silver atom in Ag@TiO$_2$ can help more holes to transport to the surface and enhance the photocatalytic activity.

The samples treated by hydrothermal method had the higher activities than those without hydrothermal treatment, as shown in **Figure 11**. It is attributed to the high crystallinity of TiO$_2$. It is well-known that anatase TiO$_2$ is a semiconductor and it has photocatalytic activity. Amorphous TiO$_2$ is an insulator, and does not have photocatalytic activity.

As shown in **Figure 7**, the Ag particles inside the TiO$_2$ shell could act as electron-hole separation centers. The photo-generated electrons transferred from the TiO$_2$ conduction band to metallic silver particles inside TiO$_2$. This process is thermodynamically possible because the Fermi level of TiO$_2$ is higher than that of silver metals. The Schottky barrier is formed at the Ag-TiO$_2$ contact region, which improved the charge separation and thus retarded the recombination of the photo-generated electrons and photo-generated holes. The photo-generated electrons accumulated on the surface of Ag have good fluidity and can be transferred to oxygen molecules, which is absorbed on the surface of Ag. As shown in **Figure 7**, the oxygen molecules could easily obtain the electrons to form H$_2$O$_2$, HO$_2^-$ and O$_2$ [56]-[59]. These active species significantly promoted the photocatalytic oxidation process. Furthermore, the holes were accumulated at the valence band. The water molecules adsorbed on the surface of TiO$_2$ could interact with the holes, leading to the production of surface hydroxyl radical •OH which is responsible for the oxidation decomposition of MB. This also favors the photocatalytic process of Ag@TiO$_2$.

The relative amount of surface hydroxyl group of the sample was very crucial for the photocatalytic properties. This is another reason for the high photocatalytic activity of Ag@TiO$_2$. During the photocatalytic process, the hydroxyl groups on the surface is active in the oxidation process of organics by capturing a hole resulted information of hydroxyl radicals [60]-[63]. The increase in the content of hydroxyl groups on the surface of TiO$_2$ enhanced the photocatalytic activity.

4. Conclusion

A series of Ag@TiO$_2$ samples with core-shell structure were successfully synthesized by sol-gel method. The results indicated that silver core was in metallic state and the TiO$_2$ shell was in anatase state. The size of Ag nanoparticles in core was about 5 and 10 nm, and the shell size of titanium dioxide was 10 and 20 nm. The core was single crystalline Ag nanoparticle and the shell was made up of many TiO$_2$ nanoparticles. The photocatalytic activity of Ag/TiO$_2$ was much higher than that of TiO$_2$. The atomic ratio of O$_2^-$ to OH$^-$ in Ag@TiO$_2$ was 4:1. The catalysts which were treated by hydrothermal method had the higher lattice oxide percentage and higher
photocatalytic activities, indicating that the crystallinity of the TiO$_2$ structure affected the band gap. There is an optimal Ag loading to have the highest activity. The core-shell structure can prevent Ag from aggregation. Compared to the pure TiO$_2$, Ag@TiO$_2$ showed a significant increase in photocatalytic activity on degradation of methylene blue. XPS studies showed that the amount of the surface hydroxyl groups on Ag@TiO$_2$ was higher than that of TiO$_2$ film. Under UV irradiation, the surface hydroxyl groups were converted to hydroxyl radicals, which were crucial for the photo-catalytic activity. The doping of Ag inside TiO$_2$ shell retarded the combination of the photo-generated electrons and holes, which favored the formation of surface hydroxyl groups. Furthermore, the electrons trapped by Ag particles could react with oxygen to form the active species for the photocatalytic process. The preparation method made Ag close contact with TiO$_2$, which could guarantee the transfer of the photo-generated electrons from conduction band of TiO$_2$ to Ag nanoparticles. Consequently, the presence of Ag inside TiO$_2$ shell could enhance the photocatalytic activity of TiO$_2$. Although the Ag loading was very low (<1 wt%), the Ag@TiO$_2$ showed excellent photocatalytic activity.

Acknowledgements
This research was supported by the National Science Council of Taiwan.

References
Y.-W. Chen, D.-S. Lee

