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ABSTRACT 

In this study, several ZnO catalysts were prepared using different zinc sources as precursors. The different catalyst mor- 
phologies obtained were used to degrade photocatalytically a methyl orange (MO) dye solution, which was used to 
model wastewater pollution. The precursors, Zn(CH3COO)2, ZnCl2 and Zn(NO3)2, were individually added to a solution 
containing cetyltrimethylammonium bromide (CTAB) and sodium hydroxide (NaOH) for the hydrothermal synthesis of 
ZnO. After the hydrothermal reaction, the samples of ZnO were filtered, washed, dried at 110˚C and calcined at 550˚C, 
resulting in the formation of the rod-like (designated ZnO(I)), the rice-like (designated ZnO(II)) and the granular-like 
(designated ZnO(III)) catalysts. The catalysts were characterized by X-ray diffraction (XRD), field-emission scanning 
electron microscope (FE-SEM) and their UV-visible diffuse reflectance spectra (UV-Vis DRS). The results indicate that 
the photocatalytic degradation of the MO solution, after 60 min of UV irradiation, can reach percentages of 40%, 96% 
and 99% using the catalysts ZnO(I), ZnO(II) and ZnO(III), respectively. The morphology of the ZnO catalyst had an ap- 
parent effect on the rate of the photocatalytic degradation of MO. The ZnO(II) and ZnO(III) catalysts have higher S/V 
ratios and a greater content of oxygen vacancies, resulting in different absorbances of ultraviolet light, which leads to 
different rates of photocatalytic degradation of MO. 
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1. Introduction 

Within the last decade, green chemistry has been recog- 
nized as a potential approach toward scientifically based 
environmental protection. Recently, photocatalysis has 
come to be considered one of the most important, envi- 
ronmentally friendly, clean chemical technologies for 
green chemistry [1]. In the environment, wastewater con- 
taining various organic dyes has become one of the major 
industrial pollutants. Photocatalytic oxidation has increa- 
singly demonstrated its superiority in the decomposition 
of pollutants that are both highly toxic and difficult to 
treat by general chemical techniques. Photocatalysis is a 
potential technology for the decomposition of organic pol- 
lutants in wastewater, such as benzene and its derivatives, 
which poses a significant present or potential hazard to 
human health and safety and to the environment [2,3]. 

Photocatalytic processes involving the oxidation of or- 
ganic compounds in wastewater are achieved by the re- 
active hydroxyl radical. As one of the proven semicon- 
ductor photocatalysts, zinc oxide (ZnO) has been widely 
used as a photocatalyst, due to its high activity, low cost 

and environmentally friendly properties [4-6]. ZnO has 
received considerable attention in the photocatalytic de- 
gradation of environmental pollutants because its direct 
band gap (3.37 eV) is larger than that of TiO2 [7] and be- 
cause ZnO exhibits high efficiency in the photodegrada- 
tion of certain organic dyes, such as thionine, methylene 
blue, acridine orange, benzene and its derivatives [8-12]. 
Although there are many synthetic routes toward ZnO, 
the hydrothermal method is the most attractive, due to its 
perfect control of morphology, composition, purity, crys- 
tallinity and low cost for large-scale production. There- 
fore, various precursors have been used to synthesize va- 
rious ZnO nanostructures. The ability to grow different na- 
nostructures of ZnO with well-controlled crystalline mor- 
phology is still needed to study the photocatalytic degrada- 
tion of organic pollutants in wastewater systematically 
[13-17]. 

In this paper, the rod-like, rice-like and granular-like 
ZnO nanostructures were prepared using different zinc 
precursors in the hydrothermal synthesis. To investigate 
the photocatalytic activities; SEM, XRD and UV-vis mea- 
surements were undertaken to determine the degradation 
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of MO on these ZnO catalysts. Methyl orange (MO) was 
selected as a target pollutant, due to its solubility in water, 
which is a requirement for chemicals present in waste- 
water from industrial emissions. 

2. Experimental 

2.1. Preparations of Catalysts 

Different morphologies of ZnO catalysts were prepared us- 
ing a hydrothermal reaction under basic conditions using 
the surfactant cetyltrimethylammonium bromide (CTAB, 
C19H42NBr) and different sources of zinc. 

In a typical experiment for the 1) rod-like ZnO catalyst, 
1.46 g of zinc nitrate (Zn(NO3)2·6H2O), 1.0 g of CTAB 
and 3.0 g of NaOH were dissolved in 45 mL of deionized 
water and stirred for 1 h, and the solution was added into 
a 100 mL Teflon-lined stainless steel reaction vessel. The 
molar ratio of CTAB/zinc nitrate was 1:2.26. The vessel 
was sealed and maintained at 160˚C in an oven for 24 hrs. 
2) Rice-like ZnO catalyst: 2.5 g of zinc acetate  
(Zn(CH3COO)2·2H2O), 1.73 g of CTAB and 2.0 g of 
NaOH were dissolved in 40 mL of deionized water and 
stirred for 1 h, and the solution was added into a 100 mL 
Teflon-lined stainless steel reaction vessel. The molar 
ratio of CTAB/zinc acetate was 1:2.38 [18]. The vessel 
was sealed and maintained at 160˚C in an oven for 24 hrs. 
3) Granular-like ZnO catalyst: 1.0 g of zinc chloride 
(ZnCl2·2H2O), 1.18 g CTAB and 1.36 g of NaOH were 
dissolved in 20 mL of deionized water and stirred for 1 h, 
and the solution was added into a 100 mL Teflon-lined 
stainless steel reaction vessel. The molar ratio of CTAB/ 
zinc chloride was 1:2.26. The vessel was sealed and main- 
tained at 140˚C in an oven for 24 h. 

All samples were subsequently allowed to cool to 
room temperature. The white precipitate was filtered, 
washed with deionized water and dried in air at 110˚C 
for 24 h. The obtained white powders were then calcined 
at 550˚C for 4 h. The ZnO catalysts of rod-like, rice-like 
and granular-like varieties were designated ZnO(I), ZnO(II) 
and ZnO(III), respectively, as shown in Table 1. 

2.2. Structural and Morphological Analysis 

The crystal structures of the products were characterized 
by power X-ray diffraction (XRD, Siemens D-5000 dif- 
fractometer with CuKα1 radiation (λ = 1.5406 Å)) at room 
temperature. The peak intensities and positions were ob- 
tained between 20˚ and 80˚ with a velocity of 0.02 de- 
grees per second. The morphologies and microstructures 
of the samples were investigated by FE-SEM using a 
LEO 1530 scanning electron microscope. 

2.3. Photocatalytic Degradation Experiment 

The photocatalytic activities of the different ZnO mor- 

Table 1. The photocatalytic degradation efficiency of Me- 
thyl orange (MO) solutions on ZnO catalysts obtained from 
the different morphology by 350 nm of UV-visible. 

Pd efficiency (%)b

Samplea Precursor Morphology IAbs (%) 
30 mins 60 mins

ZnO(I) Zn(NO3)2 Rod-like 79 24 40 

ZnO(II) Zn(CH3COO)2 Rice-like 99 76 96 

ZnO(III) ZnCl2 Granular-like 100 78 99 

aAll samples were prepared by hydrothermal method which were cal- 
cined temperature at 550˚C. bThe photocatalytic degradation efficien- 
cies were calculated using the absorbance (IAbs) at 280 nm obtained 
from the DRS spectra of the ZnO catalysts. 

 
phologies were determined by measuring the degradation 
of a MO dye solution at room temperature using a Rayo- 
net Photochemical Chamber Reactor containing 16 RPR- 
3500 A lamps. A dye solution was prepared (10 mg/L) 
by dissolving the appropriate amount of dye powder in 
deionized water. Approximately 50 mL of this solution 
was placed in the photoreactor followed by the addition 
of the ZnO catalyst with a concentration of 1 g/L, and the 
mixture was stirred slowly in darkness for 1 h to elimi- 
nate pre-produced electrons and holes from environmen- 
tal light sources [19]. The dye solution containing the 
ZnO catalyst was subsequently illuminated, and samples 
were taken out at different time points within a 60-min 
reaction. After separating the sample from the dye solu- 
tion by centrifuge, the dye concentration was determined 
by its UV absorption spectra using a Hitachi U-3310 spe- 
ctrometer. The maximum absorption wavelength of the 
MO (chemical formula: C14H14N3NaO3S, λmax = 464 nm) 
was recorded. The decomposition efficiency of MO was 
calculated using the following: the MO decomposition 
efficiency (%) = (Co − (C/Co)) × 100, where Co and C are 
the equilibrium concentration in the aqueous solution, 
which is below 10 mg/L and is linearly proportional to 
the intensity of the measured peak. 

3. Results and Discussion 

3.1. Characterization of Different Morphology 
ZnO Catalysts 

Figures 1(a)-(c) show the SEM images of the different 
catalyst morphologies, which depend on the zinc precur- 
sor. Figure 1(a) shows the semicircular ends of the rod- 
like ZnO catalyst, and the lengths and widths were mea- 
sured to be in the range of 1.0 - 7.0 m and 100 - 200 nm, 
respectively. 

Figure 1(b) shows the rice-like ZnO catalyst obtained 
with lengths in the range of 250 - 1000 nm. In Figure 
1(c), the size of the granular-like ZnO catalyst was mea- 
sured to be 50 - 150 nm. Comparison of the SEM images 
of the different morphological ZnO catalysts revealed  
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Figure 1. FE-SEM images of the rod-like (a) The rice-like; (b) 
And the granular-like; (c) ZnO catalysts; and XRD patterns; 
(d) Of the different morphological ZnO catalysts are pre- 
sented. 

that they could maintain their shape, even after they were 
calcined at 550˚C. Figure 1(d) shows the XRD patterns 
of the different morphologies grown using zinc nitrate, 
zinc acetate and zinc chloride as the ZnO precursor. Sev- 
eral well-defined diffraction reflections characteristic of 
ZnO were observed in the obtained X-ray diffraction pat- 
terns (Figure 1(d)). These reflections appeared at 31.6˚, 
34.4˚, 36.1˚, 47.6˚, 56.7˚, 62.9˚, 68.0˚ and 69.2˚ corre- 
spond to the lattice planes of (100), (002), (101), (102), 
(110), (103), (112) and (201), respectively. The observed 
diffraction peaks can be indexed to the hexagonal wurtz- 
ite structure of ZnO (JCPDS 36-1451). No other diffrac- 
tion peaks were detected, which indicates that there were 
no impurities present and that the precursors had been 
completely transformed into ZnO. According to these re- 
sults, it is apparent that different morphologies of ZnO 
can be obtained using different zinc precursors and by 
controlling the reaction temperature and time. 

3.2. UV-Vis Diffuse Reflectance Analysis 

The UV-vis diffuse reflectance spectra of the different 
morphological ZnO catalysts are shown in Figure 2. It 
was found that the absorbance of the ZnO begins to de- 
crease at 380 nm, while the band-edge of the rod-like 
ZnO catalyst was slightly shifted to shorter wavelengths 
of 7 nm, and a decrease in absorbance (79%) was ob- 
served compared to the rice-like and granular-like ZnO 
catalysts (100%). The blue shift of the band edge has 
been previously observed in the rod-like ZnO [20]. 

For a direct band gap semiconductor, the relationship 
between the absorption edge and the photon energy (hν) 
can be written as follows: 

  2 gh A h E                 (1) 

where A is the absorption constant that depends on the 
material of the direct band gap semiconductor. The ab- 
sorption coefficient (α) is determined from the scattering 
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Figure 2. UV-vis DRS spectra of rod-like (a) Rice-like; (b) 
And granular-like; (c) ZnO catalysts. 
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and reflectance spectra according to the Kubelka-Munk 
theory [20,21]. The s-d and p-d exchange interactions lead 
to a negative and a positive correction factor in the con- 
duction band and valence band edges, respectively, there- 
by resulting in band gap narrowing [22]. 

3.3. Photocatalytic Degradation of Methyl 
Orange 

The time-dependent UV-Vis spectra of the MO solution 
during irradiation are illustrated in Figures 3(a)-(c). 

For the rod-like ZnO catalyst, it can be observed that 
the maximum absorbance at 464 nm had degraded by 
24% after irradiation for 30 min, when after 60 min of 
irradiation, the peak degraded by 40%, Figure 3(a). Af- 
ter 30 min of MO degradation on the rice-like and the 
granular-like ZnO catalysts, the peaks had degraded by 
76% and 78%, respectively. However, after irradiation 
for 60 min, the rice-like and granular-like ZnO catalysts 
nearly caused the peak to disappear, achieving 96% and 
99% MO degradation, respectively, as shown in the 6th 
column of Table 1. 

In addition to the experiments with ZnO and irradia- 
tion, both blank experiments were investigated, which in- 
cluded the absence of irradiation with ZnO, or the pres- 
ence of irradiation without ZnO. While in the presence of 
irradiation and ZnO, MO can easily be photocatalytically 
degraded, and Figure 3(d) shows the degradation effi- 
ciency of MO over the various morphological ZnO cata- 
lysts. Blank experiments performed without the ZnO ca- 
talyst under identical UV irradiation for 60 min showed 
that none of the MO in solution had been degraded (sym- 
bol  of curve). After UV irradiation for 60 min, appro- 
ximately 40% (symbol of curve) of the MO is degraded 
over the rod-like ZnO catalyst (Figure 3(a)). The rice- 
like (Figure 3(b)) and granular-like (Figure 3(c)) ZnO 
catalysts show that 96% (symbol  of curve) and 99% 
(symbol  of curve) of the MO in solution is decomposed 
after 60 min of UV irradiation. In general, the photoca- 
talytic activity of a catalyst in the degradation of pollut- 
ants is related to its bands gap energy and is due to the 
nanosized structures and high surface areas [22,23]. 

In our study, it is easy to understand that the effective 
surface area of the granular-like ZnO and the rice-like ZnO 
nanostructures is larger than that of the rod-like ZnO. 
Thus, the high photocatalytic activity of the granular-like 
ZnO and the rice-like ZnO nanostructures can be ascribed to 
their small size and leads to an increase in both the band 
gap energy and its surface-to-volume (S/V) ratio [24]. 

Additionally, the granular-like and rice-like nanostruc- 
tures favor the movement or transfer of electrons and 
holes generated inside the crystal to the surface [25], 
which helps to enhance the photocatalytic activity of the 
granular-like ZnO catalyst to a certain degree. According 
to the mechanism of semiconductor photocatalysis, the 
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Figure 3. UV-vis adsorption spectra of MO after different 
irradiation times using rod-like (a) Rice-like; (b) granular- 
like; (c) ZnO as a photocatalyst; and (d) MO degradation 
versus reaction time for different morphologies of the ZnO 
catalyst. 
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irradiation of a photocatalyst particle with supra-band-gap 
energy results in the formation of photogenerated elec- 
tron-hole pairs. These pairs subsequently diffuse to the 
surface, where the electrons are captured by an oxygen 
molecule and the hole by an adsorbed hydroxide, which 
later forms a hydroxyl radical. Before the electrons and 
holes reach the surface, there is a significant chance of 
recombination. 

However, semiconductor nanocrystallites exhibit inte- 
resting photocatalytic properties and particle sizes at the 
nanometer scale, resulting in quantum size effects at di- 
mensions comparable to that of the Bohr diameter of the 
exciton [26]. In the present experiment, using different 
precursors, different sizes and morphologies of ZnO were 
prepared, including the rod-like and rice-like morpholo- 
gies (nano-sized) and the granular-like morphology (micro- 
sized), which were obtained after individual calcination 
at 550˚C. Thus, the nano-sized morphology of the rice- 
like and granular-like ZnO catalysts result in a good quan- 
tum size effect; therefore, these catalysts exhibit high 
photocatalytic efficiencies [27]. 

4. Conclusion 

Different morphologies of ZnO catalysts were prepared 
and include the rod-like, rice-like and granular-like va- 
rieties, and their photocatalytic efficiencies were investi- 
gated by the degradation of a methyl orange dye solution. 
The results show that the different precursors have com- 
pletely distinct surface morphologies. The rod-like ZnO 
catalyst, with a hexagonal wurtzite structure, was grown 
using zinc nitrate as a precursor, and the rice-like ZnO 
catalyst structure was achieved using zinc acetate, where- 
as the granular-like catalyst was formed using zinc chlo- 
ride as the precursor. Moreover, the granular-like and rice- 
like ZnO catalysts exhibited outstanding photocatalytic 
activity, which is primarily due to their high S/V ratio 
and higher content of oxygen vacancies. This investiga- 
tion may provide guidance for the morphology-control- 
led synthesis of ZnO nanostructures and their application 
in the treatment of organic pollutants. 
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