Fat Re-Grafting in Facial Asymmetry:
A 2-Case Report

Ahmed Abdel Hady El Danaf¹*, Ahmad Abdemaksoud Rabie²

¹Plastic Surgery Department, Mataria Teaching Hospital, Cairo, Egypt
²Dermatology Department, National Research Centre, Cairo, Egypt
Email: ahmed_el_danaf@hotmail.com

Received 15 December 2015; accepted 16 January 2016; published 19 January 2016

Abstract

Fat redistribution through recycling of previously grafted fat hasn’t been reported. Two facial asymmetry patients are presented with history of fat grafting to the mandibular angle areas. Collected fat from these formerly fat grafted zones and swollen on subsequent extra body weight gain has been re-grafted in the temporal regions for contour enhancement and has retained volume as photographically documented up to 30 months.

Keywords
Fat Re-Grafting, Fat Transfer, Liposuction Dry Technique, Facial Asymmetry, Hemifacial Microsomia

1. Introduction

Fat grafting to the face has become one of the most common and safe procedures that help both facial contouring and rejuvenation. Bulging of facial areas previously grafted with fat after body weight gain is a gradually more existing clinical hitch. This paper intends to present a key through liposuction of areas formerly fat-grafted in the face and re-cycling the extracted fat cells as fillers in other facial areas, an application that has not been addressed in literature.

2. Presentation

Two patients with the developmental First and Second Branchial Arch Syndrome (Hemifacial Microsomia) presented mainly for facial contouring. Their deficient mandibular angle areas were treated with fat grafting.

*Corresponding author.
Grafts few years later showed enlargement on weight gain. The over-stuffed area was treated with syringe dry liposuction and the extracted fat—after taking patients consent—was re-cycled in the temporal zones for cosmetic reason. Fat re-grafting was successful without complications, new face outlines were maintained and patients showed satisfaction.

2.1. Case 1
A 22-year old female patient presented with bilateral mild maxillo-mandibular developmental hypoplasia which was more intense on the left side. She was primarily treated with fat grafting to the mandibular angle and pre-auricular regions, 20 ml on the left side and 30 ml on the right. This procedure was associated with anterior maxillary tilting (removing the upper left premolar) setback osteotomy. Six months later a combined rhinoplasty and advancement genioplasty was carried out. Four years later, when her body weight had markedly increased, the patient came complaining from recent enlargement of her fat-recipient mandibular angle zones. She accepted to get liposuction of these areas and to make use of the extracted fat cells for facial temporal region augmentation. Liposuction without prior infiltration was carried out using 20 cc syringes and 2 mm blunt cannula. The easily extracted soft fat lobules stained with frank blood measured 7 ml from the right mandibular angle and 4 ml from the left. Five ml collected fat was directly re-injected in her depressed temporal area on each side. The re-grafted fat in the new hosting temporal sieges has retained volume as followed up to 30 months (Figure 1).

2.2. Case 2
A 25-year old patient presented with right hemifacial microsomia and chose correction with fat grafting rather than undergoing any facial osteotomy surgery. Centrifuged 80 ml trunk fat was grafted to the right facial lower two thirds: 35 ml to the mandibular angle area injected supra-periosteal deep to the masseter muscle via an intra-oral approach and 45 ml injected subcutaneous through a tiny skin port below ear-lobule. The grafted areas 8 years later got overstuffed on recent body extra weight gain. Fifteen ml fat was suctioned with syringe dry technique from the mandibular right side and was re-cycled to the right temporal area and both lips. Two months follow up consultation revealed maintained volume of these areas (Figure 2).

3. Discussion
Changes in adipose tissue volume are principally related to cell size and its intra-cellular lipid content. While the number of fat cells was generally assumed to be stable after full physical adolescent growth has been achieved [1], hyperplastic obesity has been proven manifestly as body fat levels exceed 40 kg [2]. On weight loss, fat cells shrink and may even dedifferentiate and on weight gain they redifferentiate and increase in volume [3]. Although transferred cells are not expected to regenerate, new adipose cells are thought to be developed by a population of stem cells, residing in the stromal vascular fraction of lipoaspirate tissue [4]-[6]. On weight gain,
fat cells in the common subcutaneous donor sites (trunk, thighs and arms) are usually more susceptible to hyper-
trophy and/or hyperplasia than those originally residing facial recipient areas. Fat graft regularly increases in
size with subsequent overall weight gain. Doesn’t grafted adipocyte retain memory to match its original donor
site cells volume changes in response to weight loss or gain, rather than to get in compliance with the recipient
in-house cells doctrine? Transplanted fat cells resembling transplanted hair follicles seem to conserve genetic
donor-site codes and hence its volume regulations follow eventual changes in the donor site cells. Studying fat
grafted areas with MRI-imaging and histological examination would have conclusively proven fat hypertrophy,
hyperplasia and any increase in extracellular tissue components. Facial fat grafting in orthognathic surgery cases
has been over the past few years [7]-[12] an easier alternative or additive armamentarium to the heavier osteo-
tomy operations particularly when patient occlusion is acceptable or correctable in dental clinics.

Structural fat grafting in the two presented cases entails liposuction in facial areas where lipofilling has been
performed previously and followed by re-processing for lipofilling in other facial areas. The dry liposuction tech-
nique was used to help precise assessment of the bulges reduction. The quality of the dry fat aspirate wouldn’t
improve through a centrifuge process.

4. Conclusion
In conclusion, extraction of previously grafted fat and re-cycling this extracted fat in other areas may constitute
a novelty which offers a new acceptable relevance to the existing clinical problem “enlargement of previously
grafted facial areas when patient becomes obese”.

References
http://dx.doi.org/10.1097/00000637-198605000-00012
http://emedicine.medscape.com/article/1272642-overview#a0104
http://emedicine.medscape.com/article/1283020-treatment#a1133
Biology of the Cell, 13, 4279-4295. http://dx.doi.org/10.1091/mbc.E02-02-0105
Stem Cells. Biochemical and Biophysical Research Communications, 330, 142-150.
http://dx.doi.org/10.1016/j.bbrc.2005.02.141
Disease): Structural Fat Grafting versus Local/Freeflaps. *Journal of Craniofacial Surgery*, 25, 783-787. http://dx.doi.org/10.1097/SCS.0b013e31820b7081

