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Abstract 
 
We observe that the standard variant of Prospect Theory cannot describe very risk-averse choices in simple 
lotteries. This makes it difficult to accommodate it with experimental data. Using an exponential value func-
tion can solve this problem and allows to cover the whole spectrum of risk-averse behavior. Further evidence 
in favor of the exponential value function comes from the evaluation of data from a large scale survey on 
preferences over lotteries where the exponential value function produces the best fits. The results enhance 
the understanding on what types of lotteries pose potential problems for the classical value function. 
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1. Introduction 
 
Imagine you are faced with the following gamble: with a 
probability of 90% you win 100 Euro, otherwise you win 
only 10 Euro. Which safe amount of money would be 
equally as good for you as participating in the gamble?  

Obviously, depending on your risk attitudes you could 
choose any amount between 10 and 100 Euro. If you are 
risk-averse, you will choose an amount between 10 and 
91 Euro (the latter being the expected value of the 
lottery).  

Let us say, a person states 25 Euro as the according 
amount. We want to be able to model the preferences of 
this person in the framework of Prospect Theory (PT), 
the most commonly used descriptive model for choices 
under risk. Can we do this?  

It would be natural to answer yes: we just have to 
adapt the risk-aversion parameter in the model appro- 
priately. In this article, however, we will show that the 
answer is no! We cannot model the preference in the 
standard framework of PT. The person is too risk-averse 
to be described by this theory.  

We will generalize this surprising result and prove it in 
Section 3.1. Moreover, we will demonstrate that this 
effect also causes problems when measuring PT-para- 
meters in experiments. In Section 3.2 we see how the 
problem can be solved by using an exponential value 
function, and in Section 3.3 we study quadratic value 
functions. In section 4 we discuss empirical evidence 

which confirms the advantages of exponential value 
functions. Before that, we start with a short review of PT 
(Section 2).  
 
2. Prospect Theory 
 
Prospect Theory (PT) has been introduced by [1] as a 
descriptive model for decision making under risk, adding 
certain behavioral effects to the classical Expected Uti- 
lity Theory:  
 Decisions are framed as gains and losses. The utility 

function is replaced by a value function v which has 
two parts, a concave part in the gain domain and a 
convex part in the loss domain, capturing risk-averse 
behavior in gains and risk-seeking behavior in losses.  

 Probabilities are weighted by an S-shaped probability 
weighting function w, overweighting small and un- 
derweighting large probabilities. 

In this article we will—for simplicity only—consider 
two- outcome lotteries in gains, a case where the version 
of PT we use in this article coincides with PT’s modern 
variant Cumulative Prospect Theory [2].  

The value of a lottery with outcomes A and B ( A < B ), 
with probability1 p and , is then given by  p

        1 ,PT = w p v A + w p v B     (1) 

where we denote the probability weighting function by 
 and the value function by . The value function in 

PT is usually chosen as  
w v
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where  (the value measured by [2]) is called 
the “loss-aversion” coefficient, and  describe 
the risk-attitudes for gains and losses. It should be 
mentioned that coefficients of α , which are fre- 
quently used in expected utility theory, cannot be used in 
prospect theory, since the function would diverge to 

2.25λ 
,α β 

0<

  
at zero and hence could not be extended to negative 
outcomes (losses).  

The standard weighting function is  

 
  1

:=
1

γ

γγγ

p
w p

p + p
           (3) 

with the parameter  describing the amount of over- 
and underweighting.  

γ

Although PT as a whole is nowadays the most successful 
theory to describe decisions under risk, the specific 
choice of the functions  and  has been criticized for 
various reasons:  

v w

 First, it is important to keep in mind that a certain 
proportion of subjects (around 20%) shows no sign of 
probability weighting at all and could be better mo- 
deled by expected utility theory [3].  

 The standard probability weighting function w  be- 
comes non-monotone for small values of γ  [4,5].1 

 The classic value function v  leads to non-existence 
of equilibria in a financial market of PT-maximizers, 
a problem that can be solved by using exponential 
value functions [4].  

 The interplay of value and weighting functions causes 
problems akin to the St. Petersburg Paradox, which 
can either be solved by using an exponential value 
function or a modified probability weighting function 
[5].  

 Loss aversion cannot be defined when α β  [9]. 
This problem can be solved by using an alternative 
value function, e.g. an exponential value function. 

In this article we provide more evidence in favor of an 
exponential value function instead of the typical power 
function (2): we show that the standard choice of a value 
function severely limits the amount of risk-aversion that 
can be explained with PT (see Proposition 1). As we 
have already pointed out, people might show a degree of 
risk-aversion that cannot be modeled within the standard 
version of PT. This makes it difficult to fit the theory to 
some of the experimental data (Section 3.1). The 
quadratic utility function, which has played a prominent 
role in finance, displays the same limitation (Section 3.3). 

We demonstrate that an exponential value function does 
not show this problem (Section 3.2). Finally we report 
results from a large-scale survey that confirms some 
fitting advantage of the exponential value function. May- 
be more important is that the survey also demonstrates in 
what cases an advantage of an exponential value function 
is most visible and—particularly—where not (Section 4).  
 

3. Limits to Risk-Aversion in Prospect 
Theory 

 
3.1. Standard Value Function 
 
Let us neglect for a moment the effects of probability 
weighting. Then the parameter  0 1α ,  in the defi- 
nition of the value function describes the risk-aversion of 
a person: a small  corresponds to a high risk aversion, 
a large  is a sign for low risk-aversion,  corre- 
sponds to risk-neutral behavior.  

α
α 1α=

If we undertake simultaneous probability weighting, 
the interplay between the parameters becomes more in- 
volved. Nevertheless, the rule remains so that decreasing 
values of  will increase the risk-aversion. More 
precisely, for a given two-outcome lottery, the certainty 
equivalence (CE) of the lottery will decrease, when we 
decrease .  

α

α
In the following we assume that a person, who decides 

about the CE of a two-outcome lottery, will respect 
“in-betweenness”, i.e. never choose a CE outside the 
interval between A and B.2 When faced with a two- 
outcome lottery with positive outcomes A and B (where 
A < B ), a person’s CE is therefore bounded from below 

by A. However, the CE could a priori be arbitrarily close 
to A, if the person is strongly risk-averse.  

Is it possible to model such behavior in the standard 
form of PT? Surprisingly, the following proposition 
gives a negative answer:  

Proposition 1. In the standard form of PT, a two- 
outcome lottery with positive outcomes A and B (where 
A < B

 1 w p
) has a CE that is always larger than 

 w pA B , where p is the probability of the outcome B. 
This bound is in particular strictly larger than A.  

The proof of this proposition can be found in the 
appendix.  

Proposition 1 implies that even an extremely risk- 
averse person with  close to zero can never show a 
CE close to A. In fact, the CE of this person must still be 
considerably above A. As a numerical example we use 
the lottery from the introduction where A = 10, B = 100 
and p = 0.9 and assume that  (which is 

α

 0.9 0.5w =
2Cumulative Prospect Theory (and therefore also the form of PT we use 
in this article for two-outcome lotteries) satisfies this assumption inde-
pendently from the choice of the value- and weighting function, thus 
we will never get a CE outside the interval (A,B) [14]. 

1Alternative formulations for w that do not have this problem has been 
suggested for CPT, e.g., in [6] and for PT, e.g., in [7] and [8].
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probably a low estimate3). Then 

   1 32w p w pA B = AB  . A person with a CE below 32 
is too risk-averse to be described by PT, whatever 
“risk-aversion”  we choose! Is this surprising im- 
plication of the standard PT-model compatible with 
experiments?  

α

Firstly, we note that many experiments involve only 
one positive outcome, i.e. A=0. In this case, 

, thus the problem does not arise. There 
are, however, also experimental data for 

   1 0w p w pA B 
0A > . Such 

lotteries can already be found in the article of [2].  
It is, of course, possible to circumvent the problem by 

shifting the reference point to the lower outcome, thus 
effectively only considering gambles with A = 0 (with 
respect to the reference point). With this trick any 
amount of risk-averseness can be explained within the 
framework of standard PT for two-outcome lotteries. 
There are, however, two major concerns about this ad 
hoc method: First, one might complain that this would 
not be problem solving, but rather “sweeping the pro- 
blem under the carpet” by arbitrarily changing the re- 
ference point. Second, the question of what to do if there 
is a third outcome arises, e.g. 0, with a very low pro- 
bability. Then the trick is not applicable and we are left 
in the same situation as before. In short, it is difficult or 
impossible to define a consistent rule to choose the re- 
ference point that circumvents the problem we have 
encountered. Therefore, we decided to refrain from 
changing the reference point.  

But we still haven’t seen whether the theoretical 
bound of risk-averseness is a practical problem. In other 
words: are there people who are so risk-averse that their 
behavior cannot be explained within the standard for- 
mulation of PT?  

To check this, we had a look at the lotteries with 
0A >  in the data of [2] and computed the lower bound 

for the CE in their model with their parameters (in- 
cluding their probability weighting parameter) for all 
lotteries with outcomes . Then we compared 
the results with the median answer of their respondents. 
Moreover, we computed the percentage of respondents 
who gave a CE below the theoretical threshold. In other 
words: the percentage of participants for each question 
who could not be described by the standard form of PT. 
(The detailed results are given in the appendix, see Table 
1). 

0 < A < B

For many answers (a total of 28%, but for some 
questions up to 48%) the standard form of PT cannot 
describe the high levels of risk-aversion measured in this 
experiment. Only due to the asymmetry of the weighting 
function (i.e.    1 1w p w p   ) the standard form of 

PT can at least describe the median level of risk-aversion: 
if we omit the probability weighting and take a look at 
the cases where  (i.e. we assume a symmetric 

), we get lower bounds for the CE which are above the 
measured median CEs. In other words, asymmetric pro- 
bability weighting is in fact needed to “repair” the pro- 
blems induced by the value function.  

0.5p =

B

w

We summarize this in the following remark:  
Remark 1. Proposition 1 is also relevant regarding 

probability weighting, since it induces an asymmetric 
choice of . The variable  assigns smaller weights 
to the larger outcome  and larger weights to the 
smaller outcome 

w w

A , to bring the bound    1 w p w pA B  
closer to A . In other words,  has to be consis- 
tently smaller than  and hence to be asymmetric. 
Given our analysis above, it is not surprising that our 
experiments have mostly shown that this asymmetry is in 
fact needed, although conceptually, a symmetric function 
may be more appealing.  

 w p
p

The effect shown in the data of Tversky and Kahne- 
man, becomes even more visible when we consider lotte- 
ries where the probability  for the higher outcome is 
very large, and at the same time 

p
A  is relatively small. 

We encountered this problem in data with  
undergraduate students, which will be discussed in detail 
in the next section. We used two lottery questions of this 
type, where we asked for the willingness to pay, and the 
majority of students reported a CE below the theoretical 
threshold, even for small values of . (The weighting 
function becomes non-monotone for too small values of 

, hence it is not possible to set  smaller than appro- 
ximately 0.4.) We report the most important findings 
from our preliminary data in the appendix, see Table 2.  

5,185N =

γ

γ γ

These results underline once more the gravity of the 
problem when measuring PT-values experimentally. 
 
3.2. Exponential Value Functions 
 
Obviously, it would be better to have an index for risk- 
aversion that covers the full range of possible risk-averse 
behavior, i.e. can be chosen so that in the above two- 
outcome lottery every CE larger than A  can be 
reached.  

In this section we show that this is possible if we only 
change the value function and use -instead of the 
standard version- an exponential function, as suggested 
by e.g. [4] and [9].  

Let us define  

  1
:=v x
 e ,         0,

e ,   0,

x

x

x

x



 

 

  

         (4) 

3If we use (3) with γ = 0.4, we obtain w(0.9) ≈ 0.45. This is already 
close to the lowest possible value for γ [11], and much smaller than 
typical measurements. 

where  0α ,   and  0β ,  . 
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Table 1. Re-analysis of the data by Tversky and Kahneman. On average 28% of the participants showed a risk-aversion, 
which was too strong to be explained in the standard form of PT (with the probability weighting γ taken as in their article). 

A B p Minimal CE 
(standard CPT) 

Median CE 
of persons 

Percentage of persons
being too risk-averse

50 150 0.05 58 64 40% 

  0.25 69 70 36% 

  0.50 79 86 12% 

  0.75 93 102 36% 

  0.95 120 128 28% 

 100 0.10 57 59 24% 

  0.50 67 71 16% 

  0.90 82 83 48% 

100 200 0.05 110 118 12% 

  0.25 122 130 36% 

  0.50 134 141 32% 

  0.75 148 158 28% 

  0.95 173 178 24% 

50 150 0.25 69 75 24% 

 
Table 2. Our own data shows that for the lotteries (10, 0.1; 100, 0.9) the limitation of the standard form of PT expressed in 
Proposition 1 becomes even more severe. 

Assumed γ 
Minimal CE 
(standard PT) 

Median CE 
of persons 

Percentage of persons 
being too risk-arverse 

0.7 60 20 77% 

0.6 50 20 73% 

0.5 39 20 61% 

0.4 30 20 55% 

0.3 18 20 43% 

 
In this case we do not encounter the problem of the 

standard formulation. In fact, we can prove the following 
proposition:  

Proposition 2. Using the exponential value function 
(4), a two-outcome lottery with positive outcomes A  
and  (where B A < B  ) has a CE that can be arbi- 
trarily close to A , depending on the choice of the risk- 
aversion . α

The proof follows the same ideas as for Prop. 1.  
What happens when ? This is a little more 

complicated than in the case of the standard value 
function (which, of course, converges to an affine, risk- 
neutral model when ), since using the definition 
(4) of  with  gives an inappropriate function. It 
is therefore at first glance not so clear whether the CE of 
the exponential PT-model converges to a risk-neutral CE 
when  (as it should). However, a similar com- 
putation as above shows the following result:  

0α

1α
v

α

0α=

0

Proposition 3. Using the exponential value function 
(4), the CE of a two-outcome lottery with positive out- 
comes A  and  (where B A < B ) converges to the 

weighted average     1 w p A+ w p B

 

 as .  0α
In other words, we have risk-neutral behavior in the 

limit (besides the usual effects of the probability 
weighting).  

This result shows that we can cover the whole 
spectrum of risk-averse behavior when we use an expo- 
nential value function.  
 
3.3. Quadratic Value Functions 
 
Other value functions have been suggested recently, in 
particular piecewise quadratic functions of the type  

² ,    for 0,

0.

+ 0α >

2

²,       for 
2

x x x

v x

x x x



 

       
  

   (5)  

Such functions allow to model mean-variance pre- 
ferences as a special case of PT (for  and 

) [10]. Of course, the parameters have to be chosen 
α=

1λ=
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so that the highest and lowest outcome of all lotteries are 
still in the area where  is non-decreasing.4 v

One can now ask whether with such value functions, 
arbitrarily strong risk-aversion can be modeled. The an- 
swer is again negative. More precisely we have the 
following result: 

Proposition 4. Using the quadratic value function (5), 
the CE of a two-outcome lottery with positive outcomes 
A  and  (where B A < B

w
) converges to the weighted 

average  as  and to     w p p B1 A+ + 0α 
 A + ˆα B z B  as   , where ̂  is the largest 

value of  so that  is still non-decreasing on +α v
 0,B .  

The proof follows similar ideas as the proofs in the 
last section, but this time we use the fact that the 
admissible parameter range for  is limited for a 
given lottery, since otherwise  might be decreasing on 
the larger outcome of the lottery.  

+α
v

Using the numerical example from the introduction, 
we see that the constraint on the admissible risk- 
averseness when using a quadratic value function can 
even be stronger than in the standard form of PT: for 

10A= ,  and  we obtain 100B = 0.5z =
ˆ 1 0.0α= B = 1  and 

ˆ
36CE

 
lim


  (comparing to 

0
lim 32CE


  with the value function (2) of Tversky and 

Kahneman).  
 
4. Empirical Evidence 
 
Even though we have seen theoretical arguments for why 
the exponential value function should in principle fit 
better than the other two functions discussed in Section 3, 
only empirical evidence can support our arguments. 
There are very few studies comparing the performance of 
value functions in PT. Existing empirical evidence still 
shows the ambiguity on determining whether the power 
function or the exponential function performs better [11]. 
found that the power function gives better fits whereas 
the exponential function performs weakest among the 
power, exponential and log quadratic value functions 
while using Tversky and Kahneman’s weighting function. 
Likewise, the power function and exponential function 
were tested as a part of several parametric forms of 
cumulative prospect theory (CPT) in [12]. The better fit 
of the power function than the exponential function was 
pointed out [13]. Fitted CPT using seven deferent value 
functions including the three functions mentioned in this 
study with seven weighting functions. He also found that 
the power value function had better performance than the 
exponential function and noticed the weak performance 
of the quadratic value function. On the other hand [14], 

reported a superior performance of the exponential func- 
tion as compared to the power function in CPT using the 
standard weighting function.  

While the majority of previous studies seem to favor 
the power value function, the objective of this section is 
to evaluate empirically, which of these specific forms 
gives the best explanatory power for new experimental 
data and, based on our previous theoretical analysis, to 
understand which types of lotteries are better modeled by 
a power value function and which by an exponential 
value function.  

We use data from the international survey on risk atti- 
tudes INTRA for our tests [15]. The survey was con- 
ducted in 45 countries and regions around the world with 
5,912 bachelor students, mostly studying economics, 
finance or business. The participants were given ques- 
tionnaires that include three time-preference questions, 
one ambiguity aversion question, ten lottery questions, 
nineteen questions about happiness, personal information, 
nationality and cultural origin.  

To our knowledge, this is the largest international 
survey on risk preferences. Other previous studies have 
featured more questions, but relatively few participants. 
The advantage of our data is that we can compare the 
number of subjects for which a certain model works best.  

For the purpose of this study, we concentrate on the 
ten lottery questions. See Table 3 for the design of the 
lotteries. The survey was translated into local languages. 
The monetary payoffs in every question were converted 
to the local currency, taking into account each countries’ 
Purchasing Power Parity and the monthly income/ 
expenses of local students. The students were informed 
before taking the survey that there are no correct or 
incorrect answers. There were no monetary incentives 
but the survey was conducted in the classroom, leading 
to serious participation of most subjects. Pre-tests with 
monetary incentives showed no significant difference, as 
it is usually the case for lottery questions in gains. We 
refer to [15] for further details on the survey.  

Among the ten lottery questions were six solely in 
gains, one of them had two positive non-zero outcomes. 
While most lotteries were on amounts of around $100, 
there was one large-stake lottery (winning $10,000 with 
prob. 60%).  

The first measured parameter was the amount of risk 
averseness in gains, estimated from the six lotteries with 
outcomes only in gains.  

The second measured parameter (the amount of risk 
seeking in losses) was estimated from the two lotteries 
with results in the loss region. The students were 
instructed to imagine that they had to play these lotteries, 
unless they paid a certain amount of money beforehand. 
This amount of money is the negative value of willing- 
ness to pay or so called willingness to accept. These are  

4Alternatively, one can “cut” the function outside this area so that it 
simply becomes constant for large values. 
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Table 3. Design for the ten lotteries in INTRA. 

Lottery Outcome A($) Prob(A) Outcome B($) Prob(B) Average Value($) 

1* 10 0.1 100 0.9 91 

2 0 0.4 100 0.6 60 

3 0 0.1 100 0.9 90 

4** 0 0.4 10,000 0.6 6000 

5 0 0.9 100 0.1 10 

6 0 0.4 400 0.6 240 

7 –80 0.6 0 0.4 –48 

8 –100 0.6 0 0.4 –60 

9 –25 0.5 - 0.5 - 

10 –100 0.5 - 0.5 - 

*type A-lottery (two positive outcomes); **type B-lottery (large stake). 
 

lottery 6 and lottery 7 in Table 3.  
The third measured parameter was the loss-aversion 

parameter, based on the two last lotteries by the 
following question:  

In the following lotteries you have a 50% chance to 
win or lose money. The potential loss is given. Please 
state the minimum amount $X for which you would be 
willing to accept the lottery.  

We excluded those individuals who had not completed 
all the lotteries, leaving 5,185 subjects for our analysis.  

We used the grid search method to estimate all the 
parameters for the weighting function and value 
functions by minimizing the sum of normalized errors, 
where the parameter values of α,β  varied from 0 to 1 
for the standard value function, from 0 to 0.1 for the 
exponential function and from 0 to .005 for the quadratic 
value function5, and  varied from 0 to 1. Parameters 
were predicted on an individual level to each of three 
models to access the functional performance individually. 
The error function was defined as the sum of the absolute 
differences between the CE and the maximum outcomes 
of the lotteries. The normalized errors are the proportion 
of those differences and the lottery’s maximum outcome 
for each lottery.  

γ

To study the specific effect of lotteries with two 
positive outcomes (type A) and of large-stake lotteries 
(type B), we computed the best fitting models for three 
scenarios: No lotteries of type A and B. / No lottery of 
type B. / All lotteries.  

According to our theoretical results, type A lotteries 
should favor exponential value functions as might type B 
lotteries. The results are shown in Figure 1.  

We can see that when removing the type A lottery 
(with two positive outcomes) and the type B lottery (with 
large outcome) the power value function works better 

than the exponential function. However, the exponential 
value function outperforms the power value function 
when plugging in the lottery with two positive outcomes, 
or both the lottery with two positive outcomes and the 
lottery with the large outcome.  

A paired t-test of the average ranks to collate the 
performance of power and exponential value functions is 
highly significant at  5184 11.13t =  with 6, 
which shows that in this case the exponential function is 
better. The frequency, in which the quadratic value 
function works best, is very low (about 1%).  

0.0001p <

The important lesson to learn from this result is that 
the optimal choice of the value function strongly depends 
on the lotteries in the experiment!  
 
5. Conclusions 
 
We have seen that the standard form of PT faces severe 
problems when people show strong risk-aversion, since 
the smallest possible CE according to this theory is still 
substantially above the lowest lottery outcome, when 
considering lotteries with two positive outcomes. This 
makes it impossible to describe very risk-averse behavior 
correctly. Experimental data shows that such degree of 
risk-aversion is quite frequent and not a marginal pheno- 
menon. The problem is mitigated by the asymmetry of 
the weighting function and one can conjecture that it is 
the main reason for why this asymmetry is needed. The 
difficulties disappear completely when replacing the 
standard power value function by an exponential func- 
tion. This description allows to cover all degrees of risk- 
aversion which do not violate “in-betweenness”. Another 
advantage of experimental value functions can be found 
for large-stake gambles, as our empirical results show.  

As in many experiments, both types of lotteries (with  
5The value has to be bounded from below to avoid non-monotonic 
value functions on the relevant range of outcomes. 

6All models are ranked individually using the errors calculated as ex-
planatory performance 1 as best performance, 3 as worst performance.
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Figure 1. Frequency of best fitting model. 
 
two positive outcomes or with large outcomes) are miss- 
ing, the advantages of an experimental value function are 
often overlooked.  

These results have practical implications to the design 
and measurement of lotteries in PT and give further 
theoretical and empirical support in favor of an expo- 
nential value function.  

Our results carry over to the case of lotteries in losses. 
(Here, arbitrarily large risk-seeking behavior needs to be 
modeled. Since the value function is essentially anti- 
symmetric, the above computations can be reused.)  

The case of mixed lotteries (in gains and losses) is not 
of interest, since risk-seeking in losses and risk-averse- 
ness in gains cancel each other out to some degree, and 
loss-aversion can explain a large risk-aversion in such 
cases. It is also possible to extend our results to lotteries 
with several outcomes, which makes the computations a 
little more tedious, but does not change the main results 
and their arguments substantially. 
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Appendix 
 
Proof of Proposition 1 
 
Let the probability for the outcome  be given by  
and denote . Then the CE of the lottery is in 
general given by 

B p
 :=z w p

     1 1CE = v z v A + zv B   ,  

where  denotes the inverse map of , i.e.  
.  

1v

  x
v

1v v = x

In the standard form of PT, this becomes  

  11
aα αCE = z A + zB . 

Although conceptually unrelated, this expression is 
mathematically equivalent to the CES (constant elasticity 
of substitution) utility function of two goods as given by 
   11 2 1 1 2 2

ρρ ρu x ,x = α x +α x  (with constants , 2 ). 
The limit of the CES utility preferences for  is 
the preference described by the Cobb-Douglas utility 
function 

1α
ρ

α
0

  1 2
1 2u x x x   [16, page97]. This result 

implies Proposition 1. Alternatively, a direct proof can 
 

be given by computing the limit of the certainty 
equivalent for  via a Taylor expansion. □  0α
 
Proof of Proposition 2 
 
To prove this result, we first note that the new risk- 
aversion parameter α  scales differently than before: 
high risk-aversion corresponds to a large value of , 
low risk-aversion corresponds to an  close to zero. In 
fact, the CE decreases monotonically in  which we 
can prove as follows: compute the CE of the lottery, set, 
as before, 

α
α

α

 :=z w p
α

, multiply (for computational con- 
venience) by  and take the derivative with respect to 

 to obtain  α

   

    
 

d d
ln 1 e e

d d

1 e e1
= ln 1 e e

1 e e )

A B

A B
A B

A B

CE z z

A z Bz
z z

z z

 

 
 

 


 



 

 
 

 

    

 
   

 
.
 

Using the strict concavity of the logarithm and bring-
ing both resulting terms on the some denominator, we 
arrive at 

       
      

 

2 2 2 2

2
e e e e ed

.
d 1 e e 1 e e

αA αB αB αA αA αB

αA αB αA αB

A z z + B z z A z z B z z A B
CE z z

z + z z + z




    

   

       
   

 

e



 

 
Since and , this expression is 

negative, and thus the CE is monotonically decreasing in 
. We compute its limit as  using the refor- 

mulation  

0 1z , B > A

αα 

  

     
       

   

1
ln 1 e e

1
       ln e 1 e

1
       ln e ln 1 e

1
       = ln 1 e 1 .

αA αB

α B AαA

α B AαA

α B A

CE z + z
α

z + z
α

+ z + z
α

A + z
α

 

 

 

 

  

  

  

 

 

Since  and 0α > A < B

1z <

, we have , 
and therefore we obtain the following two inequalities, 
where we recall that  and thus ln :  

   e 0α B A ,  

 1 z > 

1

     ln 1 ln 1 e 1 0.α B Az < + z <    

Inserting these inequalities into (6), we obtain bounds 
for the CE, namely:  

 1
ln 1 .A < CE < A z

α
   

As  , the right hand side converges to α A , and 

thus  and Proposition 2 is proved. □  lim CE = A


 
Proof of Proposition 3 
 
We start from the CE and frstly expand the exponential 
function and then the logarithm:  

 

  

     
     

   

2

2

1
ln 1

1
ln 1 1

1
1

1 .

αA αBCE z e + ze
α

= + z A zB α+O α
α

z A zB α+O α
α

= z A+ zB+O α

   

   

    



 

The limit  concludes the proof of Proposition 
3. □  

0α

 
Original Survey Questions 
 
The lottery questions in the INTRA survey were formu- 
lated as follows:  

Imagine you are offered the Lotteries below. Please 
indicate the maximum amount you are willing to pay for 
the lottery. 
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Lottery 1 

10% chance Win 4 £ 

90% chance Win 40 £ 

 
I am willing to pay at most £____ to play the lottery.  
The lotteries themselves can be found in Table 3.  
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