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ABSTRACT 

Simulating the dynamic response of trucks requires that a model be constructed and subjected to road inputs. Inclusion 
or omission of flexible frame effects is often based on intuition or assumption. If frame vibration is assumed to be sig-
nificant, it is typically incorporated in one of two ways. Either a complex finite element model of the frame is used, or a 
simplified linear modal expansion model (which assumes small motions) is employed. The typical low-order modal 
expansion model, while computationally efficient and easier to use, is limited by the fact that 1) large rigid body mo-
tions and road grade changes are not supported, and 2) longitudinal dynamics are not coupled to vertical and bounce 
dynamics. In this paper, a bond graph model is presented which includes coupled pitch and bounce motions, longitudi-
nal dynamics, and transverse frame vibration. Large rigid body motions are allowed, onto which small flexible vibra-
tions are superimposed. Frame flexibility is incorporated using modal expansion of a free-free beam. The model allows 
for a complete pitch-plane representation in which motive forces can propel the truck forward over varying terrain, in-
cluding hills. The effect of frame flexibility on vehicle dynamics can then be studied. This is an extension of the typical 
half-car model in which suspension motion is assumed vertical, pitch angles are small, and longitudinal dynamics are 
completely decoupled or omitted. Model output shows the effect of frame flexibility on vehicle responses such as for-
ward velocity, pitch angle, and payload acceleration. Participation of individual modes can be seen to increase as road 
input approaches their natural frequency. The bond graph formalism allows for any or all flexible frame modes to be 
easily removed from the model if their effects are negligible, and for inclusion of more complex submodels for compo-
nents such as suspension and engine if desired. 
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1. Introduction 

The dynamic analysis of trucks requires a mathematical 
model of the vehicle structure (including engine, cab, and 
transmission), suspensions and tires, and the road excita-
tion. While flexural vibration of the chassis can often be 
neglected in smaller, relatively stiff automobiles, large 
trucks and buses can experience significant “beaming 
mode” vibration. Beaming is response of the frame at its 
first modal transverse bending frequency, and for non- 
articulated trucks this frequency can be on the order of 
bounce and pitch frequencies of a rigid vehicle [1-3]. 
Beaming response can be sizeable at the centre of the 
frame midway between the steered wheels and rear axle 
[4]. 

Approaches to modeling flexible vehicles range from 1) 
ignoring body flexibility by using a lumped mass model 
[5]; 2) modeling the frame as a regular free-free beam 
and calculating, estimating or measuring modal masses 
and stiffnesses [4,6]; and 3) modeling the entire vehicle  

using the finite element method [1,7-10]. As in most 
other dynamic systems, the analyst is faced with a spec- 
trum of possible model complexity. The simplest models 
are easy to implement and computationally efficient but 
of limited accuracy and predictive ability. The most 
complex models present great computational burden but 
are potentially more accurate if parameters can be accu- 
rately determined. Low-order models with frame flexi- 
bility are typically limited to pitch-plane dynamics 
(bounce and pitch motions), and assume that frame an- 
gular motions are small and motion of any point can be 
assumed vertical. Longitudinal effects such as propulsion 
and braking forces, aerodynamic drag, tire rolling, slip 
resistance, and road inclination, when incorporated in 
order to predict forward speed, gradeability, or fuel 
economy; are usually decoupled from pitch and bounce 
modes. To predict vertical and pitch motions of the pas- 
senger compartment or payload, a vertical road input is 
typically applied to a pitch plane model, possibly with 
frame flexibility. Longitudinal motion determines when  
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the vehicle encounters bumps, and therefore when sus- 
pension and body motions in the pitch plane are excited. 
Vertical road undulations and the resulting pitch plane 
response can also affect longitudinal motion. In other 
words, for certain vehicle parameters and road roughness, 
there can be two-way coupling between longitudinal and 
pitch/bounce motion [11-13]. To maximize the accuracy 
of vehicle response prediction when such coupling is 
present, and to further account for the effect of frame 
flexibility, the typical small-vertical-motion model with 
frame vibration must be extended to allow the large rigid 
body motions that arise from longitudinal motion and 
change in road inclination.  

This paper presents a model which includes pitch and 
bounce motions, longitudinal dynamics, and transverse 
frame vibration. Forces and velocities are resolved along 
coordinate axes parallel and perpendicular to the unde- 
formed frame. Large rigid body motions are allowed, 
onto which small flexible vibrations are superimposed. 
Frame flexibility is incorporated using modal expansion 
of a free-free beam. The model allows for complete 
pitch-plane representation in which motive forces can 
propel the truck forward over varying terrain, including 
hills. The effect of frame flexibility on vehicle dynamics 
can then be studied. The bond graph formalism is used to 
generate the model. Bond graphs, in addition to facilitat-
ing integration of flexible and rigid subsystems, allow for 
inclusion of more complex submodels for components 
such as suspension and engine if desired. 

The following section reviews pitch plane models and 
approaches to including flexibility effects. Section 3 pro- 
vides an overview of the bond graph modeling language. 
Section 4 gives schematics and equations for the rigid 
and flexible portions of the vehicle model, describes how 
terrain undulations are incorporated, and presents the 
final bond graph. Section 5 contains model output, in- 
cluding a study of the effect of road roughness on the 
coupling between frame flexibility, vehicle response in 
the pitch plane, and longitudinal motion. Discussion, 
conclusions and future work comprise Section 6. 

2. Literature Review 

Traditionally, linear pitch plane models have been the 
starting point for low-order modeling of truck dynamics 
including frame flexibility. Margolis and Edeal [4] cre- 
ated a 2 degree-of-freedom, small vertical motion bus 
frame model to which the engine, cab, and load were 
added in addition to suspension forces. The bond graph 
approach facilitated addition of external components to 
the flexible substructure. Frequency response of the 
frame showed a dominant beaming mode at approxi- 
mately 10 Hz, very near the unsprung mass frequency. 
Margolis and Edeal [5] extended the aforementioned 

model to a five-axle tractor-trailer with submodels for 
engine, cab, and sleeper module/fuel tank. Non-linear 
elements were included in the model. Dynamic motions, 
in which the relative velocity across the suspension re- 
mained nearly zero, were identified as a significant effect 
of interaction between vehicle dynamics and frame vi-
bration.  

Michelberger et al. [14] identified a discrete transfer 
function for a free-free beam model of a two-axis bus, 
and then estimated modal characteristics based on meas- 
ured data. For an air suspension bus, frequencies of 6.7 
and 12 Hz were associated with the first two bending 
modes of the frame. Interaction of frame motion with the 
other vehicle dynamic elements is foreseeable given the 
9.1 Hz engine mount natural frequencies and 10.3 - 10.4 
Hz wheel-hop frequencies of the front and rear axles. 
Ibrahim et al. [9] modeled a truck frame using modal 
superposition, with modal properties calculated using a 
finite element model. The linear model included truck 
longitudinal velocity and a cab suspended by two linear 
suspension systems. The model assumed constant longi- 
tudinal velocity and no aerodynamic effects or tire 
lift-off. Frame flexibility was found to strongly affect 
driver’s vertical acceleration and cab’s pitch acceleration 
for a truck with frame natural frequencies of 7.25, 13, 
and 18 Hz. Yi [15] generated a 20-node finite element 
model of a frame modeled as a block, with both vertical 
and lateral vibration degrees of freedom. Response of 
rigid vs. flexible models to a pulse steering input showed 
significant discrepancies in predictions of lateral motion 
and tire deformation. Cao [16] developed a modal su- 
perposition representation of a truck frame rail with five 
segments—a front rail, kick-down rail, mid rail, kick-up 
rail, and rear tail. The frame rails were assumed to be the 
primary contributors to beaming mode. In the model 312 
Nastran elements were used. The frame was modeled in 
isolation rather than as part of a vehicle model, without 
considering the effects of engine, cab, box and cab 
mounts that were acknowledged to affect the beaming 
frequency and nodes.  

Truck frames have also been represented in ways other 
than free-free beams and finite element models for 
transverse vibration. Lumped-parameter subsystems are 
presented in [8,17]. In the former, torsional compliance 
was of primary concern for predicting roll angles, load 
transfer and yaw stability. The model in Aurell [17], in 
contrast to prior models in which the frame was repre-
sented as two rigid masses joined by a roll-axis torsional 
spring, introduced a “warp model” in which a pitch-axis 
torsional spring connected two longitudinal frame rails. 
A transverse bending degree of freedom was added by 
discretizing the longitudinal elements into two rigid 
masses connected by a pitch-axis torsional spring. 
Goodarzi and Jalali [8] formulated a 13 degree of free- 
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dom model with three rigid transverse beams joined by 
two massless flexible beams. The flexible beams have 
torsional and transverse compliance. Measured data and 
the influence coefficient method were used to populate 
the mass, stiffness, and damping matrices of a linear 
model. Flexibility was found to have a significant effect 
on pitch and roll angle predictions for a bus. While dis- 
cretized bending representations are easy to implement 
and offer more insight into vehicle response than a rigid 
frame, a large number of elements are typically required 
to give a very close approximation of the lowest natural 
frequencies. Modal expansion has the advantage of giv- 
ing the correct natural frequencies of the first n modes 
that are retained. Given the uncertainties in determining 
natural frequencies analytically for a complex irregular 
beam with multiple attachment points, either a discre- 
tized or modal expansion model can be tuned to match 
measured natural frequencies in practical applications.  

The previously cited works show a range of modeling 
complexities in accounting for flexibility of heavy truck 
frames, and verify the potential importance of that vibra- 
tion in vehicle dynamics models. However, prior models 
assume small angular motions of the frame, and do not 
include longitudinal dynamics along with pitch and 
bounce dynamics. As stated in the introduction, this pa- 
per combines longitudinal, rigid pitch and bounce, and 
transverse flexural dynamics of a truck into a single, 
computationally efficient model implemented using the 
bond graph graphical modeling language. Background on 
bond graphs follows, after which the model details are 
presented. 

3. Bond Graph Modeling Language 

In bond graphs, generalized inertias and capacitances 
store energy as a function of the system state variables 
(momentum and displacement, respectively), sources 
provide inputs from the environment, and generalized 
resistors remove energy from the system. The time de- 
rivatives of generalized momentum p and displacement q 
are generalized effort e and flow f. Power is the product 
of effort and flow. For example, force and voltage are 
efforts, velocity and current are flows, linear momentum 
and flux linkage are generalized momenta, and transla- 
tional displacement and charge are generalized displace- 
ment variables. 

Power-conserving elements allow changes of state to 
take place. Such elements include power-continuous 
generalized transformer (TF) and gyrator (GY) elements 
that algebraically relate elements of the effort and flow 
vectors into and out of the element. In certain cases, such 
as large motion of rigid bodies in which coordinate 
transformations are functions of the geometric state, the 
constitutive laws of these power-conserving elements can  

be state-modulated. Generalized series and parallel con- 
nections are represented by 1 and 0 junctions. All ele- 
ments bonded to a 1-junction have common flow, and 
their efforts sum algebraically to zero. All elements 
bonded to a 0-junction have common effort, and all flows 
algebraically sum to zero. Sources represent ports 
through which the system interacts with its environment. 
See for example Figure 1 where the effort source repre- 
sents either the force source or battery, and generalized 
flow associated with the 1-junction is either velocity or 
current. 

The power conserving bond graph elements—TF, GY, 
1-junctions, 0-junctions, and the bonds that connect them 
—are collectively referred to as “junction structure”. 
Figure 2 defines the symbols and constitutive laws of 
sources, storage and dissipative elements, and power- 
conserving elements in scalar form. Bond graphs may 
also be constructed with the constitutive laws and junc- 
tion structure in matrix-vector form, in which case the 
bond is indicated by a double-line. Power bonds contain 
a half-arrow that indicates the direction of algebraically 
positive power flow, and a causal stroke normal to the 
bond that indicates whether the effort or flow variable is 
the input or output from the constitutive law of the con- 
nected elements. See Figure 3 where the effect of causal 
stroke location on the constitutive law form of two ge- 
neric elements A and B is illustrated. 

The constitutive laws in Figure 2 are consistent with 
the placement of the causal strokes. Full arrows are re- 
served for modulating signals that represent powerless 
information flow such as orientation angles that deter-
mine the transformation matrix between a body-fixed and 
inertial reference frame. Bond graphs, because they use 
the same small set of symbols for energy storage, dissi- 
pate and exchange in any energy domain (electrical, me- 
chanical, hydraulic, etc.), the assembly of submodels 
from various disciplines is straightforward. For example, 
connecting a motor model to a linkage model requires 
simply “bonding” the 1-junction for motor output rota- 
tional speed to the 1-junction for linkage input link rota- 
tional speed.  

Causality (equation input-output structure) automati- 
cally propagates through the entire model upon assembly 
of submodels. The graphical representation of causality  
 

 

Figure 1. Example bond graph. 
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Figure 2. Bond graph symbols. 
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Figure 3. Bond graph causality. 
 
allows for visual detection of input-output conflicts be- 
tween subsystems, and immediately indicates any nu- 
merical simulation issues such as algebraic loops or dif- 
ferential-algebraic equations. The reader is supposed to 
refer to [18] for more details on bond graph modeling. 

The truck model is implemented using bond graphs in 

this paper, and uses 20 sim [19] commercial software to 
enter the graph, generate and simulate equations of mo- 
tion, and plot results. The implementation could be done 
(albeit with more tedious equation derivation) in software 
such as Matlab. 

4. Vehicle Model 

Figure 4 shows a schematic of the pitch plane vehicle 
model. The rigid aspects of the model are based on [20] 
and [13]. The model permits large angular motions of the 
sprung mass and uses nonlinear constitutive laws for 
aerodynamic drag and tire slip and rolling resistance. The 
aerodynamic drag constitutive law assumes that drag 
coefficient and frontal area are constant, and the effect of 
crosswinds is not considered. After the rigid model as- 
pects are reviewed, the superposition of transverse beam 
vibrations onto the motion of the rigid frame will be de- 
scribed. 

4.1. Rigid Body Dynamic Elements 

Referring to Figure 4, suspension mounting points are A 
and B, with unsprung masses at C and D. The unsprung 
masses are constrained to move along lines AC and BD 
perpendicular to the undeflected frame. Rotating coordi- 
nate frames 1, 2, 3, and 4 are affixed to the frame, cab/ 
engine, road at front contact patch, and road at rear con- 
tact patch respectively. The cab and engine mount to the 
frame at points M and N via stiff “parasitic” springs with 
damping, which model bushings [21]. The load is mod- 
eled as a point load at L, also connected to the frame with 
a parasitic spring/damper. The load is assumed to provide 
no stiffening effect on the frame. If a physical prototype 
exists, then a modal test of the laden frame could be done 
to reveal natural frequencies and mode shapes for use in 
the flexible model in the next section. The parasitic 
spring/damper connection method preserves an explicit 
ordinary differential equation structure by breaking the  
 

 

Figure 4. Half-car vehicle schematic. 
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dependency among the load, cab/engine, and frame rigid 
body momenta. Having coordinate frames with the x axis 
aligned with the road at each tire facilitates inclusion of 
longitudinal tire slip (traction) and rolling resistance 
forces, which are applied in the 3x and 4x directions.  

Tire stiffness and damping forces are always normal to 
the road surface as the kt springs and bt dampers are con- 
strained to deflect along the 3y and 4y axes.  

In lieu of a road height velocity profile, the road is in- 
put to the model as a slope (the arctangent of which is the 
road inclination angle θ2 or θ3), that varies as a function 
of distance xf or xr traveled by the front or rear of the 
vehicle. Front and rear wheel hub forward velocities are 
integrated, with the resulting displacements serving as 
inputs to road slope look-up tables. 

The traction force is a nonlinear function of wheel slip 
and normal load [20]. Parameters were estimated from 
measured data of an actual Class VI truck tire. The slip 
resistance arises due to tire compliance and the resulting 
difference that can occur between the actual forward ve- 
locity v of a wheel hub and the velocity if the tires were 
rigid, i.e. tire radius r multiplied by wheel angular ve- 
locity ω. Defining slip ratio  as 

r v

v

 
                   (1) 

the slip resistance force is 

 
slip

max

sgn zF
F

  


              (2) 

where Fz = tire force normal to the road,  = coefficient 
of friction, max = slip ratio at tire saturation, and “sgn” is 
the signum function, which returns the algebraic sign of 
its argument. Rolling resistance is also a function of 
normal load Fz and longitudinal velocity, along with tire 
inflation pressure P and empirical constants ci.  

  2
rolling 1 2 3 4sgn z z zF v c c F c F P c F P        (3) 

The aerodynamic drag constitutive law is given below. 
The drag force is proportional to the body-fixed x-com- 
ponent of the sprung mass longitudinal velocity. The 
drag coefficient is thus held constant regardless of 
changes in the pitch attitude of the vehicle. 

1 1
aero 0.5 d Cx CxF AC v v            (4) 

where  = air density [kg/m3], A = frontal area [m2], Cd = 
drag coefficient (dimensionless), 1vOx = longitudinal ve- 
locity [m/s]. A complete set of vehicle parameters is 
given in Section 5. 

4.2. Flexible Substructure 

The transverse deflection of the frame is given by 
, where x varies from 0 to beam length L. Frame 

flexibility modeling is based on the well-known partial 
differential equation for transverse vibration 

 ,w x t

 ,w x t  of 
a free-free beam of length L: 

   2δ x
4 2

1 1 24 2
δ

w w
EI A F x x F x

x t
 

   
 



  (5) 

with zero bending moment and shear force boundary 
conditions. Inputs to the beam due to suspension, cab, or 
payload mounting points are modeled as point loads mul- 
tiplied by the Dirac delta function at the location of the 
point, as shown on the right-hand side of Equation (5).  

Referring to Figure 4, the coordinate frame 1x − 1y ro- 
tates and translates with the undeflected “shadow” frame 
of the vehicle, and deflections  are assumed 
relative to the shadow frame in the 1y direction. The 
frame flexure in the 1y direction follows the free-free 
beam derivation of [18] and [22] in which the decoupled 
modes include rigid body translation and rotation. Rigid 
body translation occurs along the 1y axis, the orientation 
of which can change with road slope. Rigid body rotation 
angle is the angle of the 1x axis with respect to the iner- 
tial 0x axis. This angle will change with road slope. 
Separation of variables gives the solution as an infinite 
sum of the product of spatial functions (mode shapes) 

 ,w x t

 nW x  and time functions  (modal amplitudes):  t


     
1

, n
n

w x t W x t


            (6) 

Substituting Equation (6) into (5), multiplying by or- 
thogonal mode shapes and integrating over the beam 
length gives an infinite set of uncoupled modal dis- 
placement equations of motion for a system with external 
forces acting at two points 1 and 2: 

  1 1 2n n n n n nm k FW x F W    2x       (7) 

where modal mass mn and modal stiffness kn are defined 
by 

2

0

d
L

nm AW  n x

n

               (8) 

2
n nk m                   (9) 

Parameter values for the flexible subsystem are listed 
in Section 5. Three bending mode natural frequencies are 
included, with natural frequencies 11.7, 32.4, and 105 Hz. 
The parameters correspond to a truck frame made from 
four parallel 10 × 20 cm steel box sections with 2.8 cm 
thickness. 

Superposition of the small flexural displacements 
 ,w x t , in the 1y direction, onto the gross motion of the 

undeflected frame as described above implies the fol- 
lowing assumptions: 
 the beam is treated as a Bernoulli-Euler beam, which 

is sufficient to capture vibration in the first few 
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transverse bending modes, for which frequencies are 
not high enough to warrant treatment of the frame as 
a Timoshenko beam 

 rigid body and flexible motions are decoupled. The 
flexibility of a truck frame and the angular velocity of 
its rigid body motion, are not assumed large enough 
to cause inaccuracies due to changes in beam length 
[23], or geometric stiffening [24]. 

When low-order flexible frame modeling is limited to 
small motions, and no longitudinal dynamics are consid- 
ered, the rigid body modes can be represented as follows: 
 Mode 00 (rigid body translation): mass mG moving 

with linear velocity vGy in the inertial 0y direction only 
 Mode 0 (rigid body rotation): inertia JG rotating with 

angular velocity 1 about a fixed-orientation z axis  
Consider now the total velocity of point A, which is 

  1 1
1 ,Ay Gy Av v AG w x t    



          (10) 

with the w term given by differentiation of Equa- 
tion (6). A suspension input force to the frame at point A 
would accelerate the frame centre of gravity G in the 
vertical direction, would create a moment about G to 
angularly accelerate the frame in the θ1 direction, and 
would excite each flexible mode through a “lever arm” 
which equals to the modal amplitude at point A as seen 
on the right-hand side of Equation (7). Observing the 
duality between the point A velocity equation above, and 
a force at A propagating through rigid body and flexible 
modes, we can draw the following bond graph, Figure 5.  

 ,Ax t  

The suspension force FA, applied in Figure 5 through 
an effort (force) source, would come from a suspension 
spring and damper in parallel. The 1-junctions (velocity 
nodes) represent the velocities of modes 00 through 2. 
Thus, two of the many infinitely flexible modes are re- 
tained. Rigid body mass and inertia are bonded to the 
rigid body modal velocity nodes. Bonded to the flexible 
modal velocity nodes are the modal mass, stiffness and 
damping. The flexible modes are thus decoupled mass-  
 

 

Figure 5. Vertical dynamics beam model. 

spring-damper oscillators with governing Equation (7), 
each of which has the appropriate modal natural fre- 
quency. The 0-junction (force node) for which each bond 
has the same effort (force) FA, directs that force through 
transformer elements for which the moduli are the mode 
shapes at the location of point A. As the transformers are 
power-conserving elements that relate effort to effort and 
flow to flow, they also multiply the modal velocities by 
the mode shape magnitude. The transformed modal ve- 
locities are summed at the 0-junction, resulting in the 
total vertical velocity  ,Aw x t  of point A. The 0-junc- 
tion thus performs the summation of velocity terms that 
appears when Equation (6) is differentiated. 

4.3. Extension to Include Longitudinal Dynamics 

The Newton-Euler approach is used to model the multi- 
body system. Joints are modeled by computing absolute 
velocities of points on different bodies, and constraining 
certain degrees of freedom. The absolute velocity vectors 
are resolved into components along the rotating body- 
fixed axes depicted in Figure 4. This results in gyrational 
coupling terms in which forces or torques in each coor- 
dinate direction arise due to velocity in another coordi- 
nate direction. Consider for example the undeflected 
frame, to which coordinate frame 1 is attached in Figure 
4. Equating resultant forces to the rate of change of linear 
momentum gives: 

1 d

d
m

t
  1F v              (11) 

11 1

1

1

x x y

y y x

F mv m v
F mv m v




           
    
          



          (12) 

For planar motion, rotational dynamics occur about a 
single axis, so that 

 1

d

dG GM J
t

               (13) 

Equation (12) can be represented by the bond graph of 
Figures 6 and 7, in which the force summations are rep- 
resented by 1-junctions to which are bonded applied 
forces, inertial elements to model the first terms on the 
right-hand side, and a gyrator (relating effort to flow) to 
model the final terms. External moments and inertia are 
applied to a rotational 1-junction, a signal from which 
modulates the gyrator. Figure 6 shows a scalar bond 
graph (note the separate mass elements for each coordi- 
nate direction), and Figure 7 is the vector bond graph 
equivalent (with diagonal mass matrix and skew-sym- 
metric gyrator matrix). Scalar and vector bond graphs 
will be shown in later figures as the complete model is 
presented. 

Incorporating the longitudinal (x) degree of freedom in 
Figure 4 into the flexural substructure bond graph of  
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Figure 6. Rigid body, scalar bond graph. 
 

 

Figure 7. Rigid body, vector bond graph. 
 
Figure 5 gives the partial Frame submodel bond graph 
of Figure 8. Because the frame centre G and the payload 
point L are very close together, they are assumed to have 
the same 1x velocity. The associated I element parameter 
is thus mG + mL. The Se elements resolve the gravity vec- 
tor along the 1x − 1y axes. The power port at the rear 
suspension mounting point B is shown, at which the in- 
put effort Fr is the combined suspension spring and 
damper force, and the flow is the 1y component of veloc- 
ity of B. This port is joined to the flexible modes with TF 
elements whose moduli are the mode shape functions 
evaluated at point B. Figure 9 shows three flexible 
modes, defines the velocity/force port at the load location 
L, shows the load mass, defines the front suspension 
connection point A, and defines the cab mounting points 
M and N. Connection point B would be similar, but is 
omitted for clarity. The load mass mL is joined to the 
frame with a parasitic spring and damper. 

4.4. Suspension, Axles and Tires 

Figure 10 is the top level bond graph model showing the 
suspension system and submodels for Cab/Engine, Front 
Axle, and Rear Axle.  

Referring to Figure 4, suspension spring/damper ve- 
locities are the difference between the velocities of A and 
C (front) and B and D (rear) along the 1y axis. The Fsusp 
0-junctions subtract the velocities, direct them as inputs 
to the Ks − Rs suspension spring/damper units, and direct 
the suspension forces equally and oppositely to points C 
and D. The forward motion of the wheels and axles is  

 

Figure 8. Frame submodel, rigid body portion. 
 
defined using the relative velocity of C and D with re- 
spect to A and B in the 1x direction.  

 
 

1 1
1

1 1
1

Cx Ax f

Dx Bx r

v v AC y

v v BD y





  

  




           (14) 

where hf and hr are distances between points A and C, 
and B and D respectively when the suspension is unde- 
flected. yf and yr are front and rear suspension deflections. 
Modulated transformer (MTF) elements multiply the 
angular velocity by the moment arm, and the Fx 0-junc- 
tions sum the velocity terms in Equation (14).  

Velocities of points B, L, M, A and N along the unde- 
flected frame are assumed to have equal velocity com- 
ponents in the 1x direction. Following [25], the road pro- 
file is represented as a slope which varies as a function of 
distance travelled. The “slope_front” and “slope_rear” 
lookup tables in the top level model accept distance trav- 
elled by the axles as an input, and return road slope to the 
axle submodel tire dynamics. This allows calculation of 
the road profile angle (arctangent of the road slope), 
which defines the angles θ3 and θ4 of the coordinate 
frames at the wheels. Rolling and slip resistance forces 
act along the road x directions, and tire stiffness forces 
act in the local y directions. Tire stiffness thus always 
acts perpendicular to the road surface, even when the 
surface is at an angle, while rolling and slip resistance are 
tangential to the road. Bumps will compress or relax the 
suspension and also oppose the vehicle’s forward mo- 
tion.  

Figure 11 shows the “RearAxle” submodel, which is 
similar to the “FrontAxle” submodel except for the drive 
torque. x_rear is the input to the road profile look-up 
table in the top level, and the nput port is the road slope.  i  
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Figure 9. Frame submodel, flexible portion. 
 

 

Figure 10. Top-level bond graph. 
 
I elements are included for wheel inertia and unsprung 
mass. The MTF elements represent the following coor- 
dinate transformation between road and suspension coor- 
dinates: 

Rolling and slip resistances are clearly indicated, and 
each is a function of tire normal force Fzr from the 
0-junction defining the tire deflection velocity. 
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
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Figure 12 is an expansion of the Cab/Engine sub- 
model. Vector bond notation is used for compactness. 
The cab/engine mass, aerodynamic drag, Euler’s equa- 
tion gyrator, and gravity source (resolved in frame 2) are  
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Figure 11. Rear axle submodel. 
 

 

Figure 12. Cab/engine submodel. 
 
bonded to the 2vE 1-junction. Velocities of points M and 
N in frame 2 are calculated using 2vE and relative veloci- 
ties 2vM/E and 2vN/E. The relative velocities are computed 
in the vector bond graph by multiplying the angular ve- 
locity by a subset of the skew-symmetric matrix for the 
position vector cross product. The product is realized in 
the bond graph with the TF elements. 
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Velocities of M and N from the Frame model are in- 
puts to the Cab/Engine, where they are transformed to 
frame 2 components with rotation matrix transformers.  

5. Model Output 

Table 1 lists vehicle model parameters. The model is  

Table 1. Vehicle parameters. 

Parameter Value 

Vehicle length, payload location 10 m, 5 m 

Frame mass mG, inertia JG 4250 kg, 24,000 kg-m2 

Cab/Engine mass mE, inertia JE 2000 kg, 2000 kg-m2 

Suspension stiffness Ksf, Ksr 375 kN/m, 870 kN/m 

Suspension damping bsf, bsr 31,895 Ns/m, 33,884 Ns/m

Tire stiffness Ktf, Ktr 2800 kN/m, 5400 kN/m 

Tire damping btf, btr 1500 Ns/m, 2000 Ns/m 

Bushing stiffnesses Ks 100 MN/m 

Bushing damping bs 1 MNs/m 

Unsprung mass musf, musr 500 kg, 700 kg 

Cab mounting locations (OM, ON) 8.75, 9.75 m 

Position of cab point M w.r.t. E (−0.5, −1) m 

Position of cab point N w.r.t. E (0.5, −1) m 

Undeflected suspension lengths  
(AC, BD) 

0.6, 0.6 m 

Aerodynamic drag coefficient Cd 0.8 

Frontal area A 5.2 m2 

Wheel radius rwheel 0.413 m 

Tire inflation pressure P 115 psi 

Number of tires (front/rear) 2/4 

Tire friction coefficient μ 0.7 

Tire slip at saturation κ 0.3 

Front tire rolling resistance  
coefficients (c1f − c4f) 

−197.4, 0.454, 18.7, −0.00244

Front tire rolling resistance  
coefficients (c1r − c4r) 

−394.7, 0.907, 37.4, −0.00488

Wheel inertia (front, rear) Jwheelf, Jwheelr 10, 18.755 kg-m2 

 
demonstrated first on a smooth road, beginning from rest 
and with zero initial conditions for all springs. A 10% 
slope is encountered when the vehicle has travelled 1500 
m, and the road flattens again at 2000 m. A PI controller, 
as shown in Figure 13, is added to the RearAxle sub- 
model to control forward velocity. This simulated cruise 
controller has a proportional gain of 1000 and an integral 
time constant of 10 seconds. These parameters allow 
some overshoot. The error is the difference between the 
actual vehicle speed and a setpoint of 20 m/s (72 km/h). 
A signal limiter restricts drive and braking torque to a 
maximum absolute value of 5000 N-m. 

Figure 14 shows vehicle responses with a payload of 
1000 kg. The pitch angle begins at zero, and settles  
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Figure 13. Vehicle speed controller. 
 

 

Figure 14. Vehicle responses, smooth road 
 
quickly to a static equilibrium value of −0.75 degrees 
(truck very slightly tilted forward).  

When the forward velocity overshoots the setpoint, the 
brakes are applied and the cab tilts forward slightly more 
during the deceleration. After the drive torque and for- 
ward speed reach a steady state, the grade change is en- 
countered. This causes sharp transients in pitch angle and 
in absolute value of the total acceleration of the payload. 
Forward velocity momentarily drops, in response to 
which drive torque is increased. Pitch angle undergoes a 
steady state change, which is approximately equal to the 
road slope. Further transients, most notably in payload 
acceleration, occur when the road flattens out. The front 
suspension and tire are loaded at the beginning of the 
slope and unloaded at the end. Simulations are performed 
with 20sim bond graph commercial software, using its 
Backward Differentiation Formula with integration tol- 
erances of 1e−5. 

Next, the model will be subjected to a simulated rough 
road, where differences between response of a flexible 
and rigid-frame vehicle will become apparent. Road 
bump spacing will be adjusted so that the frequency at 
which bumps are encountered is near a rigid body natural 
frequency, near the first (beaming) flexible natural fre- 
quency, and near the second flexible natural frequency. 
The necessity of including flexible modes in the model 
cannot typically be judged a priori. The rigid-element 
natural frequencies (e.g. ride natural frequency, wheel 
hop frequency) interact with the flexural natural frequen- 
cies of the free-free beam representing the frame. The 
first flexural (beaming) mode frequency will decrease 
with payload mass if the payload is modeled as a point 
mass. However, a large load anchored to the truck bed 
could stiffen it significantly. A model such as the one 
herein, where flexible modes can be added or removed 
and their parameters changed very easily, allows the 
analyst to start from a complete model and remove 
modes as necessary until the simplest possible model 
with sufficient accuracy is achieved. 

A natural frequency summary is given in Table 2. The 
parasitic springs generate high natural frequencies which 
are decoupled from the system modes and therefore do 
not change with payload. These frequencies are at least 
an order of magnitude higher than the system modes, and 
are not listed in the table. 

Comparison of Flexible and Rigid Models 

A rough road is simulated as a series of half-sinusoidal 
bumps, 5 cm high and 20 cm long, repeated every 5 m. 
This corresponds to an input excitation frequency of 4 Hz, 
or 25.1 rad/s, at a vehicle speed of 20 m/s. Payload is 
5000 kg. Figure 15 shows six vehicle responses for both 
the rigid and flexible models: forward speed, pitch angle, 
load acceleration (longitudinal component), load accel- 
eration (transverse compone t), front suspension deflect-  n 

Copyright © 2012 SciRes.                                                                                 MME 



D. G. RIDEOUT 

Copyright © 2012 SciRes.                                                                                 MME 

186 

  

 

Figure 15. Model responses, 5000 kg payload. 
 

Table 2. Natural frequencies. 

Natural frequency [Hz] 
Model 

Rigid elements Flexible frame 

Flexible w/cab only    10.38 31.1 105.0

Flexible w/cab,  
suspension, tires 

1.46 3.56 10.32 31.1 105.0

 1000 kg payload 1.42 3.41 9.05 31.1 105.0

 5000 kg payload 1.27 2.96 7.71 31.1 105.0

 10,000 kg payload 1.11 2.72 7.36 31.1 105.0

 
tion, and front tire deflection. The vehicle speed tran- 
sients for an individual bump are nearly identical for both 
models. The pitch angle for the flexible model shows an 
approximately 9 Hz dynamic that is not captured by the 
rigid model.  

Both models predict the same longitudinal payload 
acceleration peaks; however, the transverse (y-direction) 
payload acceleration is predicted poorly with a rigid 
model. The rigid model, without the filtering effect of a 
flexible beam that essentially “cradles” the load when 
bumps are encountered, overpredicts peak acceleration. 
Front suspension and tire deflection predictions are rela- 
tively insensitive to the inclusion of frame flexibility. 

In order to excite the beaming mode closer to its 7.71 

Hz natural frequency for the truck with 5000 kg payload, 
a new road is applied with 2 cm-high bumps spaced at 
2.5 m (8 Hz excitation). A numerical linearization of the 
system, using 20 sim’s frequency domain toolbox, re- 
vealed a damping ratio of 23% for the beaming mode. 
For base excitation of a simple mass-spring-damper sys- 
tem with 23% damping, the maximum dynamic amplifi- 
cation factor would be approximately 2. Given the small 
magnitude of the beam vibration relative to rigid ele- 
ments, even a near-resonant excitation of the flexible 
modes would not cause unstable, large-amplitude motion; 
however, significant discrepancies may arise if a rigid 
model is used instead of a flexible model. Figure 16 
shows the three vehicle responses from Figure 15 for 
which there is significant disagreement between flexible 
and rigid models. The rigid model underpredicts peak-to- 
peak pitch angle variation (which is very small in either 
case). Longitudinal load acceleration peaks are predicted 
properly by the rigid model, but some transients between 
bumps are not captured. The rigid model shows an even 
more severe overprediction of transverse payload acce- 
leration than for the previous road. 

An advantage of the bond graph approach in this paper 
is the ease with which individual flexible modes can be 
retained or eliminated. Figure 17 shows predictions of 
the three responses from Figure 16 generated using all 
three flexible modes, and also using only flexible mode 1  
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Figure 16. Model responses, 2.5 m bump spacing. 
 

 

Figure 17. Responses of 3-mode and 1-mode flexible model. 
 
(modes 2 and 3 eliminated). Correct peak-to-peak mag- 
nitudes and frequency content can be given with a model 
of intermediate complexity compared to the rigid and 
three-mode flexible models. 

The goal of the final simulation scenario is to investi- 
gate the effect of a road profile that excites the system 
near the resonance of a higher mode. Typically modes 

from the first up to a certain number (e.g. modes 1-3) are 
retained, with higher ones eliminated. For some systems, 
depending on damping, an input with frequency content 
near the natural frequency of a mode may necessitate the 
retention of that mode, but allow the elimination of both 
lower and higher modes. Figure 18 plots results from 1 
cm-high bumps spaced at 1 m, which for a 30 m/s vehi- 
cle speed corresponds to a 30 Hz input. Referring to Ta-
ble 2, this should increase the participation of the second 
flexible mode. 

With the smaller, more closely spaced bumps, the rigid 
model predicts responses well with the exception of the 
payload transverse acceleration. The modal amplitudes ηi 
show that for the 2.5 m bump spacing at 20 m/s (8 Hz), 
the second modal amplitude was 12% of the first modal 
amplitude. For the 1 m bump spacing at 30 m/s (30 Hz), 
the second modal amplitude was 44% of the first.  

The approximate damping ratio of mode 2 is 77%, ex- 
plaining why, while more significant in a relative sense, 
the contribution of mode 2 did not exceed that of mode 1 
despite excitation of mode 2 at resonance. For the 1 m 
bump spacing, eliminating mode 2 has a greater effect 
than before as shown in Figure 19. Flexible mode 2 is 
essential for prediction of the payload acceleration. 

6. Summary and Conclusions 

A complete pitch plane vehicle model has been presented. 
The model contains longitudinal dynamics, pitch and 
bounce dynamics, and frame flexibility. Frame flexibility, 
normally included only in pitch plane models with no 
longitudinal degrees of freedom, is incorporated into the 
longitudinal portion of the model by treating beam 
transverse deflection as occurring perpendicular to an 
undeformed frame that can undergo large rigid body mo- 
tions. A modal expansion, based on an Euler-Bernoulli 
beam, models flexible motion as the sum of responses 
from decoupled oscillators each with modal stiffness, 
mass and damping. The bond graph formalism, while not 
required for implementation of the model, greatly facili- 
tates addition or subtraction of model elements (includ- 
ing modes) and reformulation of the equations. Superpo- 
sition of block diagrams atop the bond graph model, 
which is a feature of several commercial software pack- 
ages, allows simultaneous modification of model and 
controllers. 

With a parameter set corresponding to a Class VI truck, 
operating on road of varying roughness, the simulated 
truck showed the necessity of including flexible modes 
for predicting certain vehicle responses. Cab pitch angle 
and payload acceleration are examples of outputs for 
which a rigid model would return erroneous predictions. 
The degree of complexity required will depend on the 
goals of the analyst. Predicting lading damage to payload     

Copyright © 2012 SciRes.                                                                                 MME 



D. G. RIDEOUT 

Copyright © 2012 SciRes.                                                                                 MME 

188 

  

 

Figure 18. Bump spacing 1 m, velocity 30 m/s. 
 

 

Figure 19. Transverse payload acceleration, 1 m bump 
spacing, 30 m/s velocity, flexible mode 2 eliminated (dark 
line) vs. all modes retained (light line). 
 
would require a flexible model, as would prediction of 
higher-frequency vibrations that might affect noise, vi- 
bration and harshness or occupant comfort. The pre- 
sented model allows easy assessment of the effect of in- 
creasing or reducing complexity.  

The greatest challenge in parameterizing the model 
would be the determination of modal parameters. While 
analytically tractable for a simple free-free beam, the 
calculation of natural frequencies and mode shapes of a 
complex truck frame is not straightforward. Cab and 
suspension attachment points, as well as the truck body, 
will have a stiffening effect. The payload mass, distribu- 
tion, and method of attachment to the truck will affect the 
quantities in question. If resources allow, the best ap- 
proaches would be frequency and mode shape extraction 
from a finite element model, or modal impact testing of 
an actual laden truck frame. 

Future investigation will centre on the tire-road inter- 
action model, so that more complex road profiles not 
easily modeled as a sequence of slope values can be used. 
Tire models with more sophisticated treatment of the 

enveloping of small bumps would improve prediction. 
An easy to use, predictive low-order model of such com- 
plex tire phenomena is in fact a goal of the larger vehicle 
dynamics community. Inclusion of future tire models in 
the current vehicle model would be straightforward using 
the bond graph approach, as would inclusion of more 
complex models of the engine, braking system, and sus- 
pension. 
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