Analysis of non-linear reaction-diffusion processes with Michaelis-Menten kinetics by a new Homotopy perturbation method

Devaraj Shanthi1, Vembu Ananthaswamy2, Lakshmanan Rajendran2*

1Government Higher Secondary School, Madurai, India;
2Department of Mathematics, The Madura College, Madurai, India
*Corresponding Author: raj_sms@rediffmail.com

Received 18 June 2013; revised 18 July 2013; accepted 25 July 2013

Copyright © 2013 Devaraj Shanthi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

This paper demonstrates the approximate analytical solution to a non-linear singular two-point boundary-value problem which describes oxygen diffusion in a planar cell. The model is based on diffusion equation containing a non-linear term related to Michaelis-Menten kinetics of enzymatic reaction. Approximate analytical expression of concentration of oxygen is derived using new Homotopy perturbation method for various boundary conditions. The validity of the obtained solutions is verified by the numerical results.

Keywords: Oxygen Diffusion; Michaelis-Menten; Non-Linear Differential Equations; New Homotopy Perturbation Method; Numerical Simulation

1. INTRODUCTION

Pharmacological and physiological experiments are being increasingly performed on thin vital tissue preparations known as slices. Oxygen diffusion for spherical cells in tissue preparations with Michaelis-Menten kinetics is developed by Bassom [1]. Rashevsky [2] modeled the kinetics for oxygen uptake by piecewise linear functions. Lin [3] argued that this supposed Michaelis-Menten kinetics form would be a far more appropriate model. Lin’s [3] results were recomputed by McElwain [5]. Hiltmann et al. [6] proved that this Michaelis-Menten model for spherical cells possesses exactly one solution. This unique solution can only be precisely determined by recourse to numerical procedures, but useful lower and upper bounds on this true solution were given by Anderson et al. [7] and these were improved further by sharp polynomial approximations derived by Asaithambi et al. [8,9].

Finally Bassom et al. [1] mention that modern experiments in both biology and medicine use tissue slices to simulate hypoxia, that is a situation in which the tissue exhibits low oxygen consumption. Bassom et al. [1] consider a Michaelis-Menten uptake in a tissue slice and to provide both theoretical (limiting cases) and numerical analyses of the resulting equations. The purpose of this paper is to derive the approximate analytical expressions of concentration of oxygen for all values of the dimensionless parameters using new Homotopy perturbation method.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

It is convenient to begin by considering a tissue slice within a Cartesian coordinate system which is aligned so that the slice in the Y–Z plane with the X-axis normal to the slice (Figure 1). For simplicity, the slice is assumed of infinite extent in the Y and Z directions so...
that edges effects need not be considered. The slice is also taken to lie with \(-L \leq X \leq L\) so that the surrounding oxygen bath lies above the slice where \(X > L\) and below it with \(X < -L\). If \(v(X)\) denote the oxygen concentration in the tissue then, by Fick's law of diffusion, the uptake equation for the steady state is

\[
D \frac{d^2v}{dX^2} = q(X)
\tag{1}
\]

where \(q(X)\) is the oxygen consumption rate which is non linear term in oxygen concentration. \(D\) is the constant diffusion coefficient for the tissue.

3. ANALYTICAL EXPRESSION OF CONCENTRATION OF OXYGEN USING NEW HOMOGENOUS PERTURBATION METHOD

Linear and non-linear phenomena are of fundamental importance in various fields of science and engineering. Most models of real life problems are still very difficult to solve. Therefore, approximate analytical solutions such as Homotopy perturbation method (HPM) [10-23] were introduced. This method is the most effective and convenient ones for both linear and non-linear equations. Perturbation method is based on assuming a small parameter. The majority of non-linear problems, especially those having strong non-linearity, have no small parameters at all and the approximate solutions obtained by the perturbation methods, in most cases, are valid only for small values of the small parameter. Generally, the perturbation solutions are uniformly valid as long as a scientific system parameter is small. However, we cannot rely fully on the approximations, because there is no criterion on which the small parameter should exists. Thus, it is essential to check the validity of the approximations numerically and/or experimentally. To overcome these difficulties, HPM have been proposed recently.

Recently, many authors have applied the Homotopy perturbation method (HPM) to solve the non-linear boundary value problem in physics and engineering sciences [10-13]. Recently this method is also used to solve some of the non-linear problem in physical sciences [14-16]. This method is a combination of Homotopy in topology and classic perturbation techniques. Ji-Huan He used to introduce. This method is the most effective and convenient ones for both linear and non-linear equations.

The basic concept of general Homotopy perturbation method is given in Appendix A. This problem is solved using new approach in Homotopy perturbation method (Appendix B). Using new Homotopy perturbation method [24], the approximate analytical solution of Eq.5 for the boundary condition Eq.6 is

\[
u(x) = 2a \cosh(mx) - 2a^2 m \sinh(m) \cosh(mx)
+ \frac{4a^3 \cosh(2m) \cosh(mx)}{3} - 4a^3 \cosh(mx)
+ amx \sinh(mx) - \frac{2a^2 \cosh(2mx)}{3} + 2a^2
\tag{7}
\]

where the constant

\[
m = \sqrt{\frac{\gamma}{1+k}} \quad \text{and} \quad a = \frac{e^{2w} - 1}{e^{3w} - e^{2w}}
\tag{8}
\]

Case (2):

Here we consider the mass balance equation and the boundary conditions as follows:

\[
\frac{d^2y}{dx^2} = \frac{\gamma y}{y + k}
\tag{9}
\]

Now the boundary condition becomes

\[
y(0) = \alpha, \quad y'(0) = 0
\tag{10}
\]

where \(0 < \alpha < 1\). The approximate analytical solution of Eqs.9 and 10 using new Homotopy perturbation method (Appendix C) [24] is

\[
y(x) = \frac{\alpha - \alpha^2}{3} \cosh(nx) + \frac{\alpha^2}{2}
+ \frac{\alpha (\gamma - kn^2) x \sinh(nx)}{2n} - \frac{\alpha^2 \cosh(2nx)}{6}
\tag{11}
\]
where
\[n = \sqrt{\frac{\gamma \alpha}{\alpha + k}} \]

(12)

Case (3)

Now the non-linear boundary value problem is in the following form:
\[\frac{d^2 y}{dx^2} = \frac{y y}{y + k} \]

(13)

The boundary conditions is
\[y'(0) = 0, \quad y(1) = 1 \]

(14)

The approximate analytical solution of Eqs.13 and 14 is (Appendix D)
\[y(x) = \frac{\cosh(mx)}{\cosh(m)} \left[1 + \frac{\cosh(2m) - 3}{6 \cosh^2(m)} + \frac{km^2 - \gamma}{2a} \tanh(m) \right] \]
\[+ \left(3 - \cosh(2mx) \right) \left(\frac{(\gamma - km^2)x \sinh(mx)}{6 \cosh^3(m)} \right) \]

(15)

The corresponding effectiveness factor for this case is given by Eq.16, where \(m \) is defined by Eq.8.

4. NUMERICAL SIMULATION

In order to find the accuracy of our analytical method, the non-linear ordinary differential Eqs.5, 6, 9, 10, 13 and 14 are also solved by numerical methods. The function bvp4c in Matlab/Scilab software which is a function of solving non-linear boundary value problems for ordinary differential equations are used to solve these equations numerically. Our analytical results are compared with numerical simulations in Figures 2-11 and it gives a satisfactory agreement. The Matlab/Scilab program is also given in Appendix E.

5. RESULTS AND DISCUSSIONS

Figures 2 and 3 are the dimensionless concentration \(u(x) \) versus the dimensionless distance \(x \). From Figure 2, it is inferred that the dimensionless concentration \(u(x) \) increases, when the dimensionless parameter \(k \) increases. From Figure 3, it is clear that, the dimensionless concentration \(u(x) \) decreases when the dimensionless parameter \(\gamma \) increases.

![Diagrams for case (1)](image)

Figure 2. Dimensionless concentration of oxygen \(u(x) \) versus the dimensionless distance \(x \) for various values of the dimensionless reaction parameters \(\gamma \) and \(k \), when (a) \(\gamma = 0.1 \) and \(k = 0.1, 0.5, 1, 2, 4 \) and 8; (b) \(\gamma = 0.5 \) and \(k = 0.1, 0.5, 1, 2, 4 \) and 8; (c) \(\gamma = 1 \) and \(k = 0.1, 0.5, 1, 2, 4 \) and 8.

\[\eta = \frac{2}{\gamma} \left(\frac{dy}{dx} \right)_{x=1} = \frac{\sinh(m) \left(9 \cosh^2(m) + \cosh(2m) - 3 \right) + \cosh(m) \left(3m - 2 \sinh(2m) \right)}{3m(k+1)\left(\cosh(m) \right)^3} \]

(16)
Figure 3. Dimensionless concentration of oxygen $u(x)$ versus the dimensionless distance x for various values of the dimensionless reaction parameters γ and k, when $k = 0.5$ and $\gamma = 0.1, 0.5, 1, 2, 4$ and 8.

Figure 4. Dimensionless concentration of oxygen $y(x)$ versus the dimensionless distance x for various values of the dimensionless reaction parameters α, γ and k, when (a) $\alpha = 0.1$, $\gamma = 0.1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (b) $\alpha = 0.1$, $\gamma = 0.5$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (c) $\alpha = 0.1$, $\gamma = 1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8.
Figure 5. Dimensionless concentration of oxygen $y(x)$ versus the dimensionless distance x for various values of the dimensionless reaction parameters α, γ and k, when (a) $\alpha = 0.5$, $\gamma = 0.1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (b) $\alpha = 0.5$, $\gamma = 0.5$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (c) $\alpha = 0.5$, $\gamma = 1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8.

Figure 6. Dimensionless concentration of oxygen $y(x)$ versus the dimensionless distance x for various values of the dimensionless reaction parameters α, γ and k, when (a) $\alpha = 0.75$, $\gamma = 0.1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (b) $\alpha = 0.75$, $\gamma = 0.5$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (c) $\alpha = 0.75$, $\gamma = 1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8.
Figure 7. Dimensionless concentration of oxygen \(y(x) \) versus the dimensionless distance \(x \) for various values of the dimensionless reaction parameters \(\alpha, \gamma \) and \(k \), when (a) \(\alpha = 0.1, k = 1 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8; (b) \(\alpha = 0.1, k = 2 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8; (c) \(\alpha = 0.1, k = 4 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8.

Figure 8. Dimensionless concentration of oxygen \(y(x) \) versus the dimensionless distance \(x \) for various values of the dimensionless reaction parameters \(\alpha, \gamma \) and \(k \), when (a) \(\alpha = 0.3, k = 2 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8; (b) \(\alpha = 0.3, k = 4 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8; (c) \(\alpha = 0.3, k = 8 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8.
Figure 9. Dimensionless concentration of oxygen $y(x)$ versus the dimensionless distance x for various values of the dimensionless reaction parameters α, γ and k, when (a) $k = 0.5$, $\gamma = 5$ and $\alpha = 0.1, 0.3, 0.5, 0.7$ and 0.9; (b) $k = 0.5$, $\gamma = 1$ and $\alpha = 0.1, 0.3, 0.5, 0.7$ and 0.9; (c) $k = 1$, $\gamma = 0.5$ and $\alpha = 0.1, 0.3, 0.5, 0.7$ and 0.9; (d) $k = 1$, $\gamma = 1$ and $\alpha = 0.1, 0.3, 0.5, 0.7$ and 0.9.

Diagrams for case (3)

Figure 10. Dimensionless concentration of oxygen $y(x)$ versus the dimensionless distance x for various values of the dimensionless reaction parameters γ and k, when (a) $\gamma = 0.1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (b) $\gamma = 0.5$ and $k = 0.1, 0.5, 1, 2, 4$ and 8; (c) $\gamma = 1$ and $k = 0.1, 0.5, 1, 2, 4$ and 8.
Figures 4-9 are the dimensionless concentrations \(y(x) \) versus the dimensionless distance \(x \). From Figures 4-6, it is noted that the dimensionless concentration \(y(x) \) decreases, when dimensionless parameter \(k \) increases. From these figures, it is evident that when \(\alpha \) increases, the dimensionless concentrations \(y(x) \) also increases. From Figures 7 and 8, we infer that the dimensionless concentrations \(y(x) \) increases, when the dimensionless parameter \(\gamma \) increases. From these figures, it is noted that when \(\alpha \) increases, the dimensionless concentrations \(y(x) \) also increases. From Figure 9, we infer that, the dimensionless concentrations \(y(x) \) increases, when the dimensionless parameter \(\alpha \) increases.

Figures 10 and 11 are the dimensionless concentrations \(y(x) \) versus the dimensionless distance \(x \). From Figure 10, it is noted that the dimensionless concentrations \(y(x) \) increases, when the dimensionless parameter \(k \) increases and \(\gamma \) decreases. Figure 12 is the effectiveness factors for case (3).

Figure 11. Dimensionless concentration of oxygen \(y(x) \) versus the dimensionless distance \(x \) for various values of the dimensionless reaction parameters \(\gamma \) and \(k \), when (a) \(k = 0.5 \) and \(\gamma = 0.1, 0.5, 1, 2, 4 \) and 8; (b) \(k = 1 \) and \(\gamma = 0.1, 0.3, 0.5, 0.7, 1 \) and 1.5.

Diagram for effectiveness factors for case (3)

Figure 12. The effectiveness factor \(\eta \) versus the dimensionless parameter \(\gamma \) can be calculated using the Eq. 16, when \(k = 0.1, 0.5, 1, 2, 4 \) and 8.
factors versus the dimensionless parameter γ. From this figure, it is evident that the effectiveness factors decreases when the dimensionless parameter k increases and it reaches steady state value when $\gamma = 200$.

6. CONCLUSION

In this article, we have been interested in the analysis of non-linear reaction-diffusion equations with Michaelis-Menten kinetics. The non-linear boundary value problem with Michaelis-Menten kinetics has been solved analytically and numerically. Analytical expressions of the concentrations can be derived by using the new Homotopy perturbation method (NHPM). The primary result of this work is simple and approximate expressions of the concentrations for all values of the dimensionless parameters k, γ and α. This method is extremely simple and it is also a promising method to solve other nonlinear equations.

7. ACKNOWLEDGEMENTS

This work is supported by the University Grant Commission (UGC) Minor project No: F. MRP-4122/12 (MRP/UGC-SERO), Hyderabad, Government of India. The authors are thankful to Shri. S. Natanagopal, Secretary, The Madura College Board and Dr. R. Murali, Principal, The Madura College (Autonomous), Madurai, Tamil Nadu, India for their constant encouragement.

REFERENCES

APPENDIX A

Basic concept of the Homotopy perturbation method [10-22]

To explain this method, let us consider the following function:

\[D_o (u) - f (r) = 0, \quad r \in \Omega \] \hspace{1cm} (A1)

with the boundary conditions of

\[B_o \left(u, \frac{\partial u}{\partial n} \right) = 0, \quad \Gamma \in \Gamma \] \hspace{1cm} (A2)

where \(D_o \) is a general differential operator, \(B_o \) is a boundary operator, \(f (r) \) is a known analytical function and \(\Gamma \) is the boundary of the domain \(\Omega \). In general, the operator \(D_o \) can be divided into a linear part \(L \) and a non-linear part \(N \). Eq.A1 can therefore be written as

\[L (u) + N (u) - f (r) = 0 \] \hspace{1cm} (A3)

By the Homotopy technique, we construct a Homotopy \(v (r, p) : \Omega \times [0, 1] \rightarrow \mathbb{R} \) that satisfies

\[H (v, p) = (1-p) \left[L (v) - L (u_0) \right] + p \left[D_o (v) - f (r) \right] = 0 \] \hspace{1cm} (A4)

\[H (v, 0) = L (v) - L (u_0) = 0 \] \hspace{1cm} (A5)

where \(p \in [0, 1] \) is an embedding parameter, and \(u_0 \) is an initial approximation of Eq.A1 that satisfies the boundary conditions. From Eqs.A4 and A5, we have

\[H (v, 0) = L (v) - L (u_0) = 0 \] \hspace{1cm} (A6)

When \(p = 0 \), Eqs.A4 and A5 become linear equations. When \(p = 1 \), they become non-linear equations. The process of changing \(p \) from zero to unity is that of \(L (v) - L (u_0) = 0 \) to \(D_o (v) - f (r) = 0 \). We first use the embedding parameter \(p \) as a “small parameter” and assume that the solutions of Eqs.A4 and A5 can be written as a power series in \(p \):

\[v = v_0 + pv_1 + p^2v_2 + \cdots \] \hspace{1cm} (A8)

Setting \(p = 1 \) results in the approximate solution of Eq.A1 is

\[u = \lim_{p \to 1} v = v_0 + v_1 + v_2 + \cdots \] \hspace{1cm} (A9)

This is the basic idea of the HPM.

APPENDIX B

Solution of non-linear Eqs.5 and 6 using NHPM

In this Appendix, we indicate how Eq.7 in this paper is derived. To find the solution of Eqs.5 and 6 for case (1), we construct the new Homotopy as follows [24]:

\[(1-p) \left[\frac{d^2u}{dx^2} - \frac{\gamma u}{u(1+k)} \right] + p \left[\frac{d^2u}{dx^2} + k \frac{d^2u}{dx^2} - \gamma u \right] = 0 \] \hspace{1cm} (B1)

\[(1-p) \left[\frac{d^2u}{dx^2} - \frac{\gamma u}{u(1+k)} \right] + p \left[\frac{d^2u}{dx^2} + k \frac{d^2u}{dx^2} - \gamma u \right] = 0 \] \hspace{1cm} (B2)

The analytical solution of Eq.B2 is

\[u = u_0 + pu_1 + p^2u_2 + \cdots \] \hspace{1cm} (B3)

Substituting Eqs.B3 into Eq.B2 we get

\[(1-p) \left[\frac{d^2 (u_0 + pu_1 + p^2u_2 + \cdots)}{dx^2} \right] \] \hspace{1cm} (B4)

Comparing the coefficients of like powers of \(p \) in Eq.B4 we get

\[p^0 \frac{d^2u_0}{dx^2} - \frac{\gamma u_0}{u(1+k)} = 0 \] \hspace{1cm} (B5)

\[p^1 \frac{d^3u_0}{dx^2} + \frac{\gamma u_0}{u(1+k)} = 0 \] \hspace{1cm} (B6)

The initial approximations is as follows

\[u_0 (-1) = 1, \quad u_0 (1) = 1 \] \hspace{1cm} (B7)

\[u_i (-1) = 1, \quad u_i (1) = 0, \quad i = 1, 2, 3, \ldots \] \hspace{1cm} (B8)

Solving the Eqs.B5 and B6 and using the boundary conditions Eqs.B7 and B8, we obtain the following results:

\[u_0 (x) = 2a \cosh (mx) \] \hspace{1cm} (B9)

\[u_i (x) = \left(4a^2 \cosh (2m) \right) \cosh (mx) \] \hspace{1cm} (B10)

\[+ 2a^2 + am \sinh (mx) \] \hspace{1cm} (B11)
where \(m \) and \(a \) are defined in the text Eq. 8. According to the HPM, we can conclude that

\[
 u \xrightarrow{p \to 1} u_0 + u_1 \quad \text{(B11)}
\]

After putting the Eqs. B9 and B10 into an Eq. B11, we obtain the solutions in the text Eq. 7.

APPENDIX C

Solution of non-linear Eqs. 9 and 10 using NHPM [24]

In this Appendix, we indicate how Eq. 11 in this paper is derived. To find the solution of Eqs. 9 and 10 for case (2), we construct the new Homotopy as follows [24]:

\[
 (1-p) \left[\frac{d^2 y}{dx^2} - \frac{\gamma y}{y(0) + k} + p \left(\frac{d^2 y}{dx^2} + k \frac{dy}{dx} - \gamma y \right) \right] + \frac{\gamma (y_0 + py_1 + p^2 y_2 + \cdots)}{\alpha + k} = 0
\]

(C1)

\[
 (1-p) \left[\frac{d^2 y}{dx^2} - \frac{\gamma y}{\alpha + k} + p \left(\frac{d^2 y}{dx^2} + k \frac{dy}{dx} - \gamma y \right) \right] = 0
\]

(C2)

The analytical solution of Eq. C2 is

\[
 y = y_0 + py_1 + p^2 y_2 + \cdots
\]

(C3)

Substituting Eqs. C3 into Eq. C2, we get

\[
 (1-p) \left[\frac{d^2 (y_0 + py_1 + p^2 y_2 + \cdots)}{dx^2} \right] - \frac{\gamma (y_0 + py_1 + p^2 y_2 + \cdots)}{\alpha + k} + p \left(y_0 + py_1 + p^2 y_2 + \cdots \right) \frac{d^2 (y_0 + py_1 + p^2 y_2 + \cdots)}{dx^2} + k \frac{d^2 (y_0 + py_1 + p^2 y_2 + \cdots)}{dx^2} = 0
\]

(C4)

Comparing the coefficients of like powers of \(p \) in Eq. C4, we get

\[
 p^0: \frac{d^2 y_0}{dx^2} - \frac{\gamma y_0}{\alpha + k} = 0 \quad \text{(C5)}
\]

\[
 p^1: \frac{d^2 y_1}{dx^2} - \frac{d^2 y_0}{\alpha + k} + \frac{\gamma y_0}{\alpha + k} - \frac{\gamma y_1}{\alpha + k} + \frac{d^2 y_0}{\alpha + k} = 0
\]

(C6)

The initial approximations is as follows

\[
 y_0(0) = \alpha, y'_0(0) = 0 \quad \text{(C7)}
\]

\[
 y_i(0) = 0, y'_i(0) = 0, \quad i = 1, 2, 3, \ldots
\]

(C8)

Solving the Eqs. C5 and C6 and using the boundary conditions Eqs. C7 and C8, we obtain the following results:

\[
 y_0(x) = \alpha \cosh(\alpha x) \quad \text{(C9)}
\]

\[
 y_1(x) = -\frac{\alpha^2}{3} \cosh(\alpha x) + \frac{\alpha^2}{2} + \alpha (\gamma - k) \sinh(\alpha x) - \frac{\alpha^2 \cosh(2\alpha x)}{2n} \quad \text{(C10)}
\]

where \(n \) is defined in the text Eq. 12. According to the HPM, we can conclude that

\[
 y \xrightarrow{p \to 1} y_0 + y_1 \quad \text{(C11)}
\]

After putting the Eqs. C9 and C10 into an Eq. C11, we obtain the solutions in the text Eq. 11.

APPENDIX D

Solution of non-linear Eqs. 13 and 14 using NHPM [24]

In this Appendix, we indicate how Eq. 15 in this paper is derived. To find the solution of Eqs. 13 and 14 for case (3), we construct the new Homotopy as follows [24]:

\[
 (1-p) \left[\frac{d^2 y}{dx^2} - \frac{\gamma y}{y(1) + k} + p \left(\frac{d^2 y}{dx^2} + k \frac{dy}{dx} - \gamma y \right) \right] = 0
\]

(D1)

\[
 (1-p) \left[\frac{d^2 y}{dx^2} - \frac{\gamma y}{1 + k} + p \left(\frac{d^2 y}{dx^2} + k \frac{dy}{dx} - \gamma y \right) \right] = 0
\]

(D2)

The analytical solution of Eq. D2 is

\[
 y = y_0 + py_1 + p^2 y_2 + \cdots
\]

(D3)

Substituting Eqs. D3 into D2 we get

\[
 (1-p) \left[\frac{d^2 (y_0 + py_1 + p^2 y_2 + \cdots)}{dx^2} \right] - \frac{\gamma (y_0 + py_1 + p^2 y_2 + \cdots)}{1 + k} + \frac{d^2 (y_0 + py_1 + p^2 y_2 + \cdots)}{1 + k} = 0
\]

(D4)

Comparing the coefficients of like powers of \(p \) in Eq. D4, we get
\[p^0 : \frac{d^2 y_0}{dx^2} - \frac{\gamma y_0}{\alpha + k} = 0 \]
\[p^1 : \frac{d^2 y_1}{dx^2} - \frac{d^2 y_0}{dx^2} + \frac{\gamma y_0}{1 + k} - \frac{\gamma y_1}{1 + k} = 0 \]
\[+ \gamma_0 \frac{d^2 y_0}{dx^2} + k \frac{d^2 y_0}{dx^2} - \gamma y_0 = 0 \]
\[(D5) \]
\[(D6) \]

The initial approximation is as follows:
\[y'_0 (0) = 0, y_0 (1) = 1 \]
\[y'_1 (0) = 0, y_1 (1) = 0, \quad i = 1, 2, 3, \cdots \]
\[(D7) \]
\[(D8) \]

Solving the Eqs. D5 and D6 and using the boundary conditions Eqs. D7 and D8, we obtain the following results:
\[y_0 (x) = \frac{\cosh (mx)}{\cosh (m)} \]
\[y_1 (x) = \frac{\cosh (2m) - 3}{6 \cosh^2 (m) + \left(\frac{km^2 - \gamma}{2m} \right) \tanh (m)} \cosh (mx) + \frac{3 - \cosh (2mx)}{6 \cosh^2 (m)} + \frac{\gamma k m^2 - \gamma x \sinh (mx)}{2m \cosh (m)} \]
\[(D9) \]
\[(D10) \]

where \(m \) is defined in the text Eq.8. According to the HPM, we can conclude that
\[y = \lim_{p \to 1} y(x) = y_0 + y_1 \]
\[(D11) \]

After putting the Eqs. D9 and D10 into an Eq. D11, we obtain the solutions in the text Eq.15.

APPENDIX E

Matlab/Scilab program to find the numerical solution of non-linear Eqs. 5 and 6

```matlab
function pdex4
m = 0;
```

\[x = \text{linspace}(1,-1,1); \]
\[t = \text{linspace}(0,100); \]
\[\text{sol} = \text{pdepe}(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); \]
\[u1 = \text{sol}(:,:,1); \]
\[\text{figure} \]
\[\text{plot}(x,u1(end,:)) \]
\[\text{title('Solution at t = 2')} \]
\[\text{xlabel('Distance x')} \]
\[\text{ylabel('u1 (x,2)'}) \]
\[\% -- \]
\[\% function \[c,f,s\] = pdex4pde(x,t,u,DuDx) \]
\[\% --\]
\[\% function u0 = pdex4ic(x) \]
\[\% -- \]
\[\% function \[pl,ql,pr,qr\] = pdex4bc(xl,ul,xr,ur,t) \]
\[\% -- \]

APPENDIX F

Nomenclature

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu, \gamma)</td>
<td>Dimensionless concentration of oxygen</td>
</tr>
<tr>
<td>(x)</td>
<td>Dimensionless distance</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Diffusion coefficient</td>
</tr>
<tr>
<td>(k)</td>
<td>Maximum reaction rate</td>
</tr>
<tr>
<td>(\alpha, m, n, \text{ and } a)</td>
<td>Dimensionless parameters</td>
</tr>
</tbody>
</table>